Chemistry SL P1

2007 May

School Level 12th IB Diploma

Programme

Board Exam

International Baccalaureate (IB

Board)

shaalaa.com

CHEMISTRY STANDARD LEVEL PAPER 1

Thursday 10 May 2007 (afternoon)

45 minutes

INSTRUCTIONS TO CANDIDATES

- · Do not open this examination paper until instructed to do so.
- · Answer all the questions.
- For each question, choose the answer you consider to be the best and indicate your choice on the answer sheet provided.
- · The periodic table is provided for reference on page 2 of this examination paper.

0	2 He 4.00	10 Ne 20.18 18 Ar	39.95 36 Kr 83.80	54 Xe 131.30	86 Rn (222)		
7		9 F 19.00 17 CI	35.45 35 Br 79.90	53 I 126.90	85 At (210)	71 Lu	103 Lr (260)
9		8 O 00.01 16.00 S	32.06 34 Se 78.96	52 Te 127.60	84 Po (210)	70 Yb 173.04	102 No (259)
ĸ		7 N 14.01 15 P	30.97 33 As 74.92	51 Sb 121.75	83 Bi 208.98	69 Tm 168.93	101 Md (258)
4		6 C 12.01 14 Si	28.09 32 Ge 72.59	50 Sn 118.69	82 Pb 207.19	68 Er 167.26	100 Fm (257)
3		5 B 10.81 13 Al	31 Ga 69.72	49 In 114.82	81 TI 204.37	67 Ho 164.93	99 Es (254)
			30 Zn 65.37	48 Cd 112.40	80 Hg 200.59	66 Dy 162.50	98 Cf (251)
ole			29 Cu 63.55	47 Ag 107.87	79 Au 196.97	65 Tb 158.92	97 Bk (247)
The Periodic Table			28 Ni 58.71	46 Pd 106.42	78 Pt 195.09	64 Gd 157.25	96 Cm (247)
Perioc			27 Co 58.93	45 Rh 102.91	77 Ir 192.22	63 Eu 151.96	95 Am (243)
The		/ /	26 Fe 55.85	44 Ru 101.07	76 Os 190.21	62 Sm 150.35	94 Pu (242)
	744	/ 6	25 Mn 54.94	43 Te 98.91	75 Re 186.21	61 Pm 146.92	93 Np (237)
	Vumber	Element omic Mass	24 Cr 52.00	42 Mo 95.94	74 W 183.85	60 Nd 144.24	92 U 238.03
	Atomic Number	Element Atomic Mass	23 V 50.94	41 Nb 92.91	73 Ta 180.95	59 Pr 140.91	91 Pa 231.04
		- Si	22 Ti	40 Zr 91.22	72 Hf 178.49	58 Ce 140.12	90 Th 232.04
			21 Sc 44.96	39 Y 88.91	57 † La La 138.91 89 ‡ Ac (227)	+	++
7		4 Be 9.01 12 Mg	24.31 20 Ca 40.08	38 Sr 87.62	56 Ba 137.34 88 Ra (226)		
-	1 H 1.01	3 Li 6.94 II Na	22.99 19 K 39.10	37 Rb 85.47	55 Cs 132.91 87 Fr (223)		

-3-

C. 1.0D. 2.0

0.50

B.

2. What is the empirical formula of a compound containing 50 % by mass of element X ($A_r = 20$) and 50 % by mass of element Y ($A_r = 25$)?

A. XY

B. X₃Y₂

C. X,Y,

D. X₅Y₄

3. Assuming complete reaction, what volume of 0.200 mol dm⁻³ potassium hydroxide solution (KOH(aq)), is required to neutralize 25.0 cm³ of 0.200 mol dm⁻³ aqueous sulfuric acid, (H₂SO₄ (aq))?

A. 12.5 cm³

B. 25.0 cm³

C. 50.0 cm³

D. 75.0 cm³

4. Consider the following reaction.

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$

If the reaction is made to go to completion, what volume of ammonia (in dm³) can be prepared from 25 dm³ of nitrogen and 60 dm³ of hydrogen? All volumes are measured at the same temperature and pressure.

- A. 40
- B. 50
- C. 85
- D. 120
- 5. What is the difference between two neutral atoms represented by the symbols $^{210}_{84}$ Po and $^{210}_{85}$ At?
 - A. The number of neutrons only.
 - B. The number of protons and electrons only.
 - C. The number of protons and neutrons only.
 - D. The number of protons, neutrons and electrons.
- 6. Which statements are correct for the emission spectrum of the hydrogen atom?
 - I. The lines converge at lower energies.
 - II. Electron transitions to n = 1 are responsible for lines in the UV region.
 - III. Lines are produced when electrons move from higher to lower energy levels.
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III

	YY 12 1 1 1			¥7. ¥7	
A.	Halide ions are al	reducing agents.	with iodide ions	being the wea	ikest.

