				notations should ne any suitable d					
	1.	(a)		ve the boundary condition for the normal and tangential components of electric and netic field.				6	
		(b)	Derive	the wave equation for homogeneous, unbound source free medium starting from					6
		(c)	A unifo	ll's equation. rm plane wave in ency of 10 KHz.				$\epsilon = 80 \epsilon_0$ and $\mu = \mu_0$ is having eight, α , β , η .	8
	2.	(a)			theorem. Expla	ain the terms	inst	antaneous, average and complex	10
		(b)		g vector. n-magnetic mediu		·			10
			(i)	$E = 4 \sin (2\pi \times \epsilon_r)$	10't - 0.8x) a	a _z v/m . Fi	nd-		
				The time average	ge power carrie	ed by the wa	ve.		
	3.		plane w	ave at oblique inc	idence.			coefficient for parallel polarised	8
		(D)		wave travels in from $e^{j(0.866y + 0.5z)}$ \hat{a}					
		E = 100 e ^{j (0.866y + 0.5z)} \hat{a}_x v/m is incident on a dielectric medium having $\sigma = 0, \epsilon = 4 \epsilon_0, \mu = \mu_0$ and occupying $z \ge 0$.							
			Calcula (i)	te:— The angle of inc	idence, reflect	tion and trans	smis	sion	2
				The reflection at The toal E field		n coefficients	S		2 4
			, ,	The total E field					4
	 (a) Derive an expression for the input impedance of a two wire transmission line. (b) A 2 m long lossless line has an impedance of 300 Ω. The velocity of propagation i 2.5 x 10⁸ m/s. The load has an impedance of 300 Ω with sending end voltage being 60 at 100 MHz. Find: (i) The phase constant 							10	
			(ii)	The load voltage					
			(iii) (iv)	The load current		d .			
			(v)	The load reflecti	on coefficient	and standing	way	ve ratio.	
	5. Explain briefly radiation from a short dipole in free space. Show that power radiated by								20
		shor	t dipole	is $P_T = 80 \pi^2 I_{rms}^2$	$\left(\frac{\mathrm{d}l}{\lambda}\right)^2$. Hence	ce obtain the	exp	ression for radiation resistance.	
6	6.					onents of a tr	rans	verse electric wave propagating	12
		through a rectangular waveguide. (b) An air filled rectangular waveguide of inside dimensions 7 × 3·5 cm² operates in the TE ₁₀ mode.							8
			(i) (ii)	Find cut-off frequence Determine guide of 3.5 GHz.		t of the wave	in w	aveguide at operating frequency	
		(iii) Determine guide wavelength at the same operating frequency. (iv) Find 'Phase velocity' of the EM wave.							
7		Write	short n	otes on any four	:				20
			(i) (ii)	Smith chart Skin depth				Surface impedance of conductor Concept of retarded potentials	
			(iii)	Maxwell's equation	on for time var			Parallel plane waveguides.	

(2) Attempt any four questions out of remaining six questions.
(3) Figures to the right indicate full marks.