SATHYABAMA UNIVERSITY

(Established under section 3 of UGC Act,1956)
Course \& Branch :B.Arch - ARCH

Title of the Paper :Applied Mechanics
Sub. Code :621204
Date :17/05/2010

Max. Marks :80
Time: 3 Hours
Session :FN

$$
\begin{array}{cl}
\text { PART - A } & (8 \times 4=32) \\
\text { Answer ALL the Questions }
\end{array}
$$

1. Define Triangle law of forces and parallelogram law of forces
2. Differentiate perfect and imperfect frame.
3. Draw stress strain diagram for the Mild Steel and mention its salient point.
4. Define Bulk Modulus and Poisson's ratio.
5. Differentiate Centroid and centre of Gravity.
6. State Parallel axis theorem and Perpendicular axis theorem.
7. Define Shear Force and Bending Moment.
8. Draw S.F.D and B.M.D for the simply supported beam of span ' 1 ' carrying point load ' P ' at $1 / 3$ span.
9. A simple derrick crane showed below which carries a load of 10 kN . The sides AB, BC and CA are $4 \mathrm{~m}, 4 \mathrm{~m}$ and 2 m long. Find forces in AC and BC.

(or)
10. Find loads in members AB and CE by method of joint for the truss shown in figure.

11. A bar 450 mm long 50 mm square in section for the first 150 mm , 25 mm diameter for the next 150 mm and 50 mm diameter for the remaining 150 mm length. Determine stress in each portion and the total elongation when a pull of 100 kN is applied. Take $\mathrm{E}=2 \times 10^{5} \mathrm{MPa}$.
12. A bar $30 \mathrm{~mm} \times 30 \mathrm{~mm} \times 250 \mathrm{~mm}$ long is subjected to a pull of 90 kN in the direction of its length. The extension of the bar was found to be 0.125 mm and decrease in lateral dimension is found
to be 0.00375 mm . Find the young's Modulus, Poisson's ratio, Modulus of rigidity and Bulk modulus for the bar material.
13. Determine the moment of inertia and radius of gyration for the Tsection having top width 200 mm overall height 160 mm and both flanges thickness 40 mm about its centroidal y axis
(or)
14. Determine the coordinates x and y of a rectangular plate 180 mm x 140 mm in which a triangle portion was cut at right side top corner of size 70 mm depth and 90 mm length. In the same plate 90 mm diameter circular hole was cut so that this point will be the centroid of the remaining shaded area.
15. Draw S.F.D and B.M.D for the shown below.

(or)
16. Draw S.F.D and B.M.D for the simply supported beam shown below. What is the maximum bending moment and shear force value?

