SATHYABAMA UNIVERSITY

(Established under section 3 of UGC Act, 1956)
Course \& Branch: B.Arch
Title of the paper: Applied Mechanics
Semester: II
Sub.Code: 621204(2006-2007-2008)
Date: 20-05-2009

Max.Marks: 80
Time: 3 Hours
Session: FN

$$
\text { PART }-\mathrm{A} \quad(8 \times 4=32)
$$

Answer ALL the Questions

1. When a truss is said to be internally determinate?
2. State (a) Lami's Theorem
(b) Free body diagram
3. Draw the Stress-Strain curve for mild steel and explain the salient points.
4. Derive the relationship between E, K and Poisson's ratio.
5. State (a) Parallel axis theorem
(b) Perpendicular axis theorem.
6. Give the significance of radius of gyration.

$$
\text { PART }-\mathrm{B} \quad(4 \times 12=48)
$$

Answer ALL the Questions
9. Determine the forces in all the members of the truss shown in figure 1.

(or)
10. A system of connected flexible cables shown in figure 2 is supporting two vertical forces 200 N and 250 N at points B and D . Determine the forces in various segments of the cable.

11. A mild steel plate, 20 mm thick and 300 mm wide at one end, tapers uniformly to 15 mm thick and 200 mm wide at the other end. Find the elongation under an axial pull of 20 kN , if the length is 2 m . Take $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.
(or)
12. A 2 m long steel bar is having uniform diameter of 40 mm for a length of 1 m . In the next 0.5 m , its diameter gradually reduces to ' d ' mm and for the remaining 0.5 m length, diameter remains ' d ' mm uniform. When a load of 300 kN was applied, the extension observed is equal to 5.78 mm . Determine the diameter ' d ' of the bar if $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.
13. A hemisphere of diameter 60 mm is placed on top of a cylinder, whose diameter is also 60 mm . The height of cylinder is 75 mm . Find the common centre of gravity of composite body.
(or)
14. For the shaded area shown in figure 3 find the moment of inertia about base.

15. Draw the shear force and bending moment for the beam loaded as shown in figure 4.

(or)
16. A beam of length 10 m is simply supported at its ends and carries a load which varies uniformly from zero at left end to 40 kN per meter at right end. Draw the shear force and bending moment diagrams.

