PHYSICS

				0200		4.9		
1.	The f	orce which is alway	s directed av	vay or towa	rds a fixe	d centre an	d magni	itude
	of w	hich is a function	of distance	only from	the fixed	centre is	known	as :
	(A)	Coriolis force		9			100	
	(B)	Central force						
8	(C)	Centrifugal force					ć	
	(D)	Centripetal force	•		23			•
2.		e kinetic energy o momentum will b		comes four	times of	its initial	value,	then
	(A)	three times its	initial value	;	Ø2			
	(B)	four times its in	itial value					22
	(C)	two times its in	itial value		20			
	(D)	unchanged	E .					
3.	The	polar coordinates	of a particle	at any ins	stant t are	$e r = 8e^{2t},$	$\theta = 4t.$	Then
123	radia	al component of a	cceleration i	is:				
	(A)	16 e ^{2t}		ž.			60	
	(B)	12 e22						
	(C)	12			54 89			
	(D)	0 .	31			2	II.	89
4.	The	potential energy of	a harmonic	oscillator i	n its rest	ing positio	n is 12 j	oules
	and	average kinetic en	ergy is 5 jo	ules. Then	the total	energy at	any in	stant
	is :							100
	(A)	17 joules	0.80		20			
	(B)	22 joules		166				
	(C)	5 joules						
	(D)	12 joules				¥8		

5.	Moment of inertia of a uniform circular disc about a diameter is I. Its moment of inertia about an axis perpendicular to its plane and passing through a point on its rim will be:							
	(A)	4 I						
	(B)	6 I		(9)				

- (C) 3 I
- (D) 5 I
- Two simple harmonic waves having same frequency and each of amplitude
 A, superimpose. The resultant energy when two waves have phase difference

of $\frac{\pi}{2}$ is given by (k being a constant):

- (A) 3 kA2
- (B) 4 kA2
- (C) 0
- (D) 2 kA2
- 7. Consider a beam of electrons moving parallel to two separate cylinders C_1 and C_2 kept at potential ϕ_1 and ϕ_2 respectively. The beam converges if:
 - $(A) \quad \phi_1 < \phi_2$
 - (B) $\varphi_2 > \varphi_1$
 - (C) $\varphi_1 = \varphi_2$
 - (D) All the above conditions from (A) to (C) are satisfied
- 8. A particle of mass m and charge e moves with speed V in the plane perpendicular to a uniform magnetic field B. Its period of revolution will:
 - (A) be independent of B
 - (B) be independent of speed
 - (C) be inversely proportional to m
 - (D) depend on the radius of orbit

9.	In a	streamline flow of liquid, the total energy of liquid is	constant	a t .		
2.	(A)		COMBERGIE	ai .		
	(B)	outer points	60			
, 10 .	(C)	the centre				
	(D)	all points	2	Z.		
	The Bernoulli's theorem is applicable if the flow of the liquid is:					
	(A)	irrotational and liquid should be compressible	quiu 18 .	e e		
	(B)	rotational and liquid should be compressible				
		Section 1 in the section of the sec				

(C) irrotational and liquid should be incompressible

(D) rotational and liquid should be incompressible

11. If
$$\overrightarrow{A} = 3ix$$
, $\overrightarrow{B} = 5jy$, then $\nabla(\overrightarrow{A}, \overrightarrow{B})$ is equal to:

(A) $5\hat{i}y + 3\hat{j}x$

(B)
$$\frac{3}{2}yx^2\hat{i} + \frac{5}{2}xy^2\hat{j}$$

(C) 2

(D) 0

12. Let
$$\overrightarrow{r}$$
 be the position vector of any point on the surface of a cube of side L, then surface integral $\iint_{S} \overrightarrow{r} \cdot d\overrightarrow{S}$ is:

(A) 3L³

(B) 3L²

(C) 2L2

(D) 0

- 13. Polarization of a dielectrical material occurs due to :
 - (A) electrons
 - (B) bound charges
 - (C) free charges
 - (D) none of the above
- 14. The electric potential at a point due to an electric dipole is perpendicular to the dipole axis, if the angle between dipole axis and the line joining the point with centre of dipole is:
 - (A) $\tan^{-1}\left(\frac{1}{\sqrt{2}}\right)$
 - (B) tan⁻¹(1)
 - (C) $\tan^{-1}(\sqrt{2})$
 - (D) $\tan^{-1}(\sqrt{3})$
- 15. The electric field intensity $\stackrel{\rightarrow}{E}$ due to an infinite uniformly charge plane sheet at a point of distance r from the sheet is related as:
 - (A) $\mathbf{E} \propto r$
 - (B) $E \propto \frac{1}{r}$
 - (C) $\mathbf{E} \propto r^2$
 - (D) E is independent of r
- 16. Consider a boundary between two dielectric and dielectric field makes an angle θ_1 and θ_2 with the media of permittivity ϵ_1 and ϵ_2 respectively, then we have :
 - (A) $\frac{\tan \theta_1}{\tan \theta_2} = \frac{\epsilon_1}{\epsilon_2}$
 - (B) $\frac{\tan \frac{\theta_1}{\theta_2}}{\tan \frac{\theta_2}{\theta_2}} = \frac{\epsilon_2}{\epsilon_1}$
 - (C) $\frac{\tan \theta_1 + \tan \theta_2}{\tan \theta_2} = \frac{\epsilon_1}{\epsilon_2}$
 - (D) $\frac{\tan \theta_1 + \tan \theta_2}{\tan \theta_1} = \frac{\epsilon_2}{\epsilon_1}$

- 17. If $u_{\rm B}$ and $u_{\rm M}$ are respectively, the electric and magnetic energy derivatives of a plane electromagnetic wave propagation in free space, then :
 - $(A) \quad u_{\mathbf{E}} = 2u_{\mathbf{M}}$
 - (B) $u_{\mathbf{E}} = u_{\mathbf{M}}$
 - $(C) \quad u_{\rm E} = \frac{1}{2} u_{\rm M}$
 - (D) $u_{\mathbb{E}} = \frac{3}{2}u_{\mathbb{M}}$
- 18. When a pure inductance L and pure capacitance C are connected in parallel and a.c. voltage V is applied across the system, then at resonance the current from the source is:
 - (A) $\frac{\mathbf{V}}{\omega \mathbf{L}}$
 - (B) -VωC
 - (C) 0
 - (D) Very large
- 19. The magnetic induction \overrightarrow{B} and magnetic vector potential \overrightarrow{A} are related by :
 - (A) $\overrightarrow{A} = \overrightarrow{\nabla} \times \overrightarrow{B}$
 - (B) $\overrightarrow{\nabla} \times (\overrightarrow{A} \times \overrightarrow{B}) = 0$
 - (C) $\vec{B} = -\vec{\nabla} \times \vec{A}$
 - $(D) \quad \overrightarrow{B} = \nabla \times \overrightarrow{A}$

20. If magnetic monopole existed, then which of the following Maxwell's equation will be modified:

(A)
$$\overrightarrow{\nabla} \cdot \overrightarrow{\mathbf{D}} = \rho$$

$$(\mathbf{B}) \quad \overrightarrow{\nabla} \cdot \overrightarrow{\mathbf{B}} = \mathbf{0}$$

(C)
$$\overrightarrow{\nabla} \times \overrightarrow{\mathbf{E}} = -\frac{\partial \overrightarrow{\mathbf{B}}}{\partial t}$$

(D)
$$\overrightarrow{\nabla} \times \overrightarrow{\mathbf{H}} = \overrightarrow{\mathbf{J}} + \frac{\partial \overrightarrow{\mathbf{D}}}{\partial t}$$

- 21. In kinetic theory of gases, it is assumed that collision between the molecules is:
 - (A) perfectly elastic
 - (B) perfectly inelastic
 - (C) partly elastic
 - (D) partly inelastic
- 22. If the degree of freedom of a gas is 'n', then the ratio of specific heat at constant pressure C_p to specific heat at constant volume C_v is :