- B. Halogens are all oxidizing agents, with chlorine being the strongest.
- C. Chloride ions can be oxidized to chlorine by bromine.
- D. Iodide ions can be oxidized to iodine by chlorine.

8. Which of the following statements are correct?

- I. The melting points decrease from $Li \rightarrow Cs$ for the alkali metals.
- II. The melting points increase from $F \rightarrow I$ for the halogens.
- III. The melting points decrease from Na → Ar for the period 3 elements.
- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III

9. When C₂H₄, C₂H₂ and C₂H₆ are arranged in order of increasing C–C bond length, what is the correct order?

- A. C₂H₆, C₂H₂, C₂H₄
- B. C₂H₄, C₂H₂, C₂H₆
- C. C₂H₂, C₂H₄, C₂H₆
- D. C₂H₄, C₂H₆, C₂H₂

- 10. Which compound contains both ionic and covalent bonds?
 - A. MgCl₂
 - B. HCl
 - C. H₂CO
 - D. NH₄Cl
- 11. When the species BF₂⁺, BF₃ and BF₄⁻ are arranged in order of **increasing** F B F bond angle, what is the correct order?
 - A. BF₃, BF₄⁻, BF₂⁺
 - B. BF₄, BF₃, BF₂⁺
 - C. BF₂⁺, BF₄⁻, BF₃
 - D. BF₂⁺, BF₃, BF₄⁻
- 12. Which species has a trigonal planar shape?
 - A. CO₃²⁻
 - B. SO₃²⁻
 - C. NF₃
 - D. PCl₃

- 13. The temperature in Kelvin of 1.0 dm³ of an ideal gas is doubled and its pressure is tripled. What is the final volume of the gas in dm³?
 - A. $\frac{1}{3}$
 - B. $\frac{2}{3}$
 - C. $\frac{3}{2}$
 - D. $\frac{1}{6}$
- 14. 1 mole of hydrogen, 2 moles of oxygen and 3 moles of carbon dioxide are placed in a closed container at 298 K. What is the ratio of average kinetic energies of each gas under these conditions?
 - A. 1:2:3
 - B. 3:2:1
 - C. 1:1:1
 - D. 1:2:1
- 15. Consider the specific heat capacity of the following metals.

Metal	Specific heat capacity / J kg-1 K-1
Cu	385
Ag	234
Au	130
Pt	134

Which metal will show the greatest temperature increase if 50 J of heat is supplied to a 0.001 kg sample of each metal at the same initial temperature?

- A. Cu
- B. Ag
- C. Au
- D. Pt

16. Consider the following reactions.

$$S(s) + 1\frac{1}{2}O_2(g) \rightarrow SO_3(g)$$
 $\Delta H^{\Theta} = -395 \text{ kJ mol}^{-1}$

$$\Delta H^{\Theta} = -395 \text{ kJ mol}^{-1}$$

$$SO_2(g) + \frac{1}{2}O_2(g) \rightarrow SO_3(g)$$
 $\Delta H^{\Theta} = -98 \text{ kJ mol}^{-1}$

$$\Delta H^{\Theta} = -98 \text{ kJ mol}^{-}$$

What is the ΔH^{Θ} value (in kJ mol⁻¹) for the following reaction?

$$S(s) + O_2(g) \rightarrow SO_2(g)$$

- -297A.
- B. +297
- C. -493
- D. +493

17. The following reaction is spontaneous only at temperatures above 850 °C.

$$CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$$

Which combination is correct for this reaction at 1000 °C?

	ΔG	ΔH	ΔS
A.		-/	-/
B.	+	+	+2
C.		+	+
D.	+		==

- Which statement is correct for an endothermic reaction?
 - Bonds in the products are stronger than the bonds in the reactants. A.
 - B. Bonds in the reactants are stronger than the bonds in the products.
 - C. The enthalpy of the products is less than that of the reactants.
 - D. The reaction is spontaneous at low temperatures but becomes non-spontaneous at high temperatures.

- 19. In general, the rate of a reaction can be increased by all of the following except
 - A. increasing the temperature.
 - B. increasing the activation energy.
 - C. increasing the concentration of reactants.
 - D. increasing the surface area of the reactants.
- 20. At 25 °C, 100 cm³ of 1.0 mol dm⁻³ hydrochloric acid is added to 3.5 g of magnesium carbonate. If the sample of magnesium carbonate is kept constant, which conditions will **not** increase the initial rate of reaction?

