CLASS : XI

1. Let S be a set with $\mathbf{1 0 0}$ elements. How many subsets does S have which contain atleast 50 elements?
(A) $\frac{2^{100}}{2}$
(B) $\frac{2^{100}-{ }^{100} \mathrm{C}_{50}}{2}$
(C) $2^{99}+\frac{{ }^{100} \mathrm{C}_{50}}{2}$
(D) ${ }^{100} \mathrm{C}_{50}$
2. Find the distance between the two intersections of the line, $y=2 x-3$, and the parabola, $y=x^{2}+2 x-7$.
(A) $\sqrt{13}$ units
(B) 4 units
(C) $\sqrt{53}$ units
(D) $\sqrt{80}$ units
3. Let $y=10+3 x-x^{2}$, where x and y are positive whole numbers. Find the sum of all possible values of y.
(A) 66
(B) 40
(C) 15
(D) 10
4. Find the sum of all real solutions to the equation $y^{2}=|5-4 y|$.
(A) 0
(B) -4
(C) 8
(D) None of these
5. If $x^{2}-(1-2 i) x=\left(\frac{1}{2}+i\right)$, then the complete solution is:
(A) $\left\{\frac{1 \pm 2 \mathrm{i}}{2}\right\}$
(B) $\left\{\frac{1 \pm 3 \mathrm{i}}{3}\right\}$
(C) $\left\{\frac{1+\mathrm{i}}{\mathrm{i}}, \frac{1+3 \mathrm{i}}{2}\right\}$
(D) $\left\{\frac{1-\mathrm{i}}{2}, \frac{1-3 \mathrm{i}}{2}\right\}$
6. Simplify: $\mathrm{x}^{\frac{1}{2}} \cdot \mathrm{x}^{-\frac{1}{4}} \cdot \mathrm{x}^{\frac{1}{8}} \cdot \mathrm{x}^{-\frac{1}{16}}$. \qquad
(A) x
(B) $\sqrt{\mathrm{x}}$
(C) $\sqrt[3]{\mathrm{x}}$
(D) $\sqrt[5]{\mathrm{x}}$

CLASS: XI (PCM)

Unifled Council

7. Let L denote the line which passea through the point $(7,1)$ and the centre of the einela $x^{4}+y^{4}-10 x+6 y+9=0$. Which of the following pointa ia Bian on the line L?
(A) $(8,3)$
(B) $(-3,7)$
(C) $(4,-10)$
(1) $(5,-7)$
8. If the system of equations

$$
\begin{aligned}
& y=7 \sin x+3 \cos x \\
& y=7 \cos x+3 \sin x
\end{aligned}
$$

is solved simultaneously for $0 \leq x \leq \pi$, the vulue of " y " must be:
(A) $4 \sqrt{2}$
(B) $5 \sqrt{2}$
(C) $2 \sqrt{5}$
(D) 2
9. Given three sets A, B and C for which the following is true. \bar{A} indicates the complement of A.
(i) $(\mathrm{A} \cap \mathrm{B}) \cup C=\{1,2,3,4,5\}$
(ii) $A \cup(B \cap C)=\{2,3,6,7,8\}$
(iii) $\mathrm{B} \subset \mathrm{C}$

If the cotal of the values in set A is twice the total of those in Het HI , what are the elements of B ?
(A) $\{2,3, \overline{\text { an }}]$
(i) $\{1,2,3,4,5\}$
(C) $\{1,8,4,5\}$
(D) None of these
10. Given that the points, $(1,4),(6,12)$ and $(c, 10)$ are collinear, what is the value of "c"?
(A) 3.5
(B) 4
(C) 4.25
(D) 4.75
11. Let " Z " denote a complex number and define $\mathbf{S}=\left\{\frac{1}{1-Z}:|Z|=1\right.$ and $\left.Z \neq 1\right\}$. Which of the following best describes the set " S ", when " S " is interpreted geometrically as a set of points in the complex plane?
(A) S is a straight line parallel to the imaginary axis
(B) S is a parabola
(C) S is a circle
(D) S is a hyperbola
12. How many solutions, x, does the equation $\tan (2 x)=\cot (x)$ have if $0 \leq x \leq 2 \pi$?
(A) 3
(B) 4
(C) 5
(D) 6
13. Let $\mathbf{P}(\mathrm{n}): \mathbf{' ~}^{\mathrm{n}}<(1 \times 2 \times 3 \times \ldots \ldots \ldots \times n)$, then the sinallest positive integer for which $P(n)$ is true is:
(A) 1.
(B) 2
(C) 3
(D) 4
14. Let a relation \mathbf{R} be defined by $R=\{(4,5),(1,4),(4,6),(7,6),(3,7)\}$, then $\mathbb{R} R \mathrm{R}=$ \qquad
(A) $\{(1,4),(1,5),(3,6)\}$
(B) $\{1,5),(1,6),(3,6)\}$
(C) $\{(1,5),(1,6),(3,7)\}$
(D) $\{(1,4),(1,5),(3,7)\}$
15. If $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is surjective, then \qquad
(A) $n(A) \leq n(B)$
(B) $n(A)=n(B)$
(C) $n(A) \geq n(B)$
(D) None of these
16. The equation $\mathbf{Z} \overline{\mathbf{Z}}+(4-3 i) Z+(4+3 i) \bar{Z}+5=0$ represents a circle whose radius is \qquad
(A) $2 \sqrt{5}$
(B) 5
(C) $\frac{5}{2}$
(D) 1
17. Solution set of the inequations $2 x-1 \leq 3$ and $3 x+1 \geq-5$ is:
(A) $(-2,2)$
(B) $(-\infty,-2) \cup(2, \infty)$
C) $(-\infty,-2] \cup[2, \infty)$
(D) $[-2,2]$
18. How many numbers greater than 1000 but not greater than 4000 can be formed from the digits $0,1,2,3,4$ when repetition is allowed?
(A) 350
(B) 375
(C) 450
(D) 576

