ANSWERS \& HINTS
 for
 WBJEEM - 2014
 SUB: CHEMISTRY

CATEGORY - I

Q. 1 to Q. 45 carry one mark each, for which only one option is correct. Any wrong answer will lead to deduction of $1 / 3$ mark.

1. During the emission of a positron from a nucleus, the mass number of the daughter element remains the same but the atomic number
(A) is decreased by 1 unit
(B) is decreased by 2 units
(C) is increased by 1 unit
(D) remains unchanged

Ans: (A)
Hints: ${ }_{\mathrm{Z}}^{\mathrm{A}} \mathrm{X} \rightarrow{ }_{\mathrm{Z}-1}^{\mathrm{A}} \mathrm{Y}+{ }_{+1}^{0} \mathrm{e}$
Atomic number is decreased by 1
2. Four gases P, Q, R and S have almost same values of ' b ' but their ' a ' values (a, b are van der Waals constants) are in the order $\mathrm{Q}<\mathrm{R}<\mathrm{S}<\mathrm{P}$. At a particular temperature, among the four gases the most easily liquefiable one is
(A) P
(B) Q
(C) R
(D) S

Ans: (A)
Hints: More the value of 'a' for the gas, more is the intermolecular forces of attraction. Thus the gas can be easily liquefied.
3. β emission is always accompanied by
(A) formation of antineutrino and α particle
(B) emission of α particle and γ-ray
(C) formation of antineutrino and γ-ray
(D) formation of antineutrino and positron

Ans: (C)
4. The values of $\Delta \mathrm{H}$ and $\Delta \mathrm{S}$ of a certain reaction are $-400 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $-20 \mathrm{~kJ} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$ respectively. The temperature below which the reaction is spontaneous is
(A) $100^{\circ} \mathrm{K}$
(B) $20^{\circ} \mathrm{C}$
(C) $20^{\circ} \mathrm{K}$
(D) $120^{\circ} \mathrm{C}$

Ans: (C)
Hints: The reaction is spontaneous when $\Delta \mathrm{G}$ is -ve

$$
\begin{aligned}
& \Delta \mathrm{G}<0 \\
& \Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{~S}<0 \\
& -400-(\mathrm{T})(-20)<0 \\
& -400+20 \mathrm{~T}<0 \\
& 20 \mathrm{~T}<400 \\
& \mathrm{~T}<\frac{400}{20} ; \mathrm{T}<20 \mathrm{~K}
\end{aligned}
$$

5. The correct statement regarding the following compounds is

I
(A) all three compounds are chiral
(C) I and III are diastereomers

II

III
(B) only I and II are chiral
(D) only I and III are chiral

Ans: (D)
Hints :

- I and III are enantiomers
- Il has plane of symmetry hence achiral

6. The intermediate J in the following Wittig reaction is

7. The system that contains the maximum number of atoms is
(A) 4.25 g of NH_{3}
(B) 8 g of O_{2}
(C) 2 g of H_{2}
(D) 4 g of He

Ans: (C)
Hints : a) $4.25 \mathrm{~g} \mathrm{NH}_{3}=\left(\frac{4.25}{17}\right) \mathrm{N}_{\mathrm{A}} \times 4=\mathrm{N}_{\mathrm{A}}$ atoms
b) $8 \mathrm{~g} \mathrm{O}_{2}=\left(\frac{8}{32}\right) \mathrm{N}_{\mathrm{A}} \times 2=\frac{\mathrm{N}_{\mathrm{A}}}{2}$ atoms
c) $2 \mathrm{~g} \mathrm{H}_{2}=\left(\frac{2}{9}\right) \mathrm{N}_{\mathrm{A}} \times 2=2 \mathrm{~N}_{\mathrm{A}}$ atoms
d) $4 \mathrm{~g} \mathrm{He}=\left(\frac{4}{4}\right) \mathrm{N}_{\mathrm{A}}=\mathrm{N}_{\mathrm{A}}$ atoms
9. Metal ion responsible for the Minamata disease is
(A) Co^{2+}
(B) Hg^{2+}
(C) Cu^{2+}
(D) Zn^{2+}

Ans: (B)

Hints: Hg^{2+} causes Minamata diseases
10. Among the following observations, the correct one that differentiates between $\mathrm{SO}_{3}{ }^{2-}$ and $\mathrm{SO}_{4}{ }^{2-}$ is
(A) Both form precipitate with $\mathrm{BaCl}_{2}, \mathrm{SO}_{3}{ }^{2-}$ dissolves in HCl but $\mathrm{SO}_{4}{ }^{2-}$ does not
(B) $\mathrm{SO}_{3}{ }^{2-}$ forms precipitate with $\mathrm{BaCl}_{2}, \mathrm{SO}_{4}{ }^{2-}$ does not
(C) $\mathrm{SO}_{4}{ }^{2-}$ forms precipitate with $\mathrm{BaCl}_{2}, \mathrm{SO}_{3}{ }^{2-}$ does not
(D) Both form precipitate with $\mathrm{BaCl}_{2}, \mathrm{SO}_{4}{ }^{2-}$ dissolves in HCl but $\mathrm{SO}_{3}{ }^{2-}$ does not