	Volume of HCl / cm ³	Concentration of HCl / mol dm ⁻³	Temperature / °C
A.	200	1.0	25
В.	100	2.0	25
C.	100	1:0	35
D.	200	2,0	25

21. Consider the following equilibrium reaction in a closed container at 350 °C.

$$SO_2(g) + Cl_2(g) \rightleftharpoons SO_2Cl_2(g)$$
 $\Delta H^{\Theta} = -85 \text{ k}$

Which statement is correct?

- A. Decreasing the temperature will increase the amount of SO₂Cl₂(g).
- B. Increasing the volume of the container will increase the amount of SO₂Cl₂(g).
- C. Increasing the temperature will increase the amount of SO₂Cl₂(g).
- D. Adding a catalyst will increase the amount of SO₂Cl₂(g).

A.
$$4HCl(g) + O_2(g) \rightleftharpoons 2H_2O(g) + 2Cl_2(g)$$

B.
$$CO(g) + H_2O(g) \rightleftharpoons H_2(g) + CO_2(g)$$

C.
$$C_2H_4(g) + H_2O(g) \rightleftharpoons C_2H_5OH(g)$$

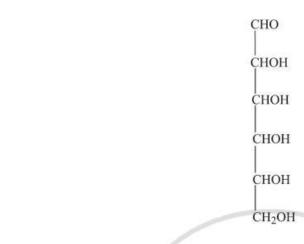
D.
$$PF_3Cl_2(g) \rightleftharpoons PF_3(g) + Cl_2(g)$$

- 23. Which mixture would produce a buffer solution when dissolved in 1.0 dm³ of water?
 - A. 0.30 mol of NH₃(aq) and 0.30 mol of HCl(aq)
 - B. 0.30 mol of NH₃(aq) and 0.15 mol of HCl(aq)
 - C. 0.30 mol of NH₃(aq) and 0.60 mol of HCl(aq)
 - D. 0.30 mol of NH₃(aq) and 0.15 mol of H₂SO₄(aq)
- 24. Solutions of hydrochloric acid (HCl(aq)) and ethanoic acid (CH₃COOH(aq)) of the same concentration reacted completely with 5.0 g of calcium carbonate in separate containers. Which statement is correct?
 - A. CH₃COOH (aq) reacted slower because it has a lower pH than HCl(aq).
 - B. A smaller volume of CO₂(g) was produced with CH₃COOH (aq) than with HCl(aq).
 - C. A greater volume of CO₂(g) was produced with CH₃COOH (aq) than with HCl(aq).
 - D. The same volume of CO₂(g) was produced with both CH₂COOH (aq) and HCl(aq).

25. Consider the following spontaneous reactions.

$$\begin{aligned} &Fe(s) + Cu^{2+}(aq) \to Fe^{2+}(aq) + Cu(s) \\ &Cu(s) + 2Ag^{+}(aq) \to Cu^{2+}(aq) + 2Ag(s) \\ &Zn(s) + Fe^{2+}(aq) \to Zn^{2+}(aq) + Fe(s) \end{aligned}$$

Which is the correct combination of strongest oxidizing agent and strongest reducing agent?


	Strongest oxidizing agent	Strongest reducing agent
۸.	Ag(s)	Zn(s)
	Ag ⁺ (aq)	Zn(s)
	Zn ²⁺ (aq)	Ag(s)
).	Zn(s)	Ag ⁺ (aq)

- 26. In which change does nitrogen undergo oxidation?
 - A. NO, \rightarrow N,O₄
 - B. $NO_3^- \rightarrow NO_2$
 - C. $N_2O_5 \rightarrow NO_7$
 - D. $NH_1 \rightarrow N_2$
- 27. Which statement is correct?
 - A. Spontaneous redox reactions produce electricity in an electrolytic cell.
 - B. Electricity is used to carry out a non-spontaneous redox reaction in a voltaic cell.
 - Oxidation takes place at the negative electrode in a voltaic cell and the positive electrode in an electrolytic cell.
 - D. Oxidation takes place at the negative electrode in a voltaic cell and reduction takes place at the positive electrode in an electrolytic cell.

- 28. Nylon is a condensation polymer made up of hexanedioic acid and 1,6-diaminohexane. Which type of linkage is present in nylon?
 - Amide
 - B. Ester
 - C. Amine
 - D. Carboxyl
- 29. What is the IUPAC name of the following compound?

- A. 3,3,4-trimethylhexane
- 3,4,4-trimethylhexane B.
- C. 4-ethyl-3,4-dimethylpentane
- 2-ethyl-2,3-dimethylpentane D.

30. How many chiral carbon atoms are present in a molecule of glucose?

- A. 1
- B. 2
- C. 3
- D. 4