Uniffed Council

7. Let L denote the line whioh paraea through the point $(7,1)$ and the centre of the sircle $x^{4}+y^{4}-10 x+6 y+9=0$. Which of the following points is also on the line L?
(A) $(8,3)$
(B) $(-3,7)$
(C) $(4,-10)$
(D) $(5,-7)$
8. If the system of equations

$$
\begin{aligned}
& y=7 \sin x+3 \cos x \\
& y=7 \cos x+3 \sin x
\end{aligned}
$$

is solved simultaneously for $0 \leq x \leq \pi$, the value of " $y^{\prime \prime}$ must be:
(A) $4 \sqrt{2}$
(B) $5 \sqrt{2}$
(C) $2 \sqrt{5}$
(D) 2
9. Given three sets A, B and C for which the following is true. \bar{A} indicates the complement of A.
(i) $(\mathrm{A} \cap \mathrm{B}) \cup \mathrm{C}=\{1,2,3,4,5\}$
(ii) $\mathrm{A} \cup \overline{\mathbf{B}}(\mathrm{C})=\{2,3,6,7,8\}$
(iii) $\mathbf{B} \subset \mathbf{C}$

If the fotal of the values in set A is twice the total of Hhane lit atet 11, what are the elements of B?
(A) $\{4,11,5\}$
(1) $\{1,2,3,4,5\}$
(C) $\{1,8,4,5\}$
(D) None of these
19. Given that the points, $(1,4),(6,12)$ and $(c, 10)$ are collinear, what is the value of " c "?
(A) 3.5
(B) 4
(C) 4.25
(D) 4.75
11. Fet "Z" denote a complex number and define $S=\left\{\frac{1}{1-Z}:|\mathbf{Z}|=1\right.$ and $\left.Z \neq 1\right\}$. Which of the following best describes the set " S ", when " S " is interpreted geometrically as a set of points in the complex plane?
(A) S is a straight line parallel to the imaginary axis
(B) S is a parabola
(C) S is a circle
(D) S is a hyperbola
12. How many solutions, x, does the equation $\tan (2 x)=\cot (x)$ have if $0 \leq x \leq 2 \pi$?
(A) 3
(B) 4
(C) 5
(D) 6
13. Let $\mathbf{P}(\mathbf{n}):{ }^{\prime} \mathbf{2}^{\mathrm{n}}<(1 \times 2 \times 3 \times \ldots \times n)$ ', then the smallest positive integer for which $P(n)$ is true iss
(A) 1
(B) 2
(C) 3
(D) 4
14. Let a relation R be defined by $R=\{(4,5),(1,4),(4,6),(7,6),(3,7)\}$, then $R / R=$ \qquad
(A) $\{(1,4),(1,5),(3,6)\}$
(B) $\{1,5),(1,6)$,
(C) $\{(1,5),(1,6),(3,7)\}$
(D) $\{(1,4),(1,5),(3,7)\}$
15. If $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is surjective, then
(A) $n(A) \leq n(B)$
(B) $n(A)=n(B)$
(C) $n(A) \geq n(B)$
(D) None of these
16. The equation $\overline{Z Z}+(4-3 i) Z+(4+3 i) \bar{Z}+5=0$ represents a circle whose radius is \qquad
(A) $2 \sqrt{5}$
(B) 5
(C) $\frac{5}{2}$
(D) 1
17. Solution set of the inequations $2 x-1 \leq 3$ and $3 x+1 \geq-5$ is:
(A) $(-2,2)$
(B) $(-\infty,-2) \cup(2, \infty)$
(C) $(-\infty,-2] \cup[2, \infty)$
(D) $[-2,2]$
18. How many numbers greater than 1000 but not greater than 4000 can be formed from the digits $0,1,2,3,4$ when repetition is allowed?
(A) 350
(B) 375
(C) 450
(D) 576
19. If $\mathbf{x}=\mathbf{a}(\sec \theta+\tan \theta)^{2}, y=\boldsymbol{b}(\sec \theta-\tan \theta)^{12}$, then $x^{2} y^{2}=$ \qquad
(A) $\mathrm{ab} \sec \theta$
(B) $a^{4} b^{2} \tan \theta$
(C) $a^{2} b^{4}$
(D) $a^{2 \prime} b^{2}$
20. Area of the triangle in the Argand diagram formed by the complex numbers Z, $\mathbf{i} Z$ and $Z+i Z$ is:
(A) $|Z|^{2}$
(B) $\frac{1}{2}|Z|^{2}$
(C) $|Z|$
(D) $\frac{1}{2}|Z|$
21. The number of solutions of the system of equations given below is:

$$
|x|+|y|=1 ; x^{2}+y^{2}=a^{2}, \frac{1}{\sqrt{2}}<a<1
$$

(A) 00
(B) 2
(C) 4
(D) 8
90. The ntmber 111111 1 (91 times) is:
(A) not an odd number
(B) an even number
(C) not i prime number
(D) all of these
8. In a 19 atorey bulding 8 persons enter a lift cabin. It is known that they will leave the lift at different storeys. In how many ways onn they do so if the lift does not stop at the second storey?
(A) 720
(B) 240
(C) 120
(D) 36
24. $\operatorname{Lt}_{x \rightarrow \frac{\pi}{4}} \frac{2 \sqrt{2}-(\cos x+\sin x)^{8}}{1-\sin 2 x}=$ \qquad
(A) $\frac{3}{\sqrt{2}}$
(B) $\frac{\sqrt{2}}{3}$
(C) $\frac{1}{\sqrt{2}}$
(D) $\sqrt{2}$
25. The set of values of x, for which $\frac{\tan 3 x-\tan 2 x}{1+\tan 3 x \cdot \tan 2 x}=1$ is:
(A) \varnothing
(B) $\left\{\frac{\pi}{4}\right\}$
(C) $\left\{n \pi+\frac{\pi}{4} ; n \in Z\right\}$
(D) $\left\{2 \mathrm{n} \pi+\frac{\pi}{4} ; \mathrm{n} \in \mathrm{Z}\right\}$
26. If the extremities of a diagonal of a square are $(1,-2,3)$, $(2,-3,5)$, then the length of its side is:
(A) $\sqrt{6}$
(B) $\sqrt{3}$
(C) $\sqrt{5}$
27. If $\frac{x}{a}+\frac{y}{b}=\sqrt{2}$ touches the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, then its eccentric angle " θ " is equal to:
(A) 0^{0}
(B) 90°
(C) 45°
(D) 60°
28. If x_{1}, x_{2}, x_{3} as well as $y_{1}\left(y_{2}, y_{3}\right.$ are in G.P. with same common ratio, then the points $P\left(x_{1}, y_{1}\right), Q\left(x_{2}, y_{2}\right)$ and $\mathbf{R}\left(\mathbf{x}_{3}, \mathbf{y}_{3}\right)$ are :
(A) lie on a straight line
(B) lie on an ellipse
(C) lie on a circle
(D) vertices of a triangle
29. Let $f(x)$ be a polynomial function of second degree. If $f(1)=f(-1)$ and a, b, c are in A.P., then $f^{\prime}(a), f^{\prime}(b)$ and $f^{\prime}(c)$ are in:
(A) A.P.
(B) G.P.
(C) H.P.
(D) A.G.P.
30. If $2 a+3 b+6 c=0$, then atleast one root of the equation $a x^{2}+b x+c=0$ lies in the interval \qquad
(A) $(1,2)$
(B) $(2,3)$
(C) $(0,1)$
(D) $(1,3)$
31. The locus of the middle points of chords of the hyperbola $3 x^{2}-2 y^{2}+4 x-6 y=0$ parallel to $y=2 x$ is:
(A) $3 x-4 y=4$
(B) $3 y-4 x=4$
(C) $3 x-4 y=2$
(D) $3 y-4 x=2$
32. If $y=x^{\sin x}+(\sin x)^{x}$, then $\frac{d y}{d x}=$ \qquad
(A) $x^{\sin x}\left(\frac{x}{\sin x}+\cos x \cdot \log x\right)+(\sin x)^{x}(x \cot x-\log \sin x)$
(B) $x^{\sin x}\left(\frac{\sin x}{x}+\cos x \cdot \log x\right)+(\sin x)^{x}(x \cot x+\log \sin x)$
(C) $x^{\sin x}(x \cdot \operatorname{cosec} x-\cos x \cdot \log x)+(\sin x)^{x}(x \cdot \cot x+\operatorname{cog} \cos x)$
(D) $\mathbf{x}^{\sin x}(x \cdot \cos x-\sin x \cdot \log x)+(\sin x)^{x}(x \cdot \tan x \cdot+\log \sin x)$
33. The coefficient of the middle term in the binomial expansion in powers of x of $(1+\alpha x)^{4}$ and of $(1-\alpha x)^{8}$ is the same if $\alpha=$ \qquad
(A) $\frac{-5}{3}$
(B) $\frac{3}{5}$
(C) $\frac{-3}{10}$
(D) $\frac{10}{3}$
14. If $\operatorname{sot}(\alpha+\beta)=0$, then $\sin (\alpha+2 \beta)$ is equal to:
(A) $\sin \alpha$
(B) con 2β
(C) $\cos \alpha$
(D) $\sin \beta$
36. In how many ways the letters of the word "NATION" can be placed in the squares of the following figure so that no row remains empty?

