Unified Council

CLASS : XI MATHEMATICS

1. Let S be a set with 100 elements. How many subsets does S have which contain atleast 50 elements?

(A)
$$\frac{2^{100}}{2}$$
 (B) $\frac{2^{100} - {}^{100}C_{50}}{2}$
(C) $2^{99} + \frac{{}^{100}C_{50}}{2}$ (D) ${}^{100}C_{50}$

2. Find the distance between the two intersections of the line, y = 2x - 3, and the parabola, $y = x^2 + 2x - 7$.

(A) $\sqrt{13}$ units (B) 4 units (C) $\sqrt{53}$ units (D) $\sqrt{80}$ units

3. Let $y = 10 + 3x - x^2$, where x and y are positive whole numbers. Find the sum of all possible values of y.

4. Find the sum of all real solutions to the equation $y^2 = |5 - 4y|$.

$$(A) 0 (B)-4 (C) 8 (D) None of these$$

5. If $x^2 - (1 - 2i) x = \left(\frac{1}{2} + i\right)$, then the complete solution is:

(A)
$$\left\{\frac{1\pm 2i}{2}\right\}$$
 (B) $\left\{\frac{1\pm 3i}{3}\right\}$
(C) $\left\{\frac{1+i}{i}, \frac{1+3i}{2}\right\}$ (D) $\left\{\frac{1-i}{2}, \frac{1-3i}{2}\right\}$

6. Simplify:
$$x^{\frac{1}{2}} \cdot x^{-\frac{1}{4}} \cdot x^{\frac{1}{8}} \cdot x^{-\frac{1}{16}}$$
.....

(A) x (B) \sqrt{x} (C) $\sqrt[3]{x}$ (D) $\sqrt[5]{x}$

UCN/2009/XI (PCM)

[1.01]

Unified Council

7. Let L denote the line which passes through the point (7, 1) and the centre of the circle $x^2 + y^2 - 10x + 6y + 9 = 0$. Which of the following points is also on the line L?

(A) (8,3) (B) (-3,7) (C) (4,-10) (D) (5,-7)

8. If the system of equations

 $y = 7 \sin x + 3 \cos x$ $y = 7 \cos x + 3 \sin x$

is solved simultaneously for $0 \le x \le \pi$, the value of "y" must be:

(A)
$$4\sqrt{2}$$
 (B) $5\sqrt{2}$ (C) $2\sqrt{5}$ (D) $2\sqrt{5}$

9. Given three sets A, B and C for which the following is true. A indicates the complement of A.

(i)
$$(A \cap B) \cup C = \{1, 2, 3, 4, 5\}$$

(ii) $A \cup (\overline{B} \cap C) = \{2, 3, 6, 7, 8\}$
(iii) $B \subset C$

If the total of the values in set A is twice the total of those in set II, what are the elements of B?

(A) {2,3,5}
(B) {1,2,3,4,5}

(C) {1,3,4,5}

(D) None of these

10. Given that the points, (1, 4), (6, 12) and (c, 10) are collinear, what is the value of "c"?

(A) 3.5 (B) 4 (C) 4.25 (D) 4.75

11. Let "Z" denote a complex number and define $S = \left\{ \frac{1}{1-Z} : |Z| = 1 \text{ and } Z \neq 1 \right\}.$ Which of the following best

describes the set "S", when "S" is interpreted geometrically as a set of points in the complex plane?

Unified Council(A) S is a straight line parallel to the imaginary axis
(B) S is a parabola
(C) S is a circle
(D) S is a hyperbola12. How many solutions, x, does the equation
$$\tan(2x) = \cot(x)$$