Ans: (A)
Hints: $\mathrm{BaCl}_{2}+\mathrm{SO}_{4}{ }^{2-} \rightarrow \mathrm{BaSO}_{4} \downarrow+2 \mathrm{Cl}^{-}$

$$
\begin{aligned}
& \mathrm{BaCl}_{2}+\mathrm{SO}_{3}^{2-} \rightarrow \mathrm{BaSO}_{3} \downarrow+2 \mathrm{Cl}^{-} \\
& \text {But } \mathrm{BaSO}_{3} \text { dissolves in } \mathrm{HCl} \text { as } \mathrm{BaSO}_{3}+2 \mathrm{HCl} \rightarrow \mathrm{BaCl}_{2}+\mathrm{SO}_{2} \uparrow+\mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

11. The pH of $10^{-4} \mathrm{M} \mathrm{KOH}$ solution will be
(A) 4
(B) 11
(C) 10.5
(D) 10

Ans: (D)
Hints : $\left[\mathrm{OH}^{-}\right]=10^{-4} \mathrm{M} \Rightarrow \mathrm{pOH}=4$
$\mathrm{pH}+\mathrm{pOH}=14, \therefore \mathrm{pH}=14-4=10$
12. The reagents to carry out the following conversion are

(A) $\mathrm{HgSO}_{4} / \mathrm{dil} \mathrm{H}_{2} \mathrm{SO}_{4}$
(B) $\mathrm{BH}_{3} ; \mathrm{H}_{2} \mathrm{O}_{2} / \mathrm{NaOH}$
(C) $\mathrm{OsO}_{4} ; \mathrm{HIO}_{4}$
(D) $\mathrm{NaNH}_{2} / \mathrm{CH}_{3} \mathrm{I} ; \mathrm{HgSO}_{4} /$ dil $\mathrm{H}_{2} \mathrm{SO}_{4}$

Ans: (D)
Hints: Me
 or $\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{C}-\mathrm{H}$

13. The correct order of decreasing $\mathrm{H}-\mathrm{C}-\mathrm{H}$ angle in the following molecules is

II III
(A) I $>$ II $>$ III
(B) II $>$ I $>$ III
(C) III $>$ II $>$ I
(D) I $>$ III $>$ II

Ans: (B)
Hints: II $>$ I $>$ III

I
II

III
14. ${ }_{98} \mathrm{Cf}^{246}$ was formed along with a neutron when an unknown radioactive substance was bombarded with ${ }_{6} \mathrm{C}^{12}$. The unknown substance was
(A) ${ }_{91} \mathrm{~Pa}^{234}$
(B) ${ }_{90} \mathrm{Th}^{234}$
(C) ${ }_{92} \mathrm{U}^{235}$
(D) ${ }_{92} \mathrm{U}^{238}$

Ans: (C)

Hints: ${ }_{z} X^{A}+{ }_{6} \mathrm{C}^{12} \rightarrow{ }_{98} \mathrm{Cf}^{246}+{ }_{0} \mathrm{n}^{1}$
$z+6=98$
$\Rightarrow z=92$

$$
A+12=246+1
$$

$$
\text { or, } A=247-12
$$

$$
=235
$$

\therefore The element is ${ }_{92} \mathrm{U}^{235}$
15. The rate of a certain reaction is given by, rate $=k\left[\mathrm{H}^{+}\right]^{n}$. The rate increases 100 times when the pH changes from 3 to 1 . The order (n) of the reaction is
(A) 2
(B) 0
(C) 1
(D) 1.5

Ans: (C)
Hints: Rate $r=k\left[\mathrm{H}^{+}\right]^{n}$
New rate, $r^{\prime}=100 r$
pH changes from 3 to 1
i.e. $\left[\mathrm{H}^{+}\right]=10^{-3} \mathrm{M}$ changes to $\left[\mathrm{H}^{+}\right]^{\prime}=10^{-1} \mathrm{M}$
i.e. conc. increases 100 times $\frac{\left[\mathrm{H}^{+}\right]^{\prime}}{\left[\mathrm{H}^{+}\right]}=\frac{10^{-1}}{10^{-3}}=100$
$\frac{\mathrm{r}^{\prime}}{\mathrm{r}}=\left(\frac{\left[\mathrm{H}^{+}\right]^{\prime}}{\left[\mathrm{H}^{+}\right]}\right)^{\mathrm{n}} \quad$ or, $100=(100)^{\mathrm{n}}$
or, $\mathrm{n}=1$
16. $\left.{ }_{32} \mathrm{Ge}^{76},{ }_{34} \mathrm{Se}^{76}\right)$ and $\left({ }_{14} \mathrm{Si}^{30},{ }_{16} \mathrm{~S}^{32}\right)$ are examples of
(A) isotopes and isobars
(B) isobars and isotones
(C) isotones and isotopes
(D) isobars and isotopes