(A) 6 !
(B) 18700
(C) 18720
(D) 8 !
36. If a, b, c are real numbers such that $a>b, c<0$, then \qquad
(A) ac $<\mathrm{bc}$
(B) $a c \leq b c$
(C) $a c>b c$
(D) $a c \geq b c$
37. For $n \in N,\left(\frac{1}{5}\right) \mathrm{m}^{5}+\left(\frac{1}{3}\right) \mathrm{n}^{3}+\left(\frac{7}{15}\right) \mathrm{n}$ is:
(A) an integer
(B) a natural number
(C) a positive fraction
(D) none of these
38. Which of the following relations is a function?
(A) $R=\left\{(x, y): x^{2}+y^{2} \leq 9\right\}$ on R
(B) $\mathrm{A}=\{1,2,3\}, \mathrm{B}=\{1,2,3,4,5\}$ and
$R=\{(x, y): 5 x+2 y$ is a prime number $\}$ or A
(C) $\mathrm{A}=\{1,2,3,4\}, \mathrm{B}=\{1,2,3,4,5,6,7\}$ and
$R=\left\{(x, y) \mid y=x^{2}-3 x+3\right.$ on A
(D) None of these
39. Let R be a reflexive relation on a finite set A having " n " elements, and let there be " m " ordered pairs in R. Then
\qquad
(A) $\mathrm{m}=\mathrm{n}$
(B) $m \leq n$
(C) $\mathrm{m} \geq \mathrm{n}$
(D) None of these
40. The-natural numbers are grouped as indicated: $\{1\},\{2,3\},\{4,5,6\},\{7,8,9,10\}, \ldots .$. with " m " numbers in the $m^{\text {th }}$ group. Find the sum of the numbers in the $110^{\text {th }}$ group.
(A) 665,555
(B) 55,555
(C) 450,000
(D) 700,565

