| 1. | mature of Invigilators MATHEMA SCIENO Paper | CES | • | Roll No. (In figures as in Admit Card | | | | |------------|---|---------------------|-------------------|---------------------------------------|-------------------|--------------------|-------------------| | J | Y—04/1 | | | | | (In v | vords) | | | | Name | of the A | Areas/Se | ction (if | any) | | | Ti | me Allowed : $2\frac{1}{2}$ Hours] | | | | [Maxin | num Ma | arks : 200 | | | Instructions for the Candidates 1. Write your Roll Number in the space provided on the top of this page. FOR OFFICE USE ONLY Marks Obtained | | | | | | | | 2.
3. | Write name of your Elective/Section if any. Answer to short answer/essay type questions are to be written in the space provided below each question or after the questions in test booklet itself. No additional sheets are to be | Question
Number | Marks
Obtained | Question
Number | Marks
Obtained | Question
Number | Marks
Obtained | | | used. | 1. | | 20. | | 39. | | | | Read instructions given inside carefully. Last page is attached at the end of the test | 2. | | 21. | | 40. | | | | booklet for rough work. | 3. | | 22. | | | | | 6. | If you write your name or put any special mark
on any part of the test booklet which may | 4. | | 23. | | | | | | disclose in any way your identity, you will render | 5. | | 24. | | | | | 7 | yourself liable to disqualification. Use of calculator or any other Electronics | | | | | | | | • | Devices are prohibited. | 6. | | 25. | | | | | | There is no negative marking. | 7. | | 26. | | | | | y . | You should return the test booklet to the invigilator at the end of the examination and | 8. | | 27. | | | | | | should not carry any paper outside the exami- | 9. | | 28. | | | | | บว | nation hall.
ીક્ષાર્થીઓ માટે સૂચનાઓ : | 10. | | 29. | | | | | | આ પૃષ્ઠના ઉપલા ભાગે આપેલી જગ્યામાં તમારી ક્રમાંક | | | | | | | | | સંખ્યા (રોલ નંબર) લખો. | 11. | | 30. | | | | | | તમે જે વિકલ્પનો ઉત્તર આપો તેનો સ્પષ્ટ નિર્દેશ કરો. | 12. | - | 31. | | | | | ઝ . | ટૂંક નોંધ કે નિબંધ પ્રકારના પ્રશ્નોના ઉત્તર દરેક પ્રશ્નની
નીચે આપેલી જગ્યામાં જ લખો. વધારાના કોઈ કાગળનો | 13. | | 32. | | | | | | ઉપયોગ કરશો નહીં. | 14. | | 33. | | | | | ४ | અંદર આપેલી સૂચનાઓ ઘ્યાનથી વાંચો. | <u> </u> | | | | | | | ૫. | આ ઉત્તર પોથીને અંતે આપેલું પૃષ્ઠ કાચા કામ માટે છે. | 15. | | 34. | | | | | ۶. | આ ઉત્તર પોથીમાં કયાંય પણ તમારી ઓળખ કરાવી દે એવી
રીતે તમારું નામ કે કોઈ ચોકકસ નિશાની કરી હશે તો તમે | 16. | | 35. | | | | | | આ પરીક્ષા માટે ગેરલાયક સાબીત થશો. | 17. | | 36 | | | | | ૭. | કેલક્યુલેટ૨ અથવા ઈલેકટ્રોનિકસ સાધનો જેવાનો ઉપયોગ | 18. | | 37. | | | | | , | કરવો નહીં.