have if $0 \le x \le 2\pi$?
(A) 3
(B) 4
(C) 5
(D) 613. Let P(n) : '2" < (1 × 2 × 3 ×x n), then the smallest
positive integer for which P(n) is true is:
(A) 1
(B) 2
(C) 3
(D) 414. Let a relation R be defined by
 $\mathbf{R} = ((4,5), (1,4), (4,6), (7,6), (3,7)), then R \cdot R = ____(A) (1,4), (1,5), (3,6))(C) (1,5), (1,6), (3,7)15. If f: A → B is surjective, then _____(A) $\pi(A) \le \pi(B)$
(C) $\pi(A) \ge \pi(B)$
(D) None of these16. The equation $Z\overline{Z} + (4-3i)Z + (4+3i)\overline{Z} + 5 = 0$ represents a
circle whose radius is ______
(A) $2\sqrt{5}$
(B) 5
(C) $\frac{5}{2}$
(D) 117. Solution set of the inequations $2x - 1 \le 3$ and $3x + 1 \ge -5$ is:
(A) $(-2, 2)$
(C) $(-\infty, -2) \cup (2, \infty)$
(D) $[-2, 2]18. How many numbers greater than 1000 but not greater than4000 can be formed from the digits 0, 1, 2, 3, 4 whenrepetition is allowed?$$

.3.

Unified Council

7. Let L denote the line which passes through the point (7, 1) and the centre of the circle $x^2 + y^2 - 10x + 6y + 9 = 0$. Which of the following points is also on the line L?

(A) (8,3) (B) (-3,7) (C) (4,-10) (D) (5,-7)

8. If the system of equations

 $y = 7 \sin x + 3 \cos x$ $y = 7 \cos x + 3 \sin x$

is solved simultaneously for $0 \le x \le \pi$, the value of "y" must be:

(A)
$$4\sqrt{2}$$
 (B) $5\sqrt{2}$ (C) $2\sqrt{5}$ (D) $2\sqrt{5}$

9. Given three sets A, B and C for which the following is true. A indicates the complement of A.

(i)
$$(A \cap B) \cup C = \{1, 2, 3, 4, 5\}$$

(ii) $A \cup (\overline{B} \cap C) = \{2, 3, 6, 7, 8\}$
(iii) $B \subset C$

If the total of the values in set A is twice the total of those in set II, what are the elements of B?

(A) $\{2, 3, 5\}$ (B) $\{1, 2, 3, 4, 5\}$

(C) {1,3,4,5}

(D) None of these

10. Given that the points, (1, 4), (6, 12) and (c, 10) are collinear, what is the value of "c"?

(A) 3.5 (B) 4 (C) 4.25 (D) 4.75

11. Let "Z" denote a complex number and define $S = \left\{ \frac{1}{1-Z} : |Z| = 1 \text{ and } Z \neq 1 \right\}.$ Which of the following best

describes the set "S", when "S" is interpreted geometrically as a set of points in the complex plane?

c	LASS : XI (PCM)			Unified Council
	(A) S is a strai	ght line para	llel to the imagi	inary axis
-	(B) S is a para	bola	U	
	(C) S is a circle	е		
	(D) S is a hype	erbola		
12.	How many so	olutions, x, d	oes the equati	ion tan(2x) = cot(x)
	have if $0 \le x$	$\leq 2\pi$?		
	(A) 3 ·	(B)4	(C) 5	(D) 6
13.	Let P(n) : '2 positive inte	$2^n < (1 \times 2 \times 3)$ ger for which	×× n)', t h P(n) is true	then the smallest is:
	(A) 1	(B)2	(C) 3	(D) 4
14.	Let a relation	n R be defin	ed by	
	$\mathbf{R} = \{(4,5), (1, 4)\}$	4), (4,6), (7,6)), (3,7)}, then]	R/R ≈
	(A) {(1,4), (1,5)	, (3,6)}	(B) {1,5), (1,6)), (3,6)}
	(C) {(1,5), (1,6)	, (3,7)}	(D) {(1,4), (1,5	5), (3,7)}
15.	If $f: A \rightarrow B$ is	surjective, t	hen	f
	(A) $n(A) \le n(B)$	17.1	(B) n(A) = n(B)	3)
	(C) $n(A) \ge n(B)$	2	(D) None of t	hese
16.	The equation	$z\overline{z} + (4-3i)$	$)\mathbf{Z} + (4 + 3\mathbf{i})\overline{\mathbf{Z}} +$	$5 \simeq 0$ represents a
4	circle whose	radius is _		
((A) _{2√5}	(B) 5	(C) $\frac{5}{2}$	(D) 1
17.	Solution set o	f the inequat	ions $2x - 1 \le 3$ a	and $3x + 1 \ge -5$ is:
	(A) (–2, 2)		(Ɓ) (-∞,-2)∪((2,∞)
	(C) $(-\infty, -2] \cup [2]$,∞)	(D) [-2, 2]	
18.	How many nu 4000 can be repetition is	unbers great formed from allowed?	er than 1000 b m the digits	ut not greater than 0, 1, 2, 3, 4 when
	(A) 350	(B)375	(C) 4 50	(D) 576