CLASS: XI

PHYSICS

41. A point initially at rest moves along x-axis. Its acceleration vaxies with time as $a=(9 t+2) \mathrm{m} / \mathrm{s}^{2}$. If it starts from origin, the distance covered in 2 s is:
(A) 20 m
(B) 14 m
(C) 16 m
(D) 18 m
42. For inelastic collision between two spherical rigid bodies: (Assume no external forces acting)
(A) the total kinetic energy is conserved
(B) the linear momentum is not conserved
(C) the total mechanical energy is conserved,
(D) the linear momentum is conseryed
43. The vectors A and B are such that $|A+B|=|A-B|$. The angle between the two vectors is:
(A) 45°
(B) 90°
(C) 60°
(D) 75°
44. The moment of inertia of atuniform circular dise of radius If and mass M about an axis touching the disc at its diametor end and normal to the dise is.
MII
(1) MR^{3}
(C) $\frac{2}{5} \mathrm{MR}^{2}$
(D) $\frac{3}{2} \mathrm{MR}^{2}$
45. A fores of 10 N is applied on a body for 3 seconds and the corresponding displicement 6 m . The power of the source is:
(A) 20 W
(B) 25 W
(C) 40 W
(D) 50 W
46. If ' h ' is the height of capillary rise and ' r ' be the radius of capillary tube, then which of the following relation will be correct?
(A) $\mathrm{hr}=$ constant
(B) $\frac{\mathrm{h}}{\mathrm{r}^{2}}=$ constant
(C) hr $^{2}=$ constant
(D) $\frac{h}{r}=$ constant
47. A 500 kg car takes a round turn of radius 50 m with a velocity of 36 kmph . The centripetal force is:
(A) 250 N
(B) 750 N
(C) 1000 N
(D) 1200 N
48. The potential energy of a simple harmonic oscillator, when the particle is half way to its end point, is: (E is total energy)
(A) $\frac{E}{4}$
(B) $\frac{\mathrm{E}}{2}$
(C) $\frac{2 \mathrm{E}}{3}$
(D) $\frac{E}{8}$
49. A man of mass 60 kg stands on the floor of a lift which is accelerating downwards at $1 \mathrm{~m} / \mathrm{s}^{2}$. Then, the reaction of the floor of the lift on the man is:
(Take $g=10 \mathrm{~m} / \mathrm{s}^{2}$)
(A) 528 N
(B) 600 N
(C) 540 N
(D) 546 N
50. 743 J of heat energy is added to raise the temperature of 5 moles of an ideal gas by 2 k at constant pressure. How much heat energy is required to raise the temperature of the same mass of the gas by 2 k at constant volume? Take $R=8.3 \mathrm{~J} / \mathrm{k}-\mathrm{mol}$)
(A) 826 J
(B) 743 J
(C) 660 J
(D) 620 J
51. E_{O} and E_{H} respectively represent the average kinetic energy of a molecule of oxygen and hydrogen. If the two gases are at the same temperature, which of the following statements will be true?
(A) $\mathrm{E}_{\mathrm{O}}>\mathrm{E}_{\mathrm{H}}^{\prime}$
(B) $\mathrm{E}_{\mathrm{O}}=\mathrm{E}_{\mathrm{H}}$
(C) $\mathrm{E}_{\mathrm{O}}<\mathrm{E}_{\mathrm{H}}$
(D) Nothing can be said about the magnitude of E_{O} and E_{H} as the information given is insufficient
52. Two bodies of fasses 1 kg and 2 kg are connected by a steel yire of cross-section $2 \mathrm{~cm}^{2}$ going over a smooth pulley as shown. The longitudinal strain in the wire, is:

$$
\left(\text { Take } g=10 \mathrm{~m} / \mathrm{s}^{\mathrm{g}}, y=2 \times 10^{11} \mathrm{~N} / \mathrm{m}^{\mathrm{g}}\right)
$$

(A) 3.3×10^{-7}
(B) 3.3×10^{-6}
(C) 2×10^{-6}
(D) 4×10^{-6}
53. The three vessels shown below have the same base areas.

Equal volume of water is poured into three, the force on the base of vessel:
(A) P would be maximum
(B) Q would be maximum
(C) R would be maximum
(D) Equal in all three
54. The energy emitted per second by a blagk body at $27^{\circ} \mathrm{C}$ is 20 J , if the temperature of the black body is increased to $327^{\circ} \mathrm{C}$, the energy emitted per secorld will be:
(A) 160 J
(B) 320 J
(C) 480 J
(D) 640 J
55. A block of mass $3 \mathbf{k g}$ gisfressed against a rough wall as shown in the figare.

The friction force between the wall and the block is:
(A) 60 N
(B) 50 N
(C) 30 N
(Take $g=10 \mathrm{~m} / \mathrm{s}^{2}$)
(D) 20 N
56. For a wave propagating in a medium, identify the property that is independent of the others?
(A) Velocity
(B) Wavelength
(C) Frequency
(D) All these depend on each other
57. A block of wood weighs 4 N in air and 2 N when immersed in a liquid. The buoyant force in newton is:
(A) zero
(B) 1 N
(C) 2 N
(D) 3 N
58. The edge length of a cube is 1.32 cm , the total surface area and volume of cube are, respectively:
(A) $10.5 \mathrm{~cm}^{2}$ and $2.30 \mathrm{~cm}^{3}$
(B) $10.5 \mathrm{~cm}^{2}$ and $2.20 \mathrm{~cm}^{3}$
(C) $10.4 \mathrm{~cm}^{2}$ and $2.20 \mathrm{~cm}^{3}$
(D) $10.54 \mathrm{~cm}^{2}$ and $2.298 \mathrm{~cm}^{3}$
59. Two particles of masses m_{1} and $m_{2}\left(m_{1}>m_{2}\right)$ attract each other with a force inversely proportional to the square of the distance between them. The particles are initially held at rest and then released. Which one is correct?
(A) The centre of mass moves towards
(B) The centre of mass moves towards
(C) The centre of mass remains at rest
(D) Centre of mass moves atright angles to the line joining m_{1} and m_{2}
60. If a body is raised from the surface of the Earth up to height R, what is the change in potential energy?
(A) $m g R$
(B) $\frac{3}{2} \mathrm{mg} \mathrm{R}$
(C) $\frac{m g R}{2}$
(D) $\frac{\mathrm{mg} R}{4}$
61. A bloct C of mass ' m ' is moving with velocity v_{0} and collides elastically with block A of mass ' m ' and connected to another block B of mass 2 m through spring of spring constant 'LE. What is ' k ' if x_{0} is compression of spring, when velocity of A and B is same?

