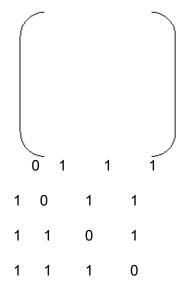
1/31/12 ALCCS

ALCCS - NEW SCHEME

Code: CT11 Subject: DATA STRUCTURES THROUGH C Time: 3 Hours Max. Marks: 100

SEPTEMBER 2010

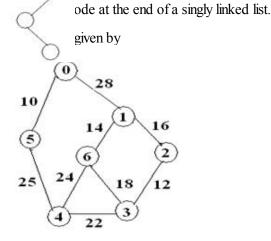

NOTE:

- Question 1 is compulsory and carries 28 marks. Answer any FOUR questions from the rest. Marks are indicated against each question.
- Parts of a question should be answered at the same place.

 $Q.1 (7 \times 4)$

- a. State two important differences between a pointer and an array.
- b. Assume A = 1, B = 2, C = 3. Evaluate the following postfix expression:

- c. Write a function, length, in C that will return the number of nodes in a given singly linked list.
- d. Represent the polynomial $3x^{14} + 2x^8 1$ using linked list.
- e. Do the preorder and inorder sequences of a binary tree uniquely define the binary tree? Justify your answer.
- f. Let the adjacency matrix of a graph G be given as


find the graph G?

g. Determine whether the following binary search tree is an AVL tree? Give reasons for

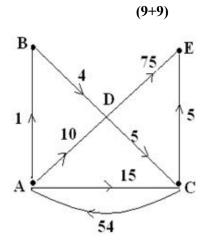
your claim.

- Q.2 a. Write a C program to
 - b. Let G be an undirected

algorithm generate a minimum cost spanning tree.

(9+9)

(9+9)


Using Kruskal's

- Q.3 a. Write an algorithm to determine the number of nodes in a given binary tree?
 - b. For the following input list of numbers

- **Q.4** a. Write a function in C program that traverses a threaded binary tree in preorder.
 - b. Show that the maximum number of nodes in a binary tree of depth K is

$$2^{k} - 1, k \ge 0 (9+9)$$

- Q.5 a. With an example, explain the working of heap sort algorithm.
 - b. Find the shortest path using Dijkstra's algorithm in the given weighted directed graph from A to E. Explain the steps.

Q.6 a. Discuss boundary tag method and write a C program for freeing memory blocks.

1/31/12 ALCCS

b. If a binary search tree with n nodes is well balanced, what is the approximate number of comparisons of keys needed to find a target? What is the number if the tree degenerates to a chain? (9+9)

- Q.7 Write short note on any <u>THREE</u> of the following:-
 - (i) Circular queue and priority queue
 - (ii) Huffman trees
 - (iii) Shell sort
 - (iv) Game trees

. (3×6)