Code No.BTS 051B B.TECH DEGREE (F.T) III SEMESTER EXAMINATION IN INFORMATION TECHNOLOGY/ COMPUTER SCIENCE AND ENGINEERING, MARCH 1998

IT/CS 304 DIGITAL CIRCUITS AND LOGIC DESIGN

Time:	3 Hours	Max. Mark	ks: 100
I	a)	Encode the following decimal numbers to Gray code and Excess - 3 Code (1) 46 (ii) 327.89 (iii) 20.305	(6)
	b)	Convert the following expressions to sum of product form (i) $(X+Y)(\overline{Y}+z)(\overline{X}+Z)$	(4)
		(ii) $(X+T)(T+Z)(X+Z)$ (iii) $(X+Z)(X\overline{Y}+XZ)(\overline{X}Z+\overline{Y})$	(4)
		$(\Pi) \qquad (X + Z)(XI + XZ)(XZ + I)$ OR	(5)
II	a)	State and prove Demorgan's theorems as applied to two variable Boolean	
	/	expressions.	(6)
	b)	Add the following numbers using 2's complement method. (i) -18 and -20 (ii) +128 and -130 (iii) -25 and + 17	(9)
III	a)	Simplify the following using a k-map and realize using NAND gates only $f(A,B,C,D) = \sum m(4,5,6,12,13) + \phi(2,9,15)$	(7)
	b)	Design a combination circuit to convert 4 bit binary into corresponding Gray	
		code. OR	(8)
ΙV	a)	Draw a 4 bit binary parallel adder and explain its working.	(8)
• •	b)	Perform the following binary arithmetic.	(7)
	•	(i) Multiply 10111 by 101	(1)
		(ii) Divide 1111000 by 100	
V	a)	Compare the TTL, ECL and CMOS logic families with respect to their i) speed	(6)
	b)	2) power dissipation 3) Noise margin Draw the circuit diagram of a CMOS NAND gate and explain its working. OR	(6) (9)
VI	a)	Explain how a TTL gate can be used to drive N CMOS gates.	(8)
	b)	Draw and explain the input profile and output profile of a TTL inverter.	(7)
VII	a)	Explain the different methods of triggering flip-flops.	(5)
	b)	Design a sequence generator to generate the following sequence101000 OR	. (10)
VIII	a)	Explain the working of a Master-slave J.k flip-flop.	(7)
	b)	Describe the working of a decade counter with the help of logic diagram.	(8)
IX	a)	Draw a static MOS RAM cell and explain its working.	(7)
	b)	Design an octal to binary encoder.	(8)
v	-)	OR	(15)
X	a)	Design a BCD to 7 segment decoder for common cathode display.	(15)
XI		Write short notes on any 5 of the following.	(5x5)
		 Ring counter Decoders 	
		3. Shift register	
ic.		4. Error detecting codes	
IG, FOC		5. ASCII code	
Ke / 3		6. Combinational and sequential systems	
<i>[호[(환</i>	68	7. Tristate logic	
强] 至	0	8. Logic families.	