(A) $\frac{\mathrm{IIV}_{0}{ }^{2}}{\mathrm{X}_{0}{ }^{2}}$
(B) $\frac{\mathrm{mv}_{0}{ }^{2}}{2 \mathrm{x}_{0}{ }^{2}}$
(C) $\frac{3}{2} \frac{\mathrm{mv}_{0}{ }^{2}}{\mathrm{x}_{0}{ }^{2}}$
(D) $\frac{2}{3} \frac{\mathrm{mv}_{0}{ }^{2}}{\mathrm{x}_{0}{ }^{2}}$
62. If the angular momentum of a rotating body about a fixed axis is increased by 10%, its kinetic energy will be increased by:
(A) 10%
(B) 20%
(C) 21%
(D) 5%
63. Choose the correct statement from the following.
(A) Time period of a simple pendulum depends on amplitude
(B) Time shown by a spring watch varies with the acceleration due to gravity
(C) In a simple pendulum, the time period varie linearly with the length of the pendulum
(D) The graph between length of the pendulum and time period is a parabola
64. In the given figure the position-time praph of a particle of mass 0.1 kg is shown. Linear momentum at $\mathrm{t}=2 \mathrm{~s}$ is:

65. A uniform solid cylinder rolling without slipping along a horizonta plane suddenly encounters a plane inclined at angle θ as shown in the figure. The value of θ which could bring the cylinder immediately to rest after impact, is:

(A) 90°
(B) 60°
(C) 120°
(D) 30°

CLASS : XI

66. The smog is essentially caused by the presence of:
(A) oxides of sulphur and nitrogen
(B) O_{3} and N_{2}
(C) O_{2} and O_{3}
(D) O_{2} and N_{2}
67. Which of the following is responsible for depletion of the ozone layer in the upper strata of the atmosphere?
(A) Polyhalogens
(B) Freons
(C) Fullerenes
(D) Ferrocene
68. Reaction of HBr with propene in thepresence of peroxide gives:
(A) alkyl bromide
(B) 3-bromopropane
(C) isopropyl bromide
(D) n propyl brgmide
69. Propyne when passed through a hot infon tube at $400^{\circ} \mathrm{C}$ produces:
(A) methyl benzene
(B) trimethyl benzene
(C) dimethyl benzene
(D) benzene
70. The IUPAC name of