Ans: (B)

Hints : $\left({ }_{32} \mathrm{Ge}^{76},{ }_{34} \mathrm{Se}^{76}\right)$ Same atomic mass $=$ isobars

$$
\begin{aligned}
& \left({ }_{14} \mathrm{Si}^{30},{ }_{16} \mathrm{Se}^{32}\right) \\
& \mathrm{A}-\mathrm{Z}=30-14=16 \quad \text { Same no. of neutrons }=\text { isotones }
\end{aligned}
$$

and $32-16=16$
17. The enthalpy of vaporization of a certain liquid at its boiling point of $35^{\circ} \mathrm{C}$ is $24.64 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The value of change in entropy for the process is
(A) $704 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
(B) $80 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
(C) $24.64 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
(D) $7.04 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$

Ans: (B)
Hints: $\Delta \mathrm{S}=\frac{\mathrm{q}_{\mathrm{rev}}}{\mathrm{T}}$
At constant pressure, $\mathrm{q}_{\mathrm{rev}}=\Delta \mathrm{H}_{\text {transformation }}$
$\Delta \mathrm{S}_{\text {vap }}=\frac{\Delta \mathrm{H}_{\text {vap }}}{\mathrm{T}_{\mathrm{b}}} ; \mathrm{T}_{\mathrm{b}}=$ boiling point, $\Delta \mathrm{H}_{\text {vap }}=$ Enthalpy of vapourization
$=\frac{24.64 \times 10^{3} \mathrm{Jmol}^{-1}}{308 \mathrm{~K}}=80 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
18. Given that :
$\mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2} ; \Delta \mathrm{H}^{\mathrm{o}}=-\mathrm{xkJ}$
$2 \mathrm{CO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2} ; \Delta \mathrm{H}^{\circ}=-y \mathrm{~kJ}$
The heat of formation of carbon monoxide will be
(A) $\frac{y-2 x}{2}$
(B) $y+2 x$
(C) $2 x-y$
(D) $\frac{2 x-y}{2}$

Ans: (A)
Hints: i) $\mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2} ; \Delta \mathrm{H}^{\circ}=-\mathrm{xkJ}$
ii) $2 \mathrm{CO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2} ; \Delta \mathrm{H}^{\circ}=-\mathrm{y} \mathrm{kJ}$

Eq (i) $\times 2$
$2 \mathrm{C}+2 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}, \Delta \mathrm{H}^{\mathrm{o}}=-2 \times \mathrm{kJ}$
Writing eq. (ii) in reverse order
$2 \mathrm{CO}_{2} \rightarrow 2 \mathrm{CO}+\mathrm{O}_{2}, \Delta \mathrm{H}^{\circ}=\mathrm{y} \mathrm{kJ}$
adding, $2 \mathrm{C}+\mathrm{O}_{2} \rightarrow 2 \mathrm{CO}, \Delta \mathrm{H}=(\mathrm{y}-2 \mathrm{x}) \mathrm{kJ}$
For $2 \mathrm{~mol} \mathrm{CO}, \Delta \mathrm{H}=(\mathrm{y}-2 \mathrm{x}) \mathrm{kJ}$
\therefore For $1 \mathrm{~mol} \mathrm{CO}, \Delta \mathrm{H}_{\mathrm{f}}=\left(\frac{\mathrm{y}-2 \mathrm{x}}{2}\right) \mathrm{kJ}$
\therefore Enthalpy of formation, $\Delta \mathrm{H}_{\mathrm{f}}{ }^{\mathrm{f}}=\frac{\mathrm{y}-2 \mathrm{x}}{2}$
19. Commercial sample of $\mathrm{H}_{2} \mathrm{O}_{2}$ is labeled as 10 V . Its $\%$ strength is nearly
(A) 3
(B) 6
(C) 9
(D) 12

Ans: (A)

Hints: 10 volume $\mathrm{H}_{2} \mathrm{O}_{2}$ means
$1 \mathrm{mLH} \mathrm{H}_{2}$ solution produces $10 \mathrm{~mL} \mathrm{O}_{2}$ at STP
$2 \mathrm{H}_{2} \mathrm{O}_{2} \longrightarrow \quad 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$
2 mol 1 mol
$2 \times 34 \mathrm{~g} \quad 22.4 \mathrm{~L}$ at STP
68 g
$22400 \mathrm{~mL} \mathrm{O}_{2}$ at STP is produced from $68 \mathrm{~g} \cdot \mathrm{H}_{2} \mathrm{O}_{2}$
$\therefore 10 \mathrm{~mL} \mathrm{O}_{2}$ is produced from $\frac{68 \times 10}{22400} \mathrm{~g}=0.03036 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}_{2}$
$\therefore 1 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}_{2}$ solution contains $0.03 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}_{2}$ (approx.)
$\therefore 100 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}_{2}$ solution contains 0.03×100

$$
=3 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}_{2} \text { (approx.) }
$$