નકારાત્મક ગુણાંક પદ્ધતિ નથી. | | | | | | | | | પ્રશ્નપત્ર લખોઈ રહે એટલે આ ઉત્તરપોથી તમારા નિરીક્ષકને | 19. | · · · · · · · | 38. | | | | | | આપી દેવી. પરીક્ષાખંડની બહાર કોઈ પણ પ્રશ્નપત્ર લઈ | Total M
Signatur | | | | ••••• | | જવું નહીં. Total Marks Obtained..... Signature of the co-ordinator..... (Evaluation) ## MATHEMATICAL SCIENCES ## PAPER-III - Note:—(i) This paper contains forty (40) questions, each carrying twenty (20) marks. The first twenty (20) pertain to mathematics, the remaining to statistics. - (ii) Attempt any ten questions. - (iii) Answer each question in not more than 300 words. - 1. (a) Let $f(x) = x^2$ for $-\pi < x \le \pi$ and $f(x + 2\pi) = f(x)$ for all $x \in \mathbb{R}$. Find the Fourier series of f. Hence or otherwise prove that: $$\sum_{k=1}^{\infty} \frac{1}{(2k-1)^2} = \frac{\pi^2}{8}.$$ (b) Let $f: \mathbf{R} \to \mathbf{R}$. Suppose that f is integrable on any bounded closed interval of \mathbf{R} . Then check the validity of the following statement and justify your answer. $\int_{-\infty}^{\infty} f(x) dx = \lim_{r \to \infty} \int_{-r}^{r} f(x) dx$, whenever the limit on the R.H.S. exists. 2. Find a complex number z such that: $$|\sin z| > 10.$$ - 3. Let F be the field $\{0, 1, 2, \dots, 6\}$ addition and multiplication being (mod 7). Prove that $x^2 + 4$ is irreducible in F[x]. Find the number of elements in the finite field $F[x]/(x^2 + 4)$. - 4. (a) State Fatou's lemma. - (b) State and prove the monotone convergence theorem. - (c) Let f be a non-negative function which is measurable on a measurable subset E of R. For each positive integer n, define $$f_n(x) = \min (f(x), n) \quad (x \in E).$$ - 8. (a) Show that every separable metric space has a countable basis. - (b) Let $D = \{z \in \emptyset \mid (z) < 2\}$. Suppose that f is analytic in D and has no zero in D. If |f(z)| = 1 for all z such that |z| = 1, prove that f(z) = 1 for all z in D. - 9. (a) Prove that the following Boolean expressions are equivalent to one another: - (i) $(x \oplus y) \star (x' \oplus z) \star (y \oplus z)$ - (ii) $(x \star z) \oplus (x' \star y) \oplus (y \star z)$ - (iii) $(x \oplus y) \star (x' \oplus z)$ - (b) Draw two graphs with six vertices one of which is Hamiltonian but not Eulerian and other is Eulerian but not Hamiltonian. Justify your claim. - 10. (a) Find the Gaussian and mean curvatures for the surface $$\vec{r} = (u\cos\theta, u\sin\theta, b\theta)$$ (b is a non-zero constant). - (b) What is a minimal surface? What is the motivation for calling such a surface minimal? Give two examples of minimal surfaces. - 11. Let $$J_{\alpha}(x) = x^{\alpha} \sum_{r=0}^{\infty} (-1)^{r} \frac{x^{2r}}{2^{2r+\alpha} r! [r+\alpha+1]},$$ be the Bessel function of the first kind of order α , where $\alpha \geq 0$. Prove that : (a) $$\frac{d}{dx}(x^{\alpha} J_{\alpha}(x)) = x^{\alpha} J_{\alpha-1}(x)$$ (b) $$J_{\alpha-1}(x)+J_{\alpha+1}(x)=\frac{2\alpha}{x}J_{\alpha}(x), x\neq 0.$$ Prove that: $$\lim_{n\to\infty}\int_{\mathbf{E}}f_n=\int_{\mathbf{E}}f.$$ - 5. Define the characteristic of a field and if a field has non-zero characteristic, prove that its characteristic must be a prime number. Give an example of an infinite field with a finite (non-zero) characteristic. - 6. (a) Show that if T is a one-to-one continuous linear transformation on a Banach space onto itself, then T⁻¹ is continuous. - (b) Define a positive operator on a Hilbert space H. Prove that if P is a positive operator on H, then I + P is invertible. Deduce that I + T*T is invertible for every bounded operator T on H. - (c) State which of the following statements are true. Justify your answers: - (i) The closed unit ball of a normed linear space is convex. - (ii) The closed unit ball of a Banach space is compact. - (iii) If X is a normed linear space and Y is a proper subspace of X, then the interior of Y is empty. - (iv) If P is a projection on a Hilbert space H with range M and null space N and if P is self-adjoint, then $M \perp N$. - (v) In every Banach space, the parallelogram law holds. - 7. Let X be a connected space and f and g be real valued continuous functions on X. Let $Z_f = \{x \in X \mid f(x) = 0\}$, with Z_g defined similarly. Suppose that $Z_f \cap Z_g = \phi$. Prove that if fg = 0 on X, then f = 0 on X or g = 0 on X. Give examples to show that the result does not hold when: - (i) X is connected, f, g are continuous, but $Z_f \cap Z_g \neq \phi$. - (ii) X is connected, $Z_f \cap Z_g = \phi$ but f or g is not continuous. - (iii) X is not connected, $Z_f \cap Z_g = \phi$ and f, g are continuous. Math. Sci.