 Unified Council

 Unified Council

 19. If $\mathbf{x} = \mathbf{a} (\sec \theta + \tan \theta)^2$, $\mathbf{y} = \mathbf{b} (\sec \theta - \tan \theta)^4$, then $\mathbf{x}^2 \mathbf{y}^2 = _$

 (A) ab $\sec \theta$ (B) $\mathbf{a}^3 \mathbf{b}^3 \tan \theta$

 (C) $\mathbf{a}^2 \mathbf{b}^4$ (D) $\mathbf{a}^3 \mathbf{b}^3$

 20. Area of the triangle in the Argand diagram formed by the complex numbers Z, iZ and Z + iZ is:

 (A) $|Z|^2$ (B) $\frac{1}{2} |Z|^2$

(C)
$$|Z|$$
 (D) $\frac{1}{2} |Z|$

21. The number of solutions of the system of equations given below is:

(|x|+|y|=1;x² + y² = a²,
$$\frac{1}{\sqrt{2}} < a < 1$$

(B)2 (C)4 (D)8

122. The number 1111111 1 (91 times) is:

(A) not an odd number (B) an even number

(C) not a prime number (D) all of these

23. In a 12 storey building 3 persons enter a lift cabin. It is known that they will leave the lift at different storeys. In how many ways can they do so if the lift does not stop at the second storey?

UCN/2009/XI (PCM)

(A) 00

10-150300000556

25.	The set of values of x, for which $\frac{\tan 3x - \tan 2x}{1 + \tan 3x \cdot \tan 2x} = 1$ is:									
	(A) Ø		(B) $\left\{\frac{\pi}{4}\right\}$	(5)						
	(C) $\begin{cases} n\pi + \frac{\pi}{4}; \end{cases}$	$n \in Z$	(D) $\left\{2n\pi + \frac{\pi}{4}\right\}$	$\left\{ \frac{\pi}{4}; n \in \mathbb{Z} \right\}$						
26.	If the extre (2, -3, 5), th	emities of a d and the lengtl	iagonal of a s h of its side is	square are (1, -2, 3), :						
	(A) $\sqrt{6}$	(B) √ <u>3</u>	(C) √5	(D) √7						
27.	If $\frac{\mathbf{x}}{\mathbf{a}} + \frac{\mathbf{y}}{\mathbf{b}} = \sqrt{2}$	touches t	he ellipse $\frac{x}{a}$	$\frac{x^2}{h^2} + \frac{y^2}{h^2} = 1$, then its						
	eccentric a	ngle "⊕" is eq	ual to:	Mark Internet						
	(A) 0 ⁰	(B) 90 ⁰	(C) 45°	(D) 60°						
28.	If \mathbf{x}_1 , \mathbf{x}_2 , \mathbf{x}_3 common rank $\mathbf{R}(\mathbf{x}_3, \mathbf{y}_3)$ are	as well as a tio, then the	$\mathbf{y}_1, \mathbf{y}_2, \mathbf{y}_3$ are e points $\mathbf{P}(\mathbf{x}_1)$	in G.P. with same (x_1, y_1) , $Q(x_2, y_2)$ and						
	(A) lie on a s	traight line	(B) lie on an	n ellipse						
	(C) lie on a c	rcle	(D) vertices	of a triangle						
29.	Let $f(x)$ be If $f(1) = f(-1)$ are in:	e a polynom) and a, b, c a:	ial function re in A.P., the	of second degree. n f (a), f (b) and f (c)						
P	(A) A.P.	(B) G.P.	(C) H.P.	(D) A.G.P.						
30.	If $2a + 3b + ax^2 + bx + c$	6c = 0, then = 0 lies in th	atleast one ro ne interval	oot of the equation						
	(A) (1, 2)	(B)(2,3)	(C)(0,1)	(D)(1,3)						
31.	The locus o $3x^2 - 2y^2 + 4$	f the middle g $dx - 6y = 0 par$	points of chor rallel to y = 23	ds of the hyperbola x is :						
	(A) $3x - 4y =$	4	(B) 3y – 4x =	= 4						
	(C) $3x - 4y =$	2	(D) 3y – 4x =	= 2						

