B. Tech Degree VI Semester (Combined) Examination June 2006

CS/EC/EI/EE 601 DIGITAL SIGNAL PROCESSING

(Prior to 2002 Admissions)

Time: 3 Hours

Maximum Marks: 100

(All questions carry EQUAL marks)

I. (a) Consider a system with unit sample response.

$$h(n) = \begin{cases} a^n; n \ge 0 \\ 0; n < 0 \end{cases}$$

Find the response to an input x(n) = u(n) - u(n-N)

- (b) Explain the following for z transforms
 - (i) Region of convergence
- (ii) Linearity
- (iii) Shift of a sequence
- (iv) Initial value theorem
- (v) Convolution of sequence

OR

II. (a) Consider a system described by the difference equation y(n) = y(n-1) - y(n-2) + 0.5x(n) + 0.5x(n-1). Find the response of this system to the input $x(n) = (0.5)^n u(n)$ with initial conditions y(-1) = 0.75 and y(-2) = 0.25.

- (b) Find the Z-transform of the sequence y(n) where $y(n) = \sum_{K=-n}^{n} \alpha^{1K1}$, $n \ge 0$ and y(n=0) for n < 0; Assume $1\alpha 1 < 1$.
- III. (a) Find the N-Point DFT of the sequence $x(n) = \cos(nwo)$; $0 \le n \le N-1$.

 Compare the values of the DFT coefficients X(K) when $W_o = 2\pi K_o / N$ to those when $W_o \ne 2\pi K_o / N$.
 - (b) Explain the decimation in time FFT algorithm using butterfly computation.

OR

IV. (a) Find the 10-point inverse DFT of

$$X(K) = \begin{cases} 3 \; ; \; K = 0 \\ 1 \; ; \; 1 \le K \le 9 \end{cases}$$

(b) Derive a radix-3 decimation in frequency FFT for $N=3^{\circ}$ and draw the corresponding flow graph N=9.

(b) The unit sample response of an FIR filter is

$$h(n) = \begin{cases} a^n; 0 \le n \le 6\\ 0; \text{ otherwise} \end{cases}$$

(i) Draw the direct form implementation of the above system.

(ii) Show that the corresponding system function is $H(z) = \frac{1 - \alpha^7 z^{-7}}{1 - \alpha z^{-1}}$; |z| > 0

OR

VI. (a) Compare IIR and FIR filters.

(b) Let
$$A(z)$$
 be and FIR filter with lattice filter coefficients $1 = \frac{1}{3}$, $2 = \frac{1}{3}$, $3 = 1$

- (i) Find the zeros of the system function A(z).
- (ii) Repeat for the case where $\overline{3} = -1$

VII. (a) Explain the cascade and parallel structures of an IIR system.

(b) Design a low pass Butterworth filter that has a 3 dB cut off frequency 06 1.5KHZ and an attenuation 06 40 dB at 3.0KHZ.

OR

VIII. (a) Design a Chebyschev high pass filter with an equiripple pass band with

$$0 \le \left| H\left(e^{jw}\right) \right| \le 0.1; 0 \le w \le 0.\pi \quad \text{and} \quad$$

 $0.9 \le |H(e^{jw})| \le 1.0$; $0.3\pi \le w \le \pi$ using bilinear transformation.

(b) Explain the butter worth approximation and Chebyshevs approximation of IIR filters.

IX. (a) Express the fractions $\frac{7}{32}$ & $\frac{-7}{32}$ in sign magnitude, one's complement, two's complement notation using 6 bits.

(b) Explain the signal processor architecture with neat diagram along with an example.

OR

X. (a) Sketch neatly a programmable digital processor and explain along with common example.

(b) Explain the quantization error in fixed point number system and quantization of filter coefficients.