(A) 2-ethyl-3-methyl butanoyl chloride
(B) 1-chloro-1-oxo-2, 3-dimethyl pentane
(C) 2,3 dimethyl pentanoyl chloride
(D) 3,4 dinethyl pentanoyl chloride
71. The compounds $\mathrm{CH}_{8} \mathrm{OC}_{3} \mathrm{H}_{7}$ and $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OC}_{2} \mathrm{H}_{5}$ exhibit:
(A) chain isomerism
(B) cis-trans isomerism
(C) metamerism
(D) optical isomerism
72. Which of the following oxide is amphoteric in character?
(A) CO_{2}
(B) CaO
(C) SiO_{2}
(D) SnO_{2}
73. Assertion (A): Alkali metals impart colour to the flame. Reason (\mathbf{R}): Their ionization energies are low.
(A) Both ' A ' and ' R ' are true and ' R ' is the correct explanation of ' A '.
(B) Both ' A ' and ' R ' are true but ' R ' is not the correct explanation of ' A '.
(C) ' A ' is true and ' R ' is false.
(D) ' A ' is false and ' R ' is true.
74. Arnong the alkaline earth metals, the element forming predominantly covalent carnpound is:
(A) calcium
(C) barium
(B) strontiom
(C)barium (D) beryllum
75. Which of the followinghompounds re formed when BCl_{3} is treated with water?
(A) $\mathrm{B}_{2} \mathrm{H}_{6}+\mathrm{HCl}$
(B) $\mathrm{H}_{3} \mathrm{BO}_{3}+\mathrm{HCl}$
(C) $\mathrm{B}_{2} \mathrm{O}_{3}+\mathrm{HCl}$
(D) $\mathrm{B}_{2} \mathrm{O}_{3}+\mathrm{B}_{2} \mathrm{H}_{6}$
76. Polyphosphates are used as water softening agents because they:
(A) form soluble complexes with anionic species
(B) precipitate anionic species
(C) form soluble complexes with cationic species
(D) preop pitate cationic species
77. Calcium phosphide gets hydrolysed and give:
(A) $\mathrm{H}_{3} \mathrm{PO}_{4}$
(B) $\left(\mathrm{HPO}_{3}\right)_{\mathrm{n}}$
(C) PH_{3}
(D) $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
78. Sodium burns in air to give mainly:
(A) $\mathrm{Na}_{2} \mathrm{O}$
(B) NaO_{2}
(C) $\mathrm{Na}_{2} \mathrm{O}_{2}$
(D) $\mathrm{Na}_{2} \mathrm{CO}_{3}$
79. Which of the following is a redox reaction?
(A) $\mathrm{CaC}_{2} \mathrm{O}_{4}+2 \mathrm{HCl} \longrightarrow \mathrm{CaCl}_{2}+\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$
(B) $\mathrm{Mg}(\mathrm{OH})_{2}+2 \mathrm{NH}_{4} \mathrm{Cl} \longrightarrow \mathrm{MgCl}_{2}+\mathrm{NH}_{4} \mathrm{OH}$
(C) $\mathrm{Zn}+2 \mathrm{AgCN} \longrightarrow 2 \mathrm{Ag}+\mathrm{Zn}(\mathrm{CN})_{2}$
(D) $\mathrm{NaCl}+\mathrm{KNO}_{3} \longrightarrow \mathrm{NaNO}_{3}+\mathrm{KCl}$
80. Nitrogen combines with oxygen to form nitric oxide.

$$
\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{~g}), \quad \Delta H=+80 \mathrm{~kJ}^{\mathrm{J}} \mathrm{~mol}^{-1}
$$

The decomposition of $N O(g)$ is fayoured by:
(A) decrease in pressure
(B) ipcrease in pressure
(C) decrease in temperature
(D) noreasing the concentration of N_{2}
81. ΔH and ΔS for the reaction are $+30.558 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $0.066 \mathrm{~kJ} \mathrm{~mol}^{-1}$ at 1 atm pressure. The temperature at which free energy is equal totero and the nature of reaction below this temperaturg are:
(A) 483 K , spontaneofy
(B) 443 K , non-spontaneous
(C) 443 K , spontaneous
(D) 463 K , non-spontaneous
82. Kinetic energy of a molecule is zero at:
(A) $0^{\circ} \mathrm{C}$
(B) $273^{\circ} \mathrm{C}$
(C) $-273^{\circ} \mathrm{C}$
(D) $116{ }^{\circ} \mathrm{C}$
83. The rate of diffusion of methane at a given temperature is twice that of a gas X. The molecular weight of X is:
(A) 64 a.m.u
(B) $16 \mathrm{a} . \mathrm{m} . \mathrm{u}$
(C) 40 a.m.u
(D) 80 a.m.u
84. Which of the following statements is NOT correct for sigma and pi bonds formed between two carbon atoms?
(A) Bond energies of sigma and pi bonds are in the order of 264 $\mathrm{kJ} \mathrm{mol}^{-1}$
(B) Sigma bond is stronger thian pi bond
(C) Free rotation of atoms around a sigma bond is allowed but not in case of a pi bond
(D) Sigma bond determines the direction between carbon atoms but a pi bond has no primary effect in this regard
85. In which of the following molecules are all the bonds NOT equal?
(A) AlF_{3}
(B) BF_{3}
(C) NF_{3}
(D) ClF_{3}
86. Arrange the following elements in the increasing order of their non-metallic character.