20. In DNA, the consecutive deoxynucleotides are connected via
(A) phospho diester linkage
(B) phospho monoester linkage
(C) phospho triester linkage
(D) amide linkage

Ans: (A)

Hints :

21. The reaction of aniline with chloroform under alkaline conditions leads to the formation of
(A) Phenyl cyanide
(B) Phenyl isonitrile
(C) Phenyl cyanate
(D) Phenyl isocyanate

Ans: (B)

Hints:

This is the carbylamine reaction
22. The reagent with which the following reaction is best accomplished is

(A) $\mathrm{H}_{3} \mathrm{PO}_{2}$
(B) $\mathrm{H}_{3} \mathrm{PO}_{3}$
(C) $\mathrm{H}_{3} \mathrm{PO}_{4}$
(D) NaHSO_{3}

Ans: (A)

Hints:

23. At a certain temperature the time required for the complete diffusion of 200 mL of H_{2} gas is 30 minutes. The time required for the complete diffusion of 50 mL of O_{2} gas at the same temperature will be
(A) 60 minutes
(B) 30 minutes
(C) 45 minutes
(D) 15 minutes

Ans: (B)
Hints : $\frac{\mathrm{r}_{\mathrm{H}_{2}}}{\mathrm{r}_{\mathrm{O}_{2}}}=\frac{\sqrt{\mathrm{M}_{\mathrm{O}_{2}}}}{\sqrt{\mathrm{M}_{\mathrm{H}_{2}}}}=\frac{\mathrm{V}_{\mathrm{H}_{2}} / \mathrm{t}_{\mathrm{H}_{2}}}{\mathrm{~V}_{\mathrm{O}_{2}} / \mathrm{t}_{\mathrm{O}_{2}}}, \sqrt{\frac{32}{2}}=\frac{200}{30} \times \frac{\mathrm{t}_{\mathrm{O}_{2}}}{50}=$ or $4=\frac{4}{30} \times \mathrm{t}_{\mathrm{O}_{2}}, \therefore \mathrm{t}_{\mathrm{O}_{2}}=30 \mathrm{~min}$
24. The IUPAC name of the following molecule is

(A) 5,6-Dimethyl hept-2-ene
(B) 2,3-Dimethyl hept-5-ene
(C) 5,6-Dimethyl hept-3-ene
(D) 5-Isopropyl hex-2-ene

Ans: (A)

Hints :
 5,6-Dimethyl hept-2-ene
25. For one mole of an ideal gas the slope of V vs. T curve at constant pressure of 2 atm is X lit $\mathrm{mol}^{-1} \mathrm{~K}^{-1}$. The value of the ideal universal gas constant ' R ' in terms of X is
(A) $\mathrm{X} \mathrm{lit} \mathrm{atm}_{\mathrm{mol}}{ }^{-1} \mathrm{~K}^{-1}$
(B) $\mathrm{X} / 2$ lit atm $\mathrm{mol}^{-1} \mathrm{~K}^{-1}$
(C) $2 \mathrm{X} \mathrm{lit}_{\text {atm }} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$
(D) $2 \mathrm{X} \mathrm{atm} \mathrm{lit}^{-1} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$

Ans: (C)
Hints : $\underset{\vee}{\uparrow \mid \underset{\longrightarrow}{T}}$ $P V=R T, V=\frac{R}{P} \times T, m=\frac{R}{P}=X$, or $R=X . P,=2 X L . a t m m o l^{-1} K^{-1}$ (' m ' is the slope)
26. An atomic nucleus having low n / p ratio tries to find stability by
(A) the emission of an α particle
(B) the emission of a positron
(C) capturing an orbital electron (K-electron capture)
(D) emission of a β particle

Ans: (B)
Hints : B and C both option are correct but as single option, B is more appropriate.
27. The correct order of decreasing length of the bond as indicated by the arrow in the following structure is

(C) $|I|>||>|$
(D) $|>|||>| |$
(A) $|>||>|| |$
(B) $||>|>|| |$

Ans: (C)

CH_{3} one due to hyper conjugation
28. If Cl_{2} is passed through hot aqueous NaOH , the products formed have Cl in different oxidation states. These are indicated as
(A) $\quad-1$ and +1
(B) -1 and +5
(C) +1 and +5
(D) -1 and +3

Ans: (B)
Hints : Reaction: $3 \mathrm{Cl}_{2}+6 \mathrm{NaOH}$ (hot \& conc) $\rightarrow 5 \mathrm{NaCl}^{-1}+\mathrm{NaClO}_{3}+3 \mathrm{H}_{2} \mathrm{O}$
29. In the following reaction, the product E is

(A)

