B.Sc. (Part I) Examination PHYSICS Paper—III

(Optics and Laser)

Time—Three Hours]

[Maximum Marks-40

- Note:—(1) All questions are compulsory and carry equal marks.
 - (2) Draw neat diagram wherever necessary.

EITHER

- 1. (a) State Fermat's principle of extremum path. 2
 - (b) Calculate the power of combination of two thin lenses of focal length f₁ and f₂ separated by the distance 'a'.
 - (c) Deduce the relation:

$$\frac{\mu_2}{v} - \frac{\mu_1}{u} = \frac{\mu_2 - \mu_1}{R}$$

for refraction at a convex spherical surface for virtual image.

OR

- (p) Name different types of monochromatic aberrations and explain the spherical aberration.
 - (q) What is chromatic aberration? How it can be reduced?
 54

EITHER

 (a) Obtain an expression for the interference in thin films due to reflected light.

	Give the theory of plane transmission grating.	. (a)	-
	EITHER	EIT	
		(b)	
10. (p) Expla	(ii) Fraunhofer's diffraction (iii) Fresnel's diffraction	9	0
(c) State		OR	1
9. (a) Defin (b) Descr	slit. 5 Derive an expression for resolving power of microscope. 3	(b)	
EITHER	(a) Explain the Fraunhofer diffraction due to single	(a) THE	S
(r) Show canno for li ₁	How the Newton's rings can be used to determine the refractive index of liquid?	(F)	
	Interferometer giving distinct fringes in the case of sodium light having wavelengths 5890 Å and 5896 Å.		
8. (p) Descr	Calculate the distance between the two successive position of a movable mirror of a Michelson's	(b)	
in the 5896	Explain how the Michelson's Interferometer is used to measure the wavelength of sodium light.	(p)	4
(c) Calcu		OR (c)	
(b) Deriv	Explain the necessity of a broad source to observe the interference in thin films.	(b)	

NEO-1575

(Contd.)

NEO-1575

1350