$\mathrm{B}, \mathrm{C}, \mathrm{Si}, \mathrm{N}$ and F

(A) $\mathrm{F}<\mathrm{N}<\mathrm{Si}<\mathrm{C}<\mathrm{B}$
(B) $\mathrm{N}<\mathrm{F}<\mathrm{Si}<\mathrm{C}<\mathrm{B}$
(C) $\mathrm{C}<\mathrm{B}<\mathrm{Si}<\mathrm{N}<\mathrm{F}$
(D) $\mathrm{B}<\mathrm{C}<$ Si $<\mathrm{N}<\mathrm{F}$
87. Arrange each pair of ions in order of increasingiontc radius.
(i) $\mathbf{M g}^{2+}$ and Al^{3+}
(ii) O^{2-} and S^{2-}
(iii) g^{2-} and F^{-}
(A) (i) $\mathrm{Al}^{3+}<\mathrm{Mg}^{2+}$ (ii) $\mathrm{O}^{2-}<\mathrm{S}^{2-}$ (iij) $\mathrm{F}^{-}<\mathrm{O}^{2-}$
(B) (i) $\mathrm{Mg}^{2+}<\mathrm{Al}^{3+}$
(ii) $\mathrm{O}^{2-}<\mathrm{S}^{2-}$
(iii) $\mathrm{F}^{-}<\mathrm{O}^{2-}$
(C) (i) $\mathrm{Mg}^{2+}<\mathrm{Al}^{3+}$
(ii) $\mathrm{S}^{2-}<\mathrm{O}^{2-}$
(iii) $\mathrm{F}^{-}<\mathrm{O}^{2}$
(D) $\mathrm{Al}^{3+}<\mathrm{Mg}^{2+}$
(ii) $\mathrm{O}^{2-}<\mathrm{S}^{2-}$
(iii) $\mathrm{O}^{2-}<\mathrm{F}^{-}$
88. What transition in He^{+}ion shall have the same wave number as the first line in Balmar series of H atom?
(A) 7 \qquad $\rightarrow 5$
(B) 4
2
(C) 6 \qquad 4(D) 5 \qquad
89. Electrons will first enter into the orbital with the set of quantum numbers:
(A) $\mathrm{n}=5, l=0$
(B) $\mathrm{n}=4, l=1$.
(C) $n=a l=2$
(D) all of the above
90. 34.2 g of sticrose $\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{12}\right)$ are dissolved in 90 g of water in a glass. The number of oxygen atoms in the solutions are:
(A) 3.66×10^{26}
(B) 6.6×10^{23}
(C) 3.66×10^{24} (D) 6.02×10^{19}

CLASS: XI
 GENERAL KNOWLEDGE

91. Which of the following gives the meaning of the word 'ephemeral"?
(A) Established
(B) Short-lived
(C) Spiritual
(D) Invisible
92. Study the relationship between the figures in Set I and find the missing figure in Set II?

I

(A) Indira Gandhi and Zia-ul-Haq
(B) Lal Bahadur Shastri and Ayub Khan
(C) Indira Gandhi and Zulfikar AliBhutto
(D) Rajiv Gandhi and Benazir Bhatto
94. Which of the cities listed below is scheduled to host the $19^{\text {th }}$ Commonwealth Games in 2010?
(A) Kula Lumpur
(B) Bangkok
(C) Victoria(iD) New Delhi
95. What does the term 'pixely as used in digtal images stand for?
(A) Format
(B) Resource Locator
(C) Picture element
(D) None of these
96. What is the dufation of the zero hour in the Lok Sabha?
(A) 15 minutes
(B) Half an hour
(C) One hour (D) Not specified
97. 'MODVAT' is the name of a:
(A) tribl group
(B) networking technology
(C) officibl report
(D) tax imposed on a product
98. Which one of the following is devoted to the cause of human rights?
(A) Amresty international
(B) Red Cross
(C) Group of 77
(D) Sandinista
99. What is referred to as 'the crossroads of Europe, Africa and Asia'?
(A) Nile
(B) Amazon
(C) Suez Canal
(D) Congo
100. In 0 ' Clock, ' 0 ' is:
(A) the preposition 'of ${ }^{\text {B }}$
(B) often
(C) the preposition 'on'
(D) over

KEY FOR THE Q.P.-2009

1. C 2. $\mathrm{D} \quad$ 3. $\mathrm{B} \quad$ 4. $\mathrm{B} \quad$ 5. D
2. C 10. D 11. A 12. D 13. D
3. D
4. B
5. D 20. B
6. C
7. C 34. A 35. C 36. A 37. B
8. C 42. D 43. B 44 D 45. A
9. C 50. C 51. B 52. A 53. C
10. C 58. A 59. C 60. C 61. D
11. C 66. A 67. B 68. D 69. B
12. A 74. D 75. B 76. C 77. C
13. D 82. C 83. A 84. A 85. D
14. C 90. C 91. B 92. B 93. C 97. D 98. A 99. C 100.A
15. C 7. A 8. B 14. B 15. C 16. A 22. C 23. A 24. A 30. C 31. A 32. B 38. D 39. C 40. A 46. A 47. C 48. A 54. B 55. C 56. C 62. C 63. D 64. A 70. C 71. C 72. D 78. C 79. C 80. C 86. A 87. A 88. C 94. D 95. C 96. C