(B) $\stackrel{1}{\mathrm{CO}} \mathrm{Z}_{\mathrm{CHO}}^{\substack{\mathrm{H}}}$
(C) $\underset{\mathrm{CO}_{2} \mathrm{H}}{\mathrm{CH}_{2} \mathrm{OH}}$
(D) $\begin{gathered}\mathrm{CO}_{2} \mathrm{H} \\ \mathrm{CO}_{2} \mathrm{H}\end{gathered}$

Ans: (C)

30. The amount of electrolytes required to coagulate a given amount of Agl colloidal solution (-ve charge) will be in the order
(A) $\mathrm{NaNO}_{3}>\mathrm{Al}_{2}\left(\mathrm{NO}_{3}\right)_{3}>\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$
(B) $\mathrm{Al}_{2}\left(\mathrm{NO}_{3}\right)_{3}>\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}>\mathrm{NaNO}_{3}$
(C) $\mathrm{Al}_{2}\left(\mathrm{NO}_{3}\right)_{3}>\mathrm{NaNO}_{3}>\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$
(D) $\mathrm{NaNO}_{3}>\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}>\mathrm{Al}_{2}\left(\mathrm{NO}_{3}\right)_{3}$

Ans: (D)
Hints : For [Agl] I- Negatively charged sol, effective ion for coagulation is cation and amount of electrolyte required
$\propto \frac{1}{\text { charge content }}$. Also note that $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$ is written as $\mathrm{Al}_{2}\left(\mathrm{NO}_{3}\right)_{3}$ in the questions paper.
31. The value of $\Delta \mathrm{H}$ for cooling 2 mole of an ideal monoatomic gas from $225^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ at constant pressure will be given $\left.C_{p}=\frac{5}{2} R\right]$
(A) 250 R
(B) -500 R
(C) 500 R
(D) -250 R

Ans: (B)
Hints: Here, $\mathrm{n}=2$

$$
\begin{aligned}
& C_{p}=\frac{5}{2} R \\
& \Delta T=125-225=-100 \\
& \Delta H=n C_{p} \Delta T=2 \times \frac{5}{2} R \times(-100)=-500 R
\end{aligned}
$$

32. The quantity of electricity needed to separately electrolyze 1 M solution of $\mathrm{ZnSO}_{4}, \mathrm{AlCl}_{3}$ and AgNO_{3} completely is in the ratio of
(A) $2: 3: 1$
(B) $2: 1: 1$
(C) $2: 1: 3$
(D) $2: 2: 1$

Ans: (A)
Hints: $\mathrm{Zn}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Zn}$

$$
\mathrm{Al}^{2+}+3 \mathrm{e}^{-} \rightarrow \mathrm{Al}
$$

$$
\mathrm{Ag}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{Ag}
$$

\therefore Quantity of electricity required $=2: 3: 1$
33. The emission spectrum of hydrogen discovered first and the region of the electromagnetic spectrum in which it belongs, respectively are
(A) Lyman, ultraviolet
(B) Lyman, visible
(C) Balmer, ultraviolet
(D) Balmer, visible

Ans: (D)
Hints: Fact
34. As per de Broglie's formula a macroscopic particle of mass 100 gm and moving at a velocity of $100 \mathrm{~cm} \mathrm{~s}^{-1}$ will have a wavelength of
(A) $6.6 \times 10^{-29} \mathrm{~cm}$
(B) $6.6 \times 10^{-30} \mathrm{~cm}$
(C) $6.6 \times 10^{-31} \mathrm{~cm}$
(D) $6.6 \times 10^{-32} \mathrm{~cm}$

Ans: (C)
Hints: $\mathrm{m}=100 \mathrm{~g}, \quad \mathrm{v}=100 \mathrm{~cm} \mathrm{~s}^{-1}=1 \mathrm{~ms}^{-1}$

$$
\lambda=\frac{\mathrm{h}}{\mathrm{mv}}=\frac{6.626 \times 10^{-34}}{0.1 \times 1}=6.626 \times 10^{-33} \mathrm{~m}=6.626 \times 10^{-31} \mathrm{~cm}
$$

35. The electronic configuration of Cu is
(A) $\quad \mathrm{Ne} 3 \mathrm{~s}^{2} 3 p^{6} 3 d^{9} 4 \mathrm{~s}^{2}$
(B) $\quad \mathrm{Ne} 3 \mathrm{~s}^{2} 3 p^{6} 3 d^{10} 4 s^{1}$
(C) $\quad \mathrm{Ne} 3 \mathrm{~s}^{2} 3 p^{6} 3 d^{3} 4 \mathrm{~s}^{2} 4 \mathrm{p}^{6}$
(D) $\quad \mathrm{Ne} 3 \mathrm{~s}^{2} 3 p^{6} 3 \mathrm{~d}^{5} 4 \mathrm{~s}^{2} 4 \mathrm{p}^{4}$

Ans: (B)
Hints: Cu: z = 29
[Ne] $3 s^{2} 3 p^{6} 3 d^{10} 4 s^{1}$
36. The compound that will have a permanent dipole moment among the following is