(A)
$$1 + \frac{1}{n}$$

$$(\mathbf{B}) \qquad 1 + \frac{2}{n}$$

$$(C) \qquad 1 + \frac{1}{2n}$$

(D)
$$\frac{2n}{1+2n}$$

23. Which of the following Maxwell's relation leads to Clausius-Clapeyron equation?

(A)
$$\left(\frac{\partial T}{\partial V}\right)_S = -\left(\frac{\partial P}{\partial V}\right)_V$$

(B)
$$\left(\frac{\partial S}{\partial V}\right)_{\Gamma} = \left(\frac{\partial P}{\partial T}\right)_{V}$$

(C)
$$\left(\frac{\partial \mathbf{T}}{\partial \mathbf{P}}\right)_{S} = \left(\frac{\partial \mathbf{V}}{\partial \mathbf{S}}\right)_{\mathbf{P}}$$

(D)
$$\left(\frac{\partial \mathbf{V}}{\partial \mathbf{T}}\right)_{\mathbf{P}} = \left(\frac{\partial \mathbf{S}}{\partial \mathbf{P}}\right)_{\mathbf{T}}$$

- 24. The permissible microstates corresponding to a given macrostate satisfy the constraint/constraints:
 - (A) $\delta N \neq 0$, $\delta E \neq 0$
 - (B) $\delta N = 0, \delta E \neq 0$
 - (C) $\delta N = 0$, $\delta E = 0$
 - (D) $\delta N \neq 0$, $\delta E = 0$
- 25. For a perfect gas $\left(\frac{\partial U}{\partial V}\right)_T = 0$, while for a gas obeying van der Waals' equation

$$\left(\frac{\partial U}{\partial V}\right)_{\!\! T}$$
 is equal to :

- (A) αV²
- (B) $(\mathbf{V} \mathbf{b})$
- $(C) \quad \frac{1}{V-b}$
 - (D) $\frac{a}{V^2}$

- 26. For cooling to take place in a Joule-Thomson experiment, the initial temperature of gas should be:
 - (A) equal to the inversion temperature
 - (B) less than the inversion temperature
 - (C) more than inversion temperature
 - (D) more than or equal to the inversion temperature
- 27. If a system A is in thermal equilibrium separately with B and C, then B and C are also in thermal equilibrium with each other. This is the statement of:
 - (A) Zeroth law of thermodynamics
 - (B) First law of themodynamics
 - (C) Second law of thermodynamics
 - (D) Third law of thermodynamics
- 28. The quantum statistics reduces to classical statistics under the following condition (ρ is the number density of particles and λ is the thermal de-Broglie wavelengths):
 - (A) $\rho \lambda^3 = 1$
 - (B) $\rho \lambda^3 >> 1$
 - (C) $\rho \lambda^3 \ll 1$
 - (D) $\rho = 0$
- 29. In statistical physics, the absolute temperature T of a system is related to the total number of accessible state Ω by :
 - (A) $kT = \frac{\partial \Omega}{\partial E}$
 - (B) $\frac{1}{kT} = \frac{\partial \Omega}{\partial E}$
 - (C) $kT = \frac{\partial \log \Omega}{\partial E}$
 - (D) $\frac{1}{kT} = \frac{\partial \log \Omega}{\partial E}$

- 30. In a gas the relative magnitude of the most probable speed (\overline{V}_p), the average speed (\overline{V}_p) and root mean speed (\overline{V}_{rms}) of the molecule are :
 - (A) $V_{rms} > \overline{V} > V_{P}$
 - (B) $\bar{V} > V_{ros} > V_{p}$
 - (C) $V_p > \overline{V} > V_{rms}$
 - (D) $V_p > V_{rms} > \overline{V}$
- 31. The reverberation time is the time which energy density of sound wave falls to 10^{-6} of its :
 - (A) maximum steady value
 - (B) half maximum steady value
 - (C) minimum steady value
 - (D) mean value
- 32. If the intensity of sound is doubled, then intensity level difference increases by :
 - (A) 50 dB
 - (B) 30 dB
 - (C) 10 dB
 - (D) 3 dB
- 33. An ultrasonic sound pulse is sent vertically down the ocean waters and the echo is received 3 seconds later. The depth of the ocean at that place is approximately:
 - (A) 4.40 km
 - (B) 3.30 km
 - (C) 2.20 km
 - (D) 1.10 km

