C10-R3: COMPUTER GRAPHICS \& ANIMATION

NOTE:

1. Answer question 1 and any FOUR questions from 2 to 7.
2. Parts of the same question should be answered together and in the same sequence.

Time: 3 Hours
Total Marks: 100
1.
a) Explain the relationship between the translations $T_{t x, t y}, T_{-t x,-t y}$ and $\left(T_{t x, t y}\right)^{-1}$.
b) Distinguish between parallel and perspective projections.
c) What are hidden surface problems? How Z-buffer algorithm handles them.
d) Discuss the generation of solid objects using sweep method.
e) Explain how inverse kinematics works in computer based animation.
f) When is a shadow mask used? Justify.
g) Explain the Euler angle representation.
2.
a) Perform a 45° rotation of triangle $\mathrm{A}(0,0), \mathrm{B}(1,1)$ and $\mathrm{C}(5,2)$ about $\mathrm{P}(-1,-1)$.
b) Describe the Cyrus-Back line clipping algorithm.
3.
a) What is solid modeling? Explain the octrees representation of solid modeling.
b) Show that the Bezier form of the curve segment is

$$
\begin{equation*}
Q(t)=(1-t)^{3} P_{1}+3 t(1-t)^{2} P_{2}+3 t^{2}(1-t) P_{3}+t^{3} P_{4} \tag{9+9}
\end{equation*}
$$

where the coefficients are Bernstein polynomials.
4.
a) Explain the visible surface ray tracing.
b) Describe the technique of Gouraud shading. How does it differ from Phong Shading?
c) Describe an anti-aliasing method that can be applied on the filled circle.
5.
a) Describe the 2D object warping.
b) Explain the flocking behavior with regards to computer animation technology.
6. Explain the following:
a) Collision detection
b) Particle systems.
c) Animation production
7. Write short notes on any two of the following:
a) Parametric bicubic surfaces
b) Illumination models
c) BSP tree