I
(A) 1

II
II

III

(C) III
(D) IV

Ans: (A)

Hints:

$\mu_{\text {net }}=0$
37. Among the following structures the one which is not a resonating structure of others is

I

II
(A) I
(B) II

III

IV
(C) III
(D) IV

Ans: (D)

Hints:

A hydrogen is removed from this carbon. But, in resonating structure, position of atoms do not changes.
38. The correct statement regarding the following energy diagrams is

(A) Reaction M is faster and less exothermic than Reaction N
(B) Reaction M is slower and less exothermic than Reaction N
(C) Reaction M is faster and more exothermic than Reaction N
(D) Reaction M is slower and more exothermic than Reaction N

Ans: (C)
Hints:
Activation energy ($\Delta \mathrm{E}_{\mathrm{M}}<\Delta \mathrm{E}_{N}$)
Reaction M is faster than N .
ΔH_{M} is more negative than ΔH_{N}
Reaction M is more extothermic than N
39. An amine $\mathrm{C}_{3} \mathrm{H}_{9} \mathrm{~N}$ reacts with benzene sulfonyl chloride to form a white precipitate which is insoluble in aq. NaOH . The amine is
(A)

(B)

(C)

(D)

Ans: (B)

40. Among the followings, the one which is not a "greenhouse gas", is
(A) $\mathrm{N}_{2} \mathrm{O}$
(B) CO_{2}
(C) CH_{4}
(D) O_{2}

Ans: (D)
Hints: O_{2} is not a green house gas
41. The number of amino acids and number of peptide bonds in a linear tetrapeptide (made of different amino acids) are respectively
(A) 4 and 4
(B) 5 and 5
(C) 5 and 4
(D) 4 and 3

Ans: (D)

Hints :

No. of amino acids $=4$
No. of Peptide bonds = 3
42. The $4^{\text {th }}$ higher homologue of ethane is
(A) Butane
(B) Pentane
(C) Hexane
(D) Heptane

Ans: (C)
Hints: homologus differ by CH_{2} unit
$\therefore 4^{\text {th }}$ homologue of ethene is $\mathrm{C}_{6} \mathrm{H}_{14}\left\{\mathrm{C}_{2} \mathrm{H}_{6}+\left(\mathrm{CH}_{2}\right)_{4}\right\}$
43. The hydrides of the first elements in groups 15-17, namely $\mathrm{NH}_{3}, \mathrm{H}_{2} \mathrm{O}$ and HF respectively show abnormally high values for melting and boiling points. This is due to
(A) small size of N, O and F
(B) the ability to form extensive intramolecular H -bonding
(C) the ability to form extensive intramolecular H -bonding
(D) effective van der Walls interaction

Ans: (B)
Hints: $\mathrm{NH}_{3}, \mathrm{H}_{2} \mathrm{O}$ and HF form extensive intermolecular Hydrogen bonding due to high ionic potential of N, O and F .
44. The two half cell reactions of an electrochemical cell is given as
$\mathrm{Ag}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{Ag} \quad ; \quad \mathrm{E}_{\mathrm{Ag}+/ \mathrm{Ag}}^{0}=-0.3995 \mathrm{~V}$
$\mathrm{Fe}^{++} \rightarrow \mathrm{Fe}^{+++}+\mathrm{e}^{-} \quad ; \mathrm{E}_{\mathrm{Fe}^{+++} / \mathrm{Fe}^{++}}^{0}=-0.7120 \mathrm{~V}$
(A) -0.3125 V
(B) 0.3125 V
(C) 1.114 V
(D) -1.114 V

Ans: (B)

CATEGORY - II
Q. 46 to Q .55 carry two marks each, for which only one option is correct. Any wrong answer will lead to deduction of $2 / 3$ mark
46. The order of decreasing ease of abstraction of Hydrogen atoms in the following molecule is

(A) $\mathrm{H}_{\mathrm{a}}>\mathrm{H}_{\mathrm{b}}>\mathrm{H}_{\mathrm{c}}$
(B) $\mathrm{H}_{\mathrm{a}}>\mathrm{H}_{\mathrm{c}}>\mathrm{H}_{\mathrm{b}}$
(C) $\mathrm{H}_{\mathrm{b}}>\mathrm{H}_{\mathrm{a}}>\mathrm{H}_{\mathrm{c}}$
(D) $\mathrm{H}_{\mathrm{c}}>\mathrm{H}_{\mathrm{b}}>\mathrm{H}_{\mathrm{a}}$

Ans: (B)
Hints : The more stable is the radical formed after H atom abstraction, easier is the abstraction

47. The bond angle in $\mathrm{NF}_{3}\left(102.3^{\circ}\right)$ is smaller than $\mathrm{NH}_{3}\left(107.2^{\circ}\right)$. This is because of
(A) large size of F compared to H
(B) large size of N compared to F
(C) opposite polarity of N in the two molecules
(D) small size of H compared to N

