

ENGINEERING & MANAGEMENT EXAMINATIONS, JUNE - 2007 DATABASE MANAGEMENT SYSTEM - I

SEMESTER - 2

Tim	e:31	Hours]				[Full Marks : 70	
			Group	- A			
			(Multiple Choice 7	ype Que	estions)		
1.	Cho	ose the	e correct alternatives for any ter	n of the f	ollowing:	10 × 1 = 10	
i) A data model is a collection of conceptual tools for describing							
		a)	data and data relationships	• • •			
		b)	data semantics and consistency constraints				
		c) data, data relationship, data semantics and consistency constraints.					
	ii) The primary key indexing techniques do not allow						
		a)	Duplicate data	b)	Multiple attribu	ıtes	
		c)	Sets of relations	d)	Many to many	relation.	
	iii)	The	column of a table is referred to	as	•		
		a)	tuple	b)	attribute		
		c)	entity	d)	degree.		
	iv)	Rela	Relations produced from an E-R model will always be in				
		a)	1 NF	b)	2 NF		
		c)	3 NF	d)	4 NF.		
	v)	In ar	n entity set, Y is the dominant e	entity and	d X is the subordi	nate entity. Which	
		of th	e following is / are correct?				
		a)	Operationally, if Y is deleted,	so is X			
		b)	X is existence dependent on Y	•			
		c)	Operationally, if X is deleted,	so is Y			
	•	d)	Operationally, if X is deleted.	Y remain	s same.		

		204/07	

Δ

1

vi)	What is the cardinality of a table with 1000 rows & 10 columns?							
•	a)	10	b)	100				
	c)	1000	d)	none of these.				
vii)	The	maximum height of a B+ tree of ord	er n w	with k key values is				
	a)	(n+k)/2	b)	log nk				
	c)	$\log n / 2 (k / 2 + 1)$	d)	log k / 2n.				
viii)	riii) If two relations have 5 & 10 rows respectively, then what will be the no. tuples in Cartesian product?							
	a)	5	b)	10				
• .	c)	15	d)	50.				
ix)	The	operation of a certain relation X ,	prod	uces Y such that Y contains	only			
	sele	cted attributes of X, such an operati	on is					
	a)	Projection	b)	Selection »				
	c)	Union	d)	Difference.				
x)	If a set of attributes K, in relation schema R1 is a foreign key for R1 then							
	a) Every tuple of R1 has a distinct value for K							
	b)	K is a key for some other relation						
	c) K cannot have a null value for tuples in R1							
	d)	K is a primary key for R1.						
xi)	SQL	is relationally			** *			
	a)	Complete language	b)	Incomplete language				
	c)	Cannot handle certain relations	d)	Sound language.				
xii)	The	overall logical structure of a databa	se car	be expressed graphically by				
	a)	Data flow diagram	b)	Flow chart				
	c)	Directed graph	d)	- R Diagram.]			

Group - B

(Short Answer Type Questions)

Answer any three questions.

 $3 \times 5 = 15$

2. Define the following:

5 × 1

- i) Derived attribute
- ii) Domain
- iii) 1 to Many relationship
- iv) Projection
- v) Union compatibility.
- 3. What is the difference between logical data independence and physical data independence? Define Super Key, Candidate Key and Primary Key. 2 + 3
- 4. a) What is E-R diagram?
 - b) Discuss about relationship cardinality.

2 + 3

- 5. What are the typical phases of query decomposition? What is the difference between conjunctive and disjunctive normal forms? 3+2
- 6. What is a View? View does not take any memory space. Justify. How do you create an Insertable and Updateable View? 1+2+2

Group - C

(Long Answer Type Questions)

Answer any three questions.

 $3 \times 15 = 45$

7. a) Consider the following relational schema of Library.

book (book id, Title)

book-author (book-id, authorname)

book-copies (book_id, branch_id,no_of_copy)

Library-branch(branch_id,branch_name)

book loan(book_id,branch_id,cardno)

borrower(name, city, cardno)

22251-(IV)-A

4

Write the query expressions for each of the following queries in specified language.

- i) List the names of books borrowed by the student who belongs to "Kolkata".

 (Tuple Relational Calculus)
- ii) Retrieve the name of student / borrowed by the student who does not borrow any book. (Domain Relational Calculus)
- iii) Retrieve the name of library branch which has maximum number of books.

 (Relational Algebra)
- iv) Retrieve the name of borrower who has borrowed at least 3 books and not more than 10 books. (Relational Algebra)
- b) It is strictly necessary to declare Primary Key and Foreign Key during database creation. If you do not do that then what problem can arise? $(4 \times 3) + 3$
- 8. a) What is DBMS?
 - b) What are the advantages of using DBMS over file processing systems?
 - c) Describe different levels of Data Abstraction in database system.
 - d) What do you mean by Instances and Schemas?
 - e) What is physical data independence and logical data independence? 2+6+3+2+2
- 9. a) Define 'Functional dependency' and give examples.
 - b) Why is a relation that is 3NF generally considered good?
 - c) Consider the following relation:

Emp_project (SSN, Ename, City, Status, Pno, P_name, Hour)

- Write all the functional dependencies that exist in this relation.
- Consider the relation (above) is in 1NF. Make it up to 3NF.
- d) What are the differences among primary, secondary and clustering indexes? 2+3+6+4

CS/MCA/SEM-2/MCA-204/07

7

- 10. a) Write SQL Query to perform the following operations on a Relation.
 - i) Add a constraint to an attribute
 - ii) Remove a constraint from an attribute
 - iii) Remove an attribute
 - iv) Grant DBA authority to user
 - v) Revoke authorities on a relation from any user
 - vi) Find second max sal of a salary attribute in a relation
 - vii) Insert a Date
 - viii) Insert system date
 - ix) Finding grouped average and filtering some groups out of all groups
 - x) Deleting duplicate tuples in a relation.
 - b) Describe the actors in DBMS.

 $(10 \times 1) + 5$

- 11. a) Write short notes on the following:
 - i) Specialization and Generalization
 - ii) Aggregation
 - iii) 3-tier architecture
 - iv) Relational Database Management System
 - b) Compare and contrast between 3NF and BCNF.

 $(4 \times 3) + 3$