—III - 16. Derive generalized Bernoulli's equation from Euler's equation of motion of a perfect fluid assuming that the body forces are conservative, pressure is a function of density alone and flow is irrotational. - 17. Find the stationary function of $$\int_0^4 (xy'-y'^2)dx,$$ which is determined by the boundary condition y(0) = 0, y(4) = 3. 18. Using the method of successive approximations, solve the integral equation: $$y(x) = x - \int_0^x (x - t) y(t) dt.$$ - 19. Find the order of convergence for the Newton-Raphson method. Show that the initial approximation x_0 for finding 1/N, where N is a positive integer, by the Newton-Raphson method must satisfy $0 < x_0 < \frac{2}{N}$, for convergence. - 20. Solve $$\frac{\partial^4 z}{\partial x^4} + \frac{\partial^2 z}{\partial y^2} = 0, (-\infty < x < \infty, y > 0),$$ satisfying the conditions: (i) z and its partial derivatives tend to zero as $x \to \pm \infty$; (ii) $$z = f(x), \frac{\partial z}{\partial y} = 0 \text{ on } y = 0.$$ (Hint: Use Fourier transform. You may take $$Z(\xi, y) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} z(x, y) e^{i\xi x} dx.$$ - 21. Explain weaknesses of the simplex method and illustrate how they are taken care of in Revised Simplex Method (RSM). Give computational procedure of RSM. - 22. (a) Define a measurable function. - (b) Show that measurability of a function is with respect to a specified σ field. 12. Solve the Cauchy problem $$(y+2ux)\frac{\partial u}{\partial x}-(x+2uy)\frac{\partial u}{\partial y}=\frac{1}{2}(x^2-y^2),$$ u(x, y) = 0 on the straight line x - y = 0. - 13. Find the smallest prime p which can be expressed in each of the forms $x^2 + y^2$, $x^2 + 2y^2$ and $x^2 + 3y^2$. - 14. (a) Introduce holonomic and non-holonomic systems and write down Lagrange's equations of motion for a holonomic, conservative dynamical system with n degrees of freedom (no derivation). - (b) A particle of mass m moves on a smooth horizontal circular wire of radius a, which is free to rotate about a vertical axis through a point O, distant c from the centre C. If θ is the angle between CO and the radius to the particle, show that the kinetic and potential energies T, V, respectively, are given by $$T = \frac{1}{2}M(a^2 + c^2)\omega^2 + \frac{1}{2}m\{c^2\omega^2 + a^2(\omega + \dot{\theta})^2 - 2ac\omega(\omega + \dot{\theta})\cos\theta\}$$ V = const., where M is the mass of the wire. Hence show that the Lagrangian equation for the coordinate θ is: $$a\ddot{\theta} + \dot{\omega}(a - c\cos\theta) = c\omega^2\sin\theta,$$ where ω is the angular velocity of the wire. 15. State the necessary and sufficient conditions for the existence of a single valued displacement in three-dimensions. What is the total number of compatibility conditions for strain components? Out of these equations, how many are algebraically independent? How many compatibility conditions exist in two-dimensions? Write them. If the strain components e_{ij} (i, j = 1, 2, 3) are given by $$e_{11} = x_1x_2, e_{22} = x_1^2, e_{12} = x_1x_2, e_{33} = e_{23} = e_{31} = 0,$$ then determine whether such a distribution is possible. - 27. A draws 3 balls from Box 1 which contains 3 white and 2 red balls. B draws 3 balls from Box 2 which contains 2 white and 3 red balls. Let X and Y denote the number of white balls and red balls drawn by A and B respectively without replacement. Then: - (a) show that X and Y are i.i.d. r.v.s. - (b) find the joint distribution of U and V, where $$U = min(X, Y)$$ and $V = max(X, Y)$. - 28. Define MLR property. Hence or otherwise derive a UMP test of size α for testing $H_0: \theta \leq \theta_0$ against $H_1: \theta > \theta_0$ based on a sample of size n from one parameter exponential family with parameter θ . - 29. Define Sequential Probability Ratio Test (SPRT). Show that SPRT terminates with probability one. State the assumptions required. - 30. Let (x_1, y_1) , (x_2, y_2) , (x_n, y_n) be a random sample from the bivariate normal distribution $N(\mu, \mu, \sigma, \sigma, \rho)$: - (i) Give two unbiased estimators of μ . - (ii) Find a sufficient statistic for μ . Is the sufficient statistic complete? Justify. - (iii) Consider the class of estimators $$\hat{\mu}(\alpha) = \alpha \overline{x} + (1 - \alpha) \overline{y}.