Ans: (C)

Hints : In NF_{3}, dipole moment vector point in the direction of F . Thus electron cloud shifts towards F in $\mathrm{N}-\mathrm{F}$ bond. This reduces bond pair-bond pair repulsion in N-F and hence a decrease in bond angle FNF.
48. The compressibility factor (Z) of one mole of a van der Waals gas of negligible ' a ' value is
(A) 1
(B) $\frac{\mathrm{bp}}{\mathrm{RT}}$
(C) $1+\frac{\mathrm{bp}}{\mathrm{RT}}$
(D) $1-\frac{\mathrm{bp}}{\mathrm{RT}}$

Ans: (C)
Hints: Vander Waal's Equation
$\left(P+\frac{a}{V^{2}}\right)(V-b)=R T$ (for 1 mole of gas) $\Rightarrow P(V-b)=R T \Rightarrow P V-P b=R T \Rightarrow P V=R T+P b \Rightarrow Z=\frac{P V}{R T}=1+\frac{P b}{R T}$ $Z=$ Compressibility on neglecting " a ".
49. At $25^{\circ} \mathrm{C}$, the molar conductance of 0.007 M hydrofluoric acid is $150 \mathrm{mho} \mathrm{cm}^{2} \mathrm{~mol}^{-1}$ and $\Lambda^{\circ}{ }_{\mathrm{m}}=500 \mathrm{mho} \mathrm{cm}^{2} \mathrm{~mol}^{-1}$. The value of the dissociation constant of the acid at the gas concentration at $25^{\circ} \mathrm{C}$ is
(A) $7 \times 10^{-4} \mathrm{M}$
(B) $7 \times 10^{-5} \mathrm{M}$
(C) $9 \times 10^{-3} \mathrm{M}$
(D) $\quad 9 \times 10^{-4} \mathrm{M}$

Ans: (D)
Hints : α (degree of dissociation) $=\frac{150}{500}=0.3 \therefore \mathrm{~K}_{\mathrm{a}}=\frac{\mathrm{C} \alpha^{2}}{1-\alpha}=\frac{0.007 \times(0.3)^{2}}{1-0.3}=9 \times 10^{-4} \mathrm{M}$.
Here, α can't be neglected w.r.t 1 due to large value
50. A piece of wood from an archaeological sample has 5.0 counts min^{-1} per gram of $\mathrm{C}-14$, while a fresh sample of wood has a count of $15.0 \mathrm{~min}^{-1}$ gram $^{-1}$. If half life of $\mathrm{C}-14$ is 5770 years, the age of the archaeological sample is
(A) 8,500 years
(B) 9,200 years
(C) 10,000 years
(D) 11,000 years

Ans: (B)
Hints : $\frac{0.693}{\mathrm{t}_{1 / 2}} \mathrm{t}=2.303 \log \frac{[\text { Activity of fresh sample] }}{[\text { Activity of fossil] }}, \frac{0.693}{5770} \mathrm{t}=2.303 \log \frac{15}{5} \Rightarrow \mathrm{t}=\frac{2.303(\log 3)(5770)}{0.693} \mathrm{yrs}$
= 9,200 Yrs (approx)
51. When phenol is treated with $\mathrm{D}_{2} \mathrm{SO}_{4} / \mathrm{D}_{2} \mathrm{O}$, some of the hydrogens get exchanged. The final product in this exchange reaction is
(A)

(B)

(C)

(D)

Ans: (A)
Hints:

Repeat at the para and the remaining ortho position

52. To observe an elevation of boiling point of $0.05^{\circ} \mathrm{C}$, the amount of solute (Mol. Wt. $=100$) to be added to 100 g of water $\left(\mathrm{K}_{\mathrm{b}}=0.5\right)$ is
(A) 2 g
(B) 0.5 g
(C) 1 g
(D) 0.75 g

Ans: (C)
Hints: $\Delta \mathrm{T}_{\mathrm{b}}=\mathrm{K}_{\mathrm{b}} \mathrm{m}, 0.05=.5 \times \mathrm{X} 0.05=\frac{0.5 \mathrm{x}}{100} \times 10 ; \mathrm{X}=1 \mathrm{~g}$.
53. The structure of XeF_{6} is experimentally determined to be distorted octahedron. Its structure according to VSEPR theory is
(A) Octahedron
(B) Trigonal bipyramid
(C) Pentagonal bipyramid
(D) Tetragonal bipyramid

Ans: (C)
Hints : Xe is surrounded by 6 bond pairs and one lone pair. The geometry (geometry of electron pairs) is pentagonal bipyramid.
54. The most likely protonation site in the following molecule is

(A) $\mathrm{C}-1$
(B) $\mathrm{C}-2$
(C) $\mathrm{C}-3$
(D) $\mathrm{C}-6$

Ans: (A)

