T.E. Biotechnology Examination, 2011 COMPUTATIONAL TECHNIQUES AND BIOSTATISTICS (2008 Pattern)

Time : 3 Hours

Instructions : 1) Figures to the right indicate full marks.
 2) Use of pocket electronic calculator is allowed.
 3) Draw a neat sketch wherever necessary.
 4) Assume suitable data if necessary.
 5) Answer any three questions from Section I and any three questions from Section II.
 6) Answer to the two Sections should be written in separate answer books.

SECTION - I

1. a) Find the constants " m " and " c " by least squares method using following data:
Data : $\mathrm{P}=\mathrm{mW}+\mathrm{c}$:
$\begin{array}{lllll}\mathbf{P} & 12 & 15 & 21 & 25\end{array}$
$\begin{array}{lllll}\mathbf{W} & 50 & 70 & 100 & 120\end{array}$
b) Fit a second degree parabola to the following data:

\mathbf{x}	0	1	2	3	4	
\mathbf{y}	1	1.8	1.3	2.5	6.3	
	OR					

2. a) An experiment gave the following values, if " v " and " t " are connected by the relation $v=a t^{b}$, find the best possible values of " a " and " b ".
$\mathbf{v}\left(\mathbf{f t}^{\mathbf{3}} / \mathbf{m i n}\right) \quad 350 \quad 400 \quad 500 \quad 600$
$\begin{array}{lllll}\mathbf{t} \text { (min) } & 61 & 26 & 7 & 26\end{array}$
b) Predict the mean radiation dose at an altitude of 3000 ft by fitting an exponential curve to the given data.

Altitude (x)	50	450	780	1200	4400	4800	5300
Dose of radiation (y)	28	30	32	36	51	58	69

3. a) Given the values in the data, evaluate f (9) using Lagrange's formula.

\mathbf{x}	5	7	11	13	17
$\mathbf{f (x)}$	150	392	1452	2366	5202

b) Evaluate $\Delta\left(\mathrm{e}^{\mathrm{x}} \log 2 \mathrm{x}\right)$.

OR

4. a) Express $y=2 x^{3}-3 x^{2}+3 x-10$ in a factorial notation and hence show that $\Delta^{3} y=12$
b) From the following table, estimate the number of students who obtained marks between 40 and 45 .

$$
\begin{array}{llllll}
\text { Marks } & 30-40 & 40-50 & 50-60 & 60-70 & 70-80
\end{array}
$$

$\begin{array}{llllll}\text { No. of students } & 31 & 42 & 51 & 35 & 31\end{array}$
5. a) The velocity $\mathrm{v}(\mathrm{Km} / \mathrm{min})$ of a moped which starts from rest is given at fixed intervals of time t (min). Estimate the distance covered in 20 min by Simpson's $1 / 3^{\text {rd }}$ rule.

\mathbf{t}	2	4	6	8	10	12	14	16	18	20
\mathbf{v}	10	18	25	29	32	20	11	5	2	0

b) Evaluate $\int \frac{d x}{1+x^{2}}$ in the limits $(0,6)$ by using Weddle's rule and compare the result with the actual value.

OR
6. a) A solid of revolution is formed by rotating about x-axis, the area between x-axis, the lines $x=0$ and $x=1$ and a curve through the points with the following coordinates. Estimate the volume of the solid formed using Simpson's rule.

\mathbf{x}	0	0.25	0.50	0.75	1.00
\mathbf{y}	1	0.9896	0.9589	0.9089	0.8415

b) Evaluate $\int \frac{\mathrm{dx}}{1+\mathrm{x}^{2}}$ in the limits $(0,6)$ by using trapezoidal rule.
SECTION - II
7. a) Using Newton's iterative method, find the real root of $x \log _{10}^{x}=1.2$ correct to five decimal places.
b) Find the root of the equation $\mathrm{xe}^{\mathrm{x}}=\cos \mathrm{x}$ using Regula falsi method correct to four decimal places.

OR
8. a) Find a root of the equation $x^{3}-4 x-9=0$ using bisection method in four stages.
b) Deduct Newton Raphson's iterative formula to find a root of $\sqrt[k]{N}$ and evaluate $\sqrt[3]{24}$ correct to two decimal places.

9. a) Define Frequency polygon. Explain in detail the methods of drawing a
frequency polygon.
b) Write short notes on sub divided bar diagrams by taking an example. OR
10. a) Write short notes on:
i) Quota sampling
ii) Convenience sampling.
b) What are Ratio charts ? Explain the method of constructing ratio charts.

List out the uses of ratio charts.
11. a) In experiments on Pea breeding, the following frequencies of seeds were obtained. Theory predicts that the frequencies should be in proportions $9: 3: 3: 1$. Examine the correspondence between theory and experiment by using Chi square test. The value of Chi square at 0.005 significance level is given as 7.815 for degrees of freedom $\mathrm{v}=3$.

Round and yellow	Wrinkled and yellow	Round and green	Wrinkled and green	Total
315	101	108	32	556

b) Calculate the mean and standard deviation for the following data:
$\begin{array}{llllllll}\text { Size of item } & 6 & 7 & 8 & 9 & 10 & 11 & 12\end{array}$
Frequency $\begin{array}{llllllll}3 & 6 & 9 & 13 & 8 & 5 & 4\end{array}$ OR
12. a) The following is the frequency distribution of a random sample of weekly earnings of 509 employees. Calculate the average weekly earnings by using :
i) Direct method
ii) Step deviation method

Weekly earnings	10	12	14	16	18	20	22	24	26	28	30	32	34	36	38	40
No. of employees	3	6	10	15	24	42	75	90	79	55	36	26	19	13	9	7

b) What do you mean by Chi square test ? Describe the working procedure to test significance and goodness of fit for Chi square test.

