\square

SATHYABAMA UNIVERSITY

(Established under section 3 of UGC Act,1956)
Course \& Branch :B.Arch - ARCH

Title of the Paper :Applied Mechanics
Sub. Code :621204
Date :02/06/2011

Max. Marks :80
Time : 3 Hours Session :FN
PART - A
$(8 \times 4=32)$

Answer ALL the Questions

1. State triangular \& parallelogram law of forces.
2. What are the conditions for static equilibrium?
3. What are the elastic constants?
4. Draw and explain stress strain curve for mild steel.
5. Define centroid and moment of inertial of an area.
6. State parallel and perpendicular axis theorems.
7. Define radius of gyration.
8. Define shear force and behind moment in a beam.
9. What are the types of beams?
10. Define contrafexure.

Answer All the Questions

11.

Analyzes the truss by method of joints (or)
12.

Analyse the truss any method
13. The following observations were made during a tensile test on a mild steel specimen 40 mm in diameter and 200 mm long
Elongation with 40 kn load (within limit of proportionality) $=\delta$ $1=0,0304 \mathrm{~mm}$
Yield load $=161 \mathrm{KN}$
Maximum load $=242 \mathrm{KN}$
Length of specimen at fracture $=249 \mathrm{~mm}$
Determine (a) youngs modulus of elasticity
(b) yield point stress (c) Ultimate stress
(d) Percentage elongation.
(or)
14. For a given material young's modulus is $110 \mathrm{GN} / \mathrm{m}^{2}$ and shear modulus is $42 \mathrm{GN} / \mathrm{m}^{2}$. Find the bulk modules and lateral
contraction of a round bar of 37.5 mm diameter and 2.4 m long when stretched 2.5 mm .
15.

Determine the centroid for the above figure

(or)

16.

Determine the moment of inertia of the above section about its centroidal axes xx and yy
17.

Draw SFD and BMD for the above beam
(or)
18.

Draw SFD and BMD for the above beam
19.

Draw SFD and BMD for the above beam

(or)
20.

Draw SFD and BMD for the above beam

