[Total No. of Printed Pages- $8+4$
[3762]-201
S.E. (Comp/IT) (I Sem.) EXAMINATION, 2010

DISCRETE STRUCTURES

(2008 COURSE)
Time : Three Hours
Maximum Larks : 100
N.B. :- (i) Attempt from Section I Q. 1 or Q. 2, Q. 3 or Q. 4, Q. 5 or Q. 6 from Section II Q. O, Q. 8, Q. 9 or
Q. 10, Q. 11 or Q. 12.
(ii) Answers to the two Sections sl be written in separate answer-books.
(iii) Neat diagrams must drawn wherever necessary.
(iv) Assume suitable d ta, if necessary.

* section I

1. (a) Prove by ind (1) that for all $n>=1$

$$
\begin{equation*}
1.2+\mathrm{c}^{3} \ldots \ldots+n(n+1)=\frac{n(n+1)(n+2)}{3} \tag{6}
\end{equation*}
$$

(b) (i) Givn that the value of $p \rightarrow q$ is false. Determine the value of $(\sim p \vee \sim q) \rightarrow q$.

Given that the value of $p \rightarrow q$ is true. Can you determine the value of $\sim p \vee(p \leftrightarrow q)$?
(c) In a survey of 260 college students, the following data were obtained :

64 had taken a mathematics course, 94 had taken a computer science course, 58 had taken a business course, 28 had taken both mathematics and business course, 26 had ta both mathematics and computer science course, 22 ha@ tate both computer science and business course and 14 h taken all 3 types of courses.
(1) How many students were surveyed who had taken none of the three types of courses
(2) Of the students surveyed, now many had taken only a computer science
2. (a) Prove the foll wing using Venn diagram :
(i) $\mathrm{A}-(\mathrm{A}-\mathrm{B}) \subseteq \mathrm{B}$
(ii) $\mathrm{A}=\mathrm{A} \cap \overline{\mathrm{B}}$.
(b) Use Today is Monday.
q : The grass is wet.
r : The dish ran away with the spoon.

Write an English sentence that corresponds to each of the following :
(1) $\sim r \wedge q$
(2) $\sim q \vee r$
(3) $\sim(p \vee q)$
(4) $p \vee \sim r$.

(c) Determine whether the argument given
valid or not. If I try hard and I have talent, then will become a musician. If I become a musician, then I il he happy. Therefore if I will not be hay ty then I did not try hard or I do not have talent.

3. (a) Consider the binary Nation * defined on the set $\mathrm{A}=$ $\{a, b, c, d\}$ by following table :

Is * commutative ? Associative ?
(b) Let $\left(s_{1}, *_{1}\right),\left(s_{2}, *_{2}\right)$ and $\left(s_{3}, *_{3}\right)$ be semigroups and $f: s_{1} \rightarrow s_{2}$ and $g: s_{2} \rightarrow s_{3}$ be homomorphisms. Prove that g of is homomorphism from s_{1} to s_{3}.
(c) Define the following terms :
(1) Field
(2) Abelian group
(3) Subgroup
(4) Homomorphism
(5) Monoid
(6) Associative operation.
4. (a) Let $\mathrm{A}=\{a, b\}$. Which of following tables define a semigroup on A ? Which A fine a Monoid on A ?

(b) Let G be a group and let a be a fixed element of G. Show that the function $f_{a}: \mathrm{G} \rightarrow \mathrm{G}$ defined by $f_{a}(x)=a \times a^{-}$ 1, for $x \in \mathrm{G}$ is an isomorphism.
(c) Let R be a commutative ring with additive identity ord multiplicative identity 1 , then prove that :
(i) For any x in $\mathrm{R}, 0 * x=0$
(ii) For any x in $\mathrm{R},-x=(-1) * x$.
5. (a) Let R be a binary relation on the f all positive integers such that $\mathrm{R}=\{(a, b) \mid a-b$ odd positive integer $\}$.

Is R reflexive ? Symmetric Antisymmetric ? Transitive ? An Equivalence relation

Partial ordering relation ? [6]
(b) Let $A=\{1,2,3,4\}$ and $B=\{1,2,3\}$. Given the matrices M_{r} and M_{s} the relations R and S from A to B, compute :
(1)

$(2)_{R} M_{S}$
) $M_{R}{ }^{-1}$
(4) $\mathrm{M}_{\bar{s}}$.
(c) Define the following with suitable example :
(1) One-to-one function
(2) Onto function
(3) Identity function
(4) Invertible function.