3	34.	If th	ne equation of motion of a longitudinal wave is $y = 0.15 \sin (4\pi t - 2\pi x)m$,
			let the displacement of a particle due to this wave is 0.15 m, its kinetic
			gy is:
		(A)	4.8 J
		(B)	2.4 J
		(C)	1.14 J
		(D)	zero
3	5.	The	minimum number of lines in a grating which will just resolve the spectral
		lines	s of wavelength 5890 Å and 5896 Å in second order is:
	9.	(A)	491
		(B)	981
1		(C)	2940
		(D)	2943
3	6.	The	resolving power of a telescope is the highest for :
36		(A)	red light
		(B)	yellow light
		(C)	green light
63		(D)	blue light
3'	7.	The	power of Huygen's eye-piece is :
		(A)	zero
		(B)	positive
		(C)	negative
		(D)	none of the above
Pl	hy.		10
	(C.1)		

•

- 38. In Michelson's interferometer sodium light is used for circular fringes. The distances of separation of two mirrors for two consecutive positions of least contrast are equal to d_1 and d_2 . If λ_1 and λ_2 are wavelengths of two lines of sodium light, then their difference $(\lambda_1 \lambda_2)$ is equal to:
 - $({\rm A}) \qquad \frac{\lambda_1\lambda_2}{2(d_2-d_1)}$
 - $(\mathbf{B}) = \frac{\lambda_1 \lambda_2}{2(d_2 + d_1)}$
 - (C) $\frac{3\lambda_1\lambda_2}{2(d_2-d_1)}$
 - (D) $\lambda_1 \lambda_2 (d_2 + d_2)$
- 39. Chromatic aberration can be eliminated by using two convex lenses of focal lengths, f_1 and f_2 respectively. Which are separated by a distance equal to:
 - (A) $d = (f_1 f_2)$
 - $(\mathbf{B}) \quad d = (f_1 + f_2)$
 - (C) $d = \frac{(f_1 + f_2)}{2}$
 - (D) $\frac{1}{d} = \frac{1}{f_1} + \frac{1}{f_2}$
- 40. For a system of atoms and photons in equilibrium at a temperature T, the ratio of transition rate of stimulated to spontaneous emission is given by:
 - (A) phv/kT
 - (B) $e^{-hv/kT}$
 - (C) $\frac{1}{e^{hv/kT}-1}$
 - (D) $1 e^{hv} / kT$

- 41. A light beam moves in positive x-direction with speed of light c. Another light beam moves in the negative x-direction with same speed. To an observer sitting on the first beam, the second beam appears to move with speed:
 - (A) 2c
 - (B) c
 - (C) = 0
 - (D) $\frac{c}{2}$
- 42. Let rest mass of a body be m_0 and if it is moving with the velocity of 0.8c, then its relativistic kinetic energy is:
 - (A) $\frac{1}{2}m_0(0.8c)^2$
 - (B) $m_0c^2 \frac{1}{2}m_0(.8c)^2$
 - (C) $\frac{3}{2}m_0c^2$
 - (D) $\frac{2}{3}m_0c^2$
- 43. The uncertainty in the location of a particle is equal to de-Broglie wavelength, then the uncertainty in its velocity is:
 - (A) $\frac{3}{2}$ V
 - (B) 2 V
 - (C) V
 - (D) $\frac{\mathbf{v}}{2}$