5

Unified Council

UCN/2009/XI (PCM)

CLASS : XI (PCM) **Unified Council** If a, b, c are real numbers such that a > b, c < 0, then _____ 36. (A) ac < bc (B) $ac \leq bc$ (C) ac > bc (D) ac > bc37. For $\mathbf{n} \in \mathbf{N}$, $\left(\frac{1}{5}\right)\mathbf{n}^5 + \left(\frac{1}{3}\right)\mathbf{n}^3 + \left(\frac{7}{15}\right)\mathbf{n}$ is: (B) a natural number (A) an integer (D) none of these (C) a positive fraction 38. Which of the following relations is a function (A) $R = \{(x, y) : x^2 + y^2 < 9\}$ on R (B) $A = \{1, 2, 3\}, B = \{1, 2, 3, 4, 5\}$ and $R = \{(x, y) : 5x + 2y \text{ is a prime number}\} \text{ on } A$ (C) $A = \{1, 2, 3, 4\}, B = \{1, 2, 3, 4, 5, 6, 7\}$ and $R = \{(x, y) \mid y = x^2 - 3x + 3\} \text{ on } A$ (D) None of these 39. Let R be a reflexive relation on a finite set A having "n" elements, and let there be "m" ordered pairs in R. Then (B) m < n(A) m = n(D) None of these $(C) m \ge n$ 40. The natural numbers are grouped as indicated: {1}, {2, 3}, {4, 5, 6}, {7,8,9,10}, with "m" numbers in the mth group. Find the sum of the numbers in the 110th group. (A) 665,555 (B) 55,555 (C) 450,000 (D) 700,565

UCN/2009/XI (PCM)

www.examrace.com

Unified Council

48. The potential energy of a simple harmonic oscillator, when the particle is half way to its end point, is: (*E is total energy*)

(A) $\frac{E}{4}$ (B) $\frac{E}{2}$ (C) $\frac{2E}{3}$ (D) $\frac{E}{8}$

49. A man of mass 60 kg stands on the floor of a lift which is accelerating downwards at 1 m/s². Then, the reaction of the floor of the lift on the man is: $(Take g = 10 m/s^2)$

50. 743 J of heat energy is added to raise the temperature of 5 moles of an ideal gas by 2 k at constant pressure. How much heat energy is required to raise the temperature of the same mass of the gas by 2 k at constant volume?(*Take* R = 8.3 J/k-mol)

(A) 826 J (B) 743 J (C) 660 J (D) 620 J

51. E_0 and E_H respectively represent the average kinetic energy of a molecule of oxygen and hydrogen. If the two gases are at the same temperature, which of the following statements will be true?

$$(A) E_{O} > E_{H} \qquad (B) E_{O} = E_{H} \qquad (C) E_{O} < E_{H}$$

(D) Nothing can be said about the magnitude of E_0 and E_H as the information given is insufficient

 $(Take g = 10 m/s^2, y = 2 \times 10^{11} N/m^2)$

52. Two bodies of masses 1 kg and 2 kg are connected by a steel wire of cross-section 2 cm² going over a smooth pulley as shown. The longitudinal strain in the wire, is:

1 kg 2 kg

(A) 3.3×10^{-7} (B) 3.3×10^{-6} (C) 2×10^{-6} (D) 4×10^{-6}

U C N/ 2 0 09/XI (PCM)

Unified Council

62. If the angular momentum of a rotating body about a fixed axis is increased by 10%, its kinetic energy will be increased by:

(A) 10% (B) 20% (C) 21% (D) 5%

- 63. Choose the correct statement from the following.
 - (A) Time period of a simple pendulum depends on amplitude
 - (B) Time shown by a spring watch varies with the acceleration due to gravity
 - (C) In a simple pendulum, the time period varies linearly with the length of the pendulum
 - (D) The graph between length of the pendulum and time period is a parabola
- 64. In the given figure the position-time graph of a particle of mass 0.1 kg is shown. Linear momentum at t = 2 s is:

65. A uniform solid cylinder rolling without slipping along a horizontal plane suddenly encounters a plane inclined at angle θ as shown in the figure. The value of θ which could bring the cylinder immediately to rest after impact, is:

(A) 90°

72.	Which of t	he following o	xide is amph	oteric in character?							
,	(A) CO.	(B) CaO	(C)SiO	(D) SnO							
73.	Assertion	(A): Alkali me	tals impart c	$(D) ShO_2$							
	Reason (R): Their ionization energies are low.										
	(A) Both 'A' and 'R' are true and 'R' is the correct explanation of 'A'.										
	(B) Both 'A' and 'R' are true but 'R' is not the correct explanation of 'A'.										
	(C) 'A' is true and 'R' is false.										
	(D) 'A'-is fal	se and 'R' is tru	ie.	1010							
74.	Among the predomina	e alkaline ear intly covalent	th metals, th compound i	ne element forming s:							
	(A) calcium		(B) strontiv	m							
	(C) barium		(D) berylliu	m 🗡							
75.	Which of the is treated with the second seco	e following c with water"	ompounds ar	e formed when BCl ₃							
	(A) $B_2H_6 + H_6$	ICI VS	(B) H ₃ BO ₃ +	- HCl							
	$(C) B_2O_3 + H$	(Cl	(D) $B_2O_3 + I_3$	B_2H_6							
76.	Polyphosp	hates are us	sed as water	r softening agents							
	because the	ey:									
	(A) form solu	ible complexes	with anionic s	pecies							
A	(B) precipita	te anionic spec	les								
	(C) form solution (D) much solution	ible complexes	with cationic s	species							
קיקי	Coloiner -	cationic spec	les	J							
1		iospnide gets	(D) (UDC)	ana give:							
	$(\mathbf{A}) \mathbf{H}_{3} \mathbf{H}_{4}$		$(\mathbf{D})(\mathbf{n}\mathbf{P}\mathbf{U}_3)_{\mathbf{n}}$	`							
70	Sodiare her		$(D) Ca_3 (PO_4)$	J ₂							
10.		ms in air to g	ive mainly:								
	(A) Na _o O	(B) NaO.	(C) Na ()	$(D) N_2 CO$							

^

CLASS : XI (PCM) Unified Council 79. Which of the following is a redox reaction? (A) $CaC_2O_4 + 2HCl \longrightarrow CaCl_2 + H_2C_2O_4$ (B) $Mg(OH)_{2} + 2NH_{4}Cl \longrightarrow MgCl_{2} + NH_{4}OH$ (C) $Zn + 2AgCN \longrightarrow 2Ag + Zn (CN)_2$ (D) NaCl + $KNO_3 \longrightarrow NaNO_3 + KCl$ 80. Nitrogen combines with oxygen to form nitric oxide. $N_2(g) + O_2(g) \longrightarrow 2NO(g), \quad \Delta H = +80 \text{ kJ mol}^{-1}$ The decomposition of NO(g) is favoured by: (A) decrease in pressure (B) increase in pressure (C) decrease in temperature (D) increasing the concentration of N_o ΔH and ΔS for the reaction are + 30.558 kJ mol⁻¹ and 81. 0.066 kJ mol⁻¹ at 1 atm pressure. The temperature at which free energy is equal to zero and the nature of reaction below this temperature are: (B) 443 K, non-spontaneous (A) 483 K, spontaneous (C) 443 K, spontaneous (D) 463 K, non-spontaneous 82. Kinetic energy of a molecule is zero at: (B) 273 °C (A) 0 °C $(C) - 273 \,^{\circ}C$ (D) 116 °C The rate of diffusion of methane at a given temperature 83. is twice that of a gas X. The molecular weight of X is: (A) 64 a.m.u (B) 16 a.m.u (C) 40 a.m.u (D) 80 a.m.u 84. Which of the following statements is NOT correct for sigma and pi bonds formed between two carbon atoms? (A) Bond energies of sigma and pi bonds are in the order of 264 kJ mol⁻¹ (B) Sigma bond is stronger than pi bond (C) Free rotation of atoms around a sigma bond is allowed but not in case of a pi bond (D) Sigma bond determines the direction between carbon atoms but a pi bond has no primary effect in this regard