(d) Let $\mathrm{A}=\{1,2,3\}$ and consider two reflex elations $R=\{(1,1),(1,2),(1,3),(2,2),(3,3)\}$ and $S=\{(1,1)$, $(1,2),(2,2),(3,2),(3,3)\}$. Determine th to lowing relations are reflexive or irreflexive :
(1) R^{-1}
(2) $\overline{\mathrm{R}}$
(3) $R \cap S$
(4) $R \cup S$.

6. (a) Let $\mathrm{A}=\mathrm{B}=\mathrm{C}$ and let $f: \mathrm{A} \rightarrow \mathrm{B}, g: \mathrm{B} \rightarrow \mathrm{C}$ be defined by $f\left(a-1\right.$ and $g(b)=b^{2}$. Find :
(1) $(f \circ g)(2$.
(2) $(\&)$
(3) $\circ \circ f$ (x)
(4) $f \circ g)(x)$
$(f \circ f)(y)$
(6) $(g \circ g)(y)$.
(b) For the relation R whose matrix is given, find the matrix of transitive closure using Warshall's Algorithm :

$$
\left(\begin{array}{llll}
1 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) .
$$

(c) Draw the Hasse diagram for the relation R on $A=\{1,2$, $3,4,5$ whose relation matrix is given wow :

7. (a) State and prove Euler's formula for a connected plane graph of oder size e and with f faces.
(b) Show that every planar graph of order less than 12 has a ertex of degree at most 4.
(c) Let G, of order n, be a connected 3-regular plane graph in which every vertex lies on one face of length 4 , one face of length 6 and one face of length 8 . Determine then number of faces of G.
(d) Show that $\mathrm{K}_{n, n}$ is Hamiltonian if and only $n>2$. Hence show that $\mathrm{K}_{n, n}$ has :

$$
\frac{n!(n-1)!}{2}
$$

Hamiltonian cycles.
8. (a) The graphs G and H. witr vertex-sets $V(G)$ and $V(H)$, are drawn below. Deterne whether or not G and H drawn below are isomonic. If they are isomorphic, give a function $g: \mathrm{V}(\mathrm{G}) \overrightarrow{\mathrm{B}} \mathrm{V}(\mathrm{H})$ that defines the isomorphism. If they are not, expain why they are not.

(b) What is the maximum number of edges in a simple graph on n vertices ?
(c) Draw the graphs formed by the vertices and edges of a tetrahedron, a cube and an octahedron. Find a Hamilonn cycle in each graph.
[6]
(d) How many simple labelled graphs with n eryces are there ?

9. (a) Describe Kruskal's algorithm for fiyding a minimum weight spanning tree for an edge weigh graph. Use the Kruskal's algorithm to find a minirum weight spanning tree for the weighted graph. Write de ng weight of the minimum weight spanning tree.
(b) Find the preorder, postorder and inorder traversal of the following tree :

(c) Construct the labeled tree of th rebraic expression :

$$
\begin{equation*}
(((x+y) * z) / 3)+(19 \longrightarrow * x)) \tag{4}
\end{equation*}
$$

10. (a) Find a minimum cost sp.aning tree for the graph with this cost matrix. How nay such trees are there ?

	\mathbf{A}	\mathbf{C}	\mathbf{C}	\mathbf{D}	\mathbf{E}	\mathbf{F}	\mathbf{G}	\mathbf{H}
\mathbf{A}	0	12	0	14	11	0	17	8
\mathbf{B}	12	0	9	0	12	15	10	9
\mathbf{E}	0	9	0	18	14	31	0	9
\mathbf{F}	11	12	14	0	0	15	16	0
\mathbf{G}	17	10	31	6	15	0	8	16
\mathbf{H}	8	9	9	14	0	16	22	0

(b) For the network shown below determine the maximum flow between the vertices A and D by identifying the cut set of maximum capacity as shown in the figure below :

(c) A binary search tree generated by iverting integer in order $50,15,62,5,20,58,91,3,8 \bigcirc 60,24$.
11. (a) (i) In how many ways can men and 5 women be seated in a line so thano two women sit together ?
(ii) In how rany ways can 6 men and 5 women sit in a line so that women occupy the even places ?
(b) (i) Aily of 4 brothers and 3 sisters is to be arranged a row for a photograph. In how many ways can they be seated if all sisters are together ?
(ii) Given 6 flags of different colours, how many different signals can be generated, if signal requires the use of two flags one below other ?
(c) In how many ways can 10 examination papers be arragea so that best and worst are never together ?
12. (a) Find the number of arrangements that can made out of the letters :
(i) ASSASSINATION
(ii) GANESHPURI.
(b) In how many ways can ree prizes be distributed among 4 boys when :
(i) No one get? mgre than one prize
(ii) A boy carget number of prizes.
(c) How many words with or without meanings can be formed using all letters of the word EQUATION using each letter extand once ?