- 44. For an electron orbit with orbital quantum number l=2, the possible values of components of total angular momentum along specified direction (z-axis) are :
 - (A) $\pm \frac{1}{2} \left(\frac{h}{2\pi} \right), \pm \frac{3}{2} \left(\frac{h}{2\pi} \right)$
 - (B) $\pm \frac{3}{2} \left(\frac{h}{2\pi} \right), \pm \frac{5}{2} \left(\frac{h}{2\pi} \right)$
 - (C) $\pm \frac{1}{2} \left(\frac{h}{2\pi} \right), \pm \frac{5}{2} \left(\frac{h}{2\pi} \right)$
 - (D) $\pm \frac{1}{2} \left(\frac{h}{2\pi} \right), \pm \frac{3}{2} \left(\frac{h}{2\pi} \right), \pm \frac{5}{2} \left(\frac{h}{2\pi} \right)$
- 45. The lowest energy for a particle in a box of length L is (m is mass of the particle):
 - $(A) \frac{\hbar^2 \pi^2 x^2}{2mL^2}$
 - (B) $\frac{\hbar^2 \pi^2}{2mL^2}$
 - (C) $\sqrt{\frac{2}{L}}\sin\frac{n\pi x}{L}$
 - (D) $\frac{n\hbar}{2\pi}$
- 46. If the frequency of k_{α} X-ray emitted from the element with atomic number 31 is f, then frequency of k_{α} X-ray emitted from the element with atomic number 51 is:
 - (A) $\frac{25}{9}f$
 - (B) $\frac{5}{3}f$
 - (C) $\frac{51}{31}f$
 - (D) $\frac{9}{25}f$

47.	The vibrational-rotational molecular spectra arises as energy involved in such					
		ansition is of the order of :				
	(A)	0.001 eV				
	(B)	0.01 eV				
	(C)	0.1 eV				
	(D)	10 eV				
48.	A Raman frequency shift of 3000 cm ⁻¹ is observed for a substance. The substance					
	will show infrared absorption at:					
	(A)	0.3 µm				
	(B)	. 3 μm				
	(C)	30 μm				
	(D)	300 Å				
49.	The	source of energy of the sun is due to :				
	(A)	fusion of heavy nuclei				
	(B)	fusion of light nuclei				
	(C)	fusion of very heavy nuclei				
20	(D)	fusion and fission process				
50.	The	tunnel effect makes possible :				
	(A)	α-decay				
	(B)	positive β-decay				
	(C)	negative β-decay				
	(D)	gamma decay				
51.	The	basic structure of NaCl is :				
	(A)	simple cubic				
	(B)	fcc				
	(C)	bcc				
	(D)	hexagonal closed packed				
Dhu						
Phy.		14				

- 52. According to Kronig-Penny model the energy spectrum of electron :
 - (A) is continuous
 - (B) consists of alternate regions of allowed and forbidden energy of equal width
 - (C) consists of alternate regions of allowed and forbidden energy such that width of energy bands increases with the increase of energy
 - (D) consists of alternate regions of allowed and forbidden energy such that width of allowed energy bands with the increase of energy
- 53. According to Debye's model for the lattice specific heat at low temperature, its value is proportional to:
 - (A) T³
 - (B) T²
 - (C) T
 - (D) $e^{-hv/kT}$
- 54. The first Brillouin zone of the lattice in the k-space is between :
 - (A) 0 to $\frac{\pi}{a}$
 - (B) $-\frac{\pi}{a}$ to $+\frac{\pi}{a}$
 - (C) $-\frac{\pi}{a}$ to $-\frac{2\pi}{a}$
 - (D) $+\frac{\pi}{\alpha}$ to $+\frac{2\pi}{\alpha}$
- 55. When electrons leave the N-material to fill holes in the P-material, the process is called:
 - (A) doping
 - (B) mixing
 - (C) depletion
 - (D) diffusion

56. For the C.E. circuit of figure below, the value of V_{CE} is (take $\beta = 100$):

- (A) 5 V
- (B) -5 V
- (C) 0
- (D) 20 V
- 57. Leakage current of a junction diode:
 - (A) is in the range of mA to μA
 - (B) is due to majority carriers
 - (C) depends on the method of its fabrication
 - (D) decreases with temperature
- 58. The most desirable feature of transformer coupled amplifiers is its:
 - (A) ability to provide impedance matching between stages
 - (B) higher voltage gain
 - (C) wide frequency range
 - (D) ability to eliminate hum from the output
- 59. In a JFET drain current is maximum when V_{GS} is:
 - (A) zero
 - (B) negative
 - (C) positive
 - (D) equal to V_p
- 60. The h-parameters are called hybrid because they:
 - (A) are obtained from different characteristics
 - (B) are mixed with other paramters
 - (C) apply to circuits contained in a black box
 - (D) are defined by using both open and short circuit terminations