$$ Find α so that $v(\hat{\mu})$ is minimum. Here $$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$ and $\overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$. 31. Define Karl Pearson's test of goodness of fit. Obtain its large sample distribution. - (c) Also show that a continuous function of a real valued measurable function is a measurable function. - 23. (a) State Liapunov's condition for a sequence of independent r.v.s. to obey the CLT. - (b) Let $\{X_n\}$ be a sequence of independent r.v.s. with $$P(X_n = -n^{\theta}) = \frac{1}{2n^{\lambda}} = P(X_n = n^{\theta})$$ $$P(x_n=0)=1-\frac{1}{n^{\lambda}}$$ where $\lambda > 0$. Find conditions on θ and λ such that $\{X_n\}$ obeys the CLT. Suppose X_1 , X_2 , X_n are i.i.d. r.v.s. with $EX_1 = \mu$ and $V(X_1) = \sigma^2 < \infty$. Find the limit distribution of $$\frac{\sqrt{n}(X_1 + ... + X_n - n\mu)}{\sum_{i=1}^{n} (X_i - \mu)^2}$$ (You have to state precisely any results that you wish to use). - 25. (a) Stating the assumptions clearly, give (without proof) a formula to find EX' in terms of the c.f. of X. - (b) Examine whether $\phi(t) = \exp \{-|t|^3\}$ is a c.f. - (c) Show that a r.v. is degenerate if and only if its variance is zero. - 26. (a) State decomposition theorem for a d.f. - (b) Decompose the following d.f. F: $$\mathbf{F}(x) = \begin{cases} 0 & \text{if } x < -2\\ \frac{x+3}{4} & \text{if } -2 \le x < -1\\ 3/4 & \text{if } -1 \le x < 0\\ 1 - \frac{1}{4} \exp(-x) & \text{if } x \ge 0 \end{cases}$$ - 38. (a) Define a homogeneous Poisson process $\{X(t), t \ge 0\}$ and obtain P(X(t) = n) for $n \ge 0$. - (b) If the customers arrive at a service station in a Poisson fashion at the rate of 4 per hour and if the service station opens at 6 A.M., find the following: $$P(X(t_2) = 5 | X(t_1) = 2)$$ $$P(X(t_1) = 2|X(t_2) = 5)$$ where $6 < t_1 < t_2$. - 39. Describe the construction of (\overline{X}, R) control charts to control the future production. Obtain the expressions for their OC functions. - 40. For a multi-item $(n \ge 2 \text{ items})$ EOQ model for the warehousing problem (storage limitations), under the assumption of no shortages: - (i) Write mathematical model representing the inventory situation; and - (ii) write down steps for optimal solution of the model. 32. Drive the null distribution of sample correlation coefficient. Hence or otherwise suggest a test statistic for testing $$H_0: \rho = 0$$ against $H_1: \rho \neq 0$. 33. Let $$\underline{X}_{3\times 1} = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix}$$ follow $N_3(\underline{\mu}, \Sigma)$ Obtain the - (i) marginal distribution of (X_1, X_2) ; - (ii) conditional distribution of $(X_1/X_2, X_3)$. - 34. Give a standard Gauss-Markov model and in its relation define (i) estimability of a linear parametric function (l.p.f.) (ii) best linear unbiased estimator (blue) of a l.p.f. Obtain BLUE and variance-covariance matrix of a l.p.f. Further show that BLUE is always unique. - 35. What do you understand by double sampling or two phase sampling? Obtain the double sampling ratio estimator for population mean. Obtain its bias and variance, when the second sample is a subsample from the first sample. - 36. Explain the concepts of confounding and fractional replication. Explain and illustrate for each of these: - (i) suitable situation for its use - (ii) the cost to be paid for it. - 37. (a) Define a stationary distribution of a M.C. - (b) Does a stationary distribution always exist? When it does, is it unique? If your answers are 'Yes', you have to prove. If the answers are 'No', give suitable examples. Q. No. ŝ,