	ASS:XI(PCM)			Unified Council
5.	In which of equal?	the followi	ng molecules	are all the bonds NOT
	$(A) AlF_3$	$(B)BF_3$	(C) NF ₃	(D) ClF ₃
36.	Arrange th of their nor	e following n-metallic c	g elements in character.	the increasing order
			B, C, Si, N and F	40
	(A) $F < N < S$	Si < C < B	(B) $N < F$	<pre>< Si < C < B</pre>
	(C) C < B < S	Si < N < F	(D) B < C	< Si < N < F
37.	Arrange eac	ch pair of ion	ns in order of i	ncreasing ionic radius.
	(i) Mg ²	⁺ and Al ³⁺ (ii) O ²⁻ and S ²⁻	(iii) Q ²⁻ and F ⁻
	(A) (i) $Al^{3+} <$	Mg^{2+} (ii) O^2	$^{2-} < S^{2-}$ (iii) F ⁻ .	< O ²⁻
	(B) (i) Mg ²⁺	< Al ³⁺ (ii) O	$^{2-} < S^{2-}$ (iii) F ⁻ -	< O ²⁻
	(C) (i) Mg ²⁺	$< Al^{3+}$ (ii) S ²⁻	$ < O^{2-}$ (iii) F ⁻ <	C ²⁻
	(D) $Al^{3+} < M$	g ²⁺ (ii) O ^{2–} <	S ²⁻ (iii) O ²⁻ <	F
38.	What trans number as	sition in H the first h	e⁺ ion shall i ne in Balmar	have the same wave series of H atom?
	$(A) \ 7 \ \longrightarrow$	5 (B) 4	$\rightarrow 2 (C) 6$	$\rightarrow 4 (D) 5 \longrightarrow 3$
39.	Electrons v quantum n	will first en umbers:	ter into the o	orbital with the set of
	(A) $n = 5, l =$	0	(B) $n = 4$,	l = 1
U.	(C) $n = 3, l =$	2	(D) all of	the above
90.	34.2 g of such glass. The n	rose (C ₁₂ H ₂₂ umber of ox	O ₁₁) are dissol tygen atoms in	ved in 90 g of water in a the solutions are:
2	(A) 3.66 × 10	²⁶ (B) $6.6 \times$	10^{23} (C) $3.66 \times$	10^{24} (D) 6.02×10^{19}
CL	ASS : XI		GENERA	AL KNOWLEDGE
91.	Which of the second sec	he followin '?	ng gives the r	meaning of the word
	(A) Establish	led	(B) Short-	lived
	(O) Spiritual		(D) Interiori	

U C N/ 2 0 09/XI (PCM)

	1	3	
-21	1	4	
-0-	.)	1	

-14

KEY FOR THE Q.P.-2009

1.	С	2.	D	З.	В	4.	В	5.	D	6	(C	7.	А	8.	В
9.	С	10.	D	11.	А	12.	D	13.	D	1	4. E	3	15.	С	16.	А
17.	D	18.	В	19.	D	20.	В	21.	D	2	2. (2	23.	А	24.	А
25.	А	26.	В	27.	С	28.	А	29.	А	3). (C	31.	А	32.	В
33.	С	34.	А	35.	С	36.	А	37.	В	3	3. C)	39.	С	40.	А
41.	С	42.	D	43.	В	44	D	45.	А	4	3. A	1	47.	С	48.	А
49.	С	50.	С	51.	В	52.	А	53.	С	5	1. E	3	55.	С	56.	С
57.	С	58.	А	59.	С	60.	С	61.	D	6	2. 0	5	63.	D	64.	А
65.	С	66.	А	67.	В	68.	D	69.	В	7), (2	71.	С	72.	D
73.	А	74.	D	75.	В	76.	С	77.	С	7	3. ()	79.	С	80.	С
81.	D	82.	С	83.	А	84.	А	85.	D	8	5. A	1	87.	A	88.	С
89.	С	90.	С	91.	В	92.	В	93.	С	9	4. C)	95.	С	96.	С
97.	D	98.	А	99.	С	100	. A									