Aakash Institute - Regd. Office: Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-110075 Ph.: 011-47623456 Fax : 011-47623472
Hints :
 Aromatic as well as tartiary carbocation
55. The volume of ethyl alcohol (density $1.15 \mathrm{~g} / \mathrm{cc}$) that has to be added to prepare 100 cc of 0.5 M ethyl alcohol solution in water is
(A) 1.15 cc
(B) 2 cc
(C) 2.15 cc
(D) 2.30 cc

Ans: (B)
Hints : Mass of ethyl alcohol before and after the preparation must be equal.
$x($ volume in $c c) \times \frac{1.15 g}{m L}=\frac{100 \times 0.5}{1000} \times 46, x=2 c c$

CATEGORY - III

Q. 56 to Q. 60 carry two marks each, for which one or more than one options may be correct. Marking of correct options will lead to a maximum mark of two on pro rata basis. There will be no negative marking for these questions. However, any marking of wrong option will lead to award of zero mark against the respective question - irrespective of the number of correct options marked.
56. Cupric compounds are more stable than their cuprous counterparts in solid state. This is because
(A) the endothermic character of the $2^{\text {nd }} I P$ of $C u$ is not so high
(B) size of Cu^{2+} is less than Cu^{+}
(C) Cu^{2+} has stabler electronic configuration as compared to Cu^{+}
(D) the lattice energy released for cupric compounds is much higher than Cu^{+}

Ans : (A, B, D)
Hints: Actually $2^{\text {nd }} \mathrm{IP}$ of $\mathrm{Cu}(1958 \mathrm{~kJ} / \mathrm{mol})$ is not very high as compared to 1 st $\mathrm{IP}(745 \mathrm{~kJ} / \mathrm{mol})$. In addition the gain in lattice energy due to +2 state and small size of Cu^{+2} favour the divalent state in the solid.
57. Among the following statements about the molecules X and Y, the one (s) which is (are) correct is (are)

(A) X and Y are diastereomers
(B) X and Y are enantiomers
(C) X and Y are both aldohexoses
(D) X is a D -sugar and Y is an L-sugar

Ans: (B, C, D)
Hints : ' X ' and ' Y ' are mirror images of each other. They are aldohexoses too. In ' X ', $-O H$ of the asymmetric ' C ' farthest from -CHO is on the right, so it is ' D '-Sugar. ' Y ', on the other hand, has -OH on the left. Thus it is a L-sugar.
58. For a spontaneous process, the correct statement(s) is (are)
(A) $\left(\Delta \mathrm{G}_{\text {system }}\right)_{T, P}>0$
(B) $\left(\Delta \mathrm{S}_{\text {system }}\right)+\left(\Delta \mathrm{S}_{\text {surroundings }}\right)>0$
(C) $\left(\Delta \mathrm{G}_{\text {system }}\right)_{T, \mathrm{P}}<0$
(D) $\left(\Delta U_{\text {system }}\right)_{T, V}>0$

Ans: (B, C)
Hints: Spontaneity of of the process can be expressed either by taking entropy changes of system and surrounding together or by considering free energy change of the system alone at constant temperature and pressure. The known criteria are : $\left(\Delta \mathrm{G}_{\text {sys }}\right)_{\mathrm{T}, \mathrm{P}}<0$ and $\left(\Delta \mathrm{S}_{\text {sys }}\right)+\left(\Delta \mathrm{S}_{\text {sur }}\right)>0$
59. The formal potential of $\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}$ in a sulphuric acid and phosphoric acid mixture $\left(\mathrm{E}^{\circ}=+0.61 \mathrm{~V}\right)$ is much lower than the standard potential $\left(E^{\circ}=+0.77 \mathrm{~V}\right)$. This is due to
(A) formation of the species $\left[\mathrm{FeHPO}_{4}\right]^{+}$
(B) lowering of potential upon complexation
(C) formation of the species $\left[\mathrm{FeSO}_{4}\right]^{+}$
(D) high acidity of the medium

Ans : (A, B, D)
Hints : Formation of complex by Fe^{3+} reduces its concentration. Thereby lowers the formal reduction potential.
60. Two gases $X\left(\right.$ Mol. Wt. $\left.M_{x}\right)$ and $Y\left(\right.$ Mol. Wt. $\left.M_{Y} ; M_{Y}>M_{x}\right)$ are at the same temperature T in two different containers. Their root mean square velocities are C_{X} and C_{Y} respectively. If the average kinetic energies per molecule of two gases X and Y are E_{X} and E_{Y} respectively, then which of the following relation (s) is (are) true?
(A) $E_{X}>E_{Y}$
(B) $\mathrm{C}_{\mathrm{x}}>\mathrm{C}_{\mathrm{Y}}$
(C) $E_{X}=E_{Y}=\frac{3}{2} R T$
(D) $E_{X}=E_{Y}=\frac{3}{2} k_{B} T$

Ans: (B, D)
Hints : For same temperature, higher the molar mass, lower is the rms velocity.KE of individual molecules is expressed in terms of K_{B} not R

