
Problems and solutions: INMO 2013

Problem 1. Let Γ1 and Γ2 be two circles touching each other externally at R. Let l1 be a line

which is tangent to Γ2 at P and passing through the center O1 of Γ1. Similarly, let l2 be a line

which is tangent to Γ2 at Q and passing through the center O2 of Γ2. Suppose l1 and l2 are not

parallel and interesct at K. If KP = KQ, prove that the triangle PQR is equilateral.

Solution. Suppose that P and Q lie on the opposite sides of line joining O1 and O2. By sym-
metry we may assume that the configuration is as shown in the figure below. Then we have
KP > KO1 > KQ since KO1 is the hypotenuse of triangle KQO1. This is a contradiction to
the given assumption, and therefore P and Q lie on the same side of the line joining O1 and O2.
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Since KP = KQ it follows that K lies on the radical axis of the given circles, which is the
common tangent at R. Therefore KP = KQ = KR and hence K is the cirumcenter of △PQR.
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On the other hand, △KQO1 and △KRO1 are both right-angled triangles with KQ = KR and
QO1 = RO1, and hence the two triangles are congruent. Therefore Q̂KO1 = R̂KO1, so KO1, and
hence PK is perpendicular to QR. Similarly, QK is perpendicular to PR, so it follows that K is
the orthocenter of △PQR. Hence we have that △PQR is equilateral.

Alternate solution. We again rule out the possibility that P and Q are on the opposite side of
the line joining O1O2, and assume that they are on the same side.

Observe that △KPO2 is congruent to △KQO1 (since KP = KQ). Therefore O1P = O2Q = r

(say). In △O1O2Q, we have Ô1QO2 = π/2 and R is the midpoint of the hypotenuse, so RQ =

RO1 = r. Therefore △O1RQ is equilateral, so Q̂RO1 = π/3. Similarly, PR = r and P̂RO2 = π/3,

hence P̂RQ = π/3. Since PR = QR it follows that △PQR is equilateral.

Problem 2. Find all positive integers m, n, and primes p ≥ 5 such that

m(4m2 +m+ 12) = 3(pn − 1) .

Solution. Rewriting the given equation we have

4m3 +m2 + 12m+ 3 = 3pn .

The left hand side equals (4m+ 1)(m2 + 3).
Suppose that (4m+1,m2 +3) = 1. Then (4m+1,m2+3) = (3pn, 1), (3, pn), (pn, 3) or (1, 3pn),

a contradiction since 4m+ 1,m2 + 3 ≥ 4. Therefore (4m+ 1,m2 + 3) > 1.
Since 4m+ 1 is odd we have (4m+ 1,m2 + 3) = (4m+ 1, 16m2 + 48) = (4m+ 1, 49) = 7 or 49.

This proves that p = 7, and 4m+1 = 3·7k or 7k for some natural number k. If (4m+1, 49) = 7 then
we have k = 1 and 4m+1 = 21 which does not lead to a solution. Therefore (4m+1,m2+3) = 49.
If 73 divides 4m+ 1 then it does not divide m2 + 3, so we get m2 +3 ≤ 3 · 72 < 73 ≤ 4m+ 1. This
implies (m− 2)2 < 2, so m ≤ 3, which does not lead to a solution. Therefore we have 4m+1 = 49
which implies m = 12 and n = 4. Thus (m,n, p) = (12, 4, 7) is the only solution.
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Problem 3. Let a, b, c, d be positive integers such that a ≥ b ≥ c ≥ d. Prove that the equation

x4 − ax3 − bx2 − cx− d = 0 has no integer solution.

Solution. Suppose that m is an integer root of x4 − ax3 − bx2 − cx − d = 0. As d 6= 0, we have
m 6= 0. Suppose now that m > 0. Then m4 − am3 = bm2 + cm+ d > 0 and hence m > a ≥ d. On
the other hand d = m(m3 − am2 − bm − c) and hence m divides d, so m ≤ d, a contradiction. If
m < 0, then writing n = −m > 0 we have n4+an3− bn2+ cn− d = n4+n2(an− b)+ (cn− d) > 0,
a contradiction. This proves that the given polynomial has no integer roots.

Problem 4. Let n be a positive integer. Call a nonempty subset S of {1, 2, . . . , n} good if the

arithmetic mean of the elements of S is also an integer. Further let tn denote the number of good

subsets of {1, 2, . . . , n}. Prove that tn and n are both odd or both even.

Solution. We show that Tn−n is even. Note that the subsets {1}, {2}, · · · , {n} are good. Among
the other good subsets, let A be the collection of subsets with an integer average which belongs to
the subset, and let B be the collection of subsets with an integer average which is not a member
of the subset. Then there is a bijection between A and B, because removing the average takes a
member of A to a member of B; and including the average in a member of B takes it to its inverse.
So Tn − n = |A|+ |B| is even.

Alternate solution. Let S = {1, 2, . . . , n}. For a subset A of S, let A = {n + 1 − a|a ∈ A}.
We call a subset A symmetric if A = A. Note that the arithmetic mean of a symmetric subset is
(n+1)/2. Therefore, if n is even, then there are no symmetric good subsets, while if n is odd then
every symmetric subset is good.

If A is a proper good subset of S, then so is A. Therefore, all the good subsets that are not
symmetric can be paired. If n is even then this proves that tn is even. If n is odd, we have to
show that there are odd number of symmetric subsets. For this, we note that a symmetric subset
contains the element (n + 1)/2 if and only if it has odd number of elements. Therefore, for any
natural number k, the number of symmetric subsets of size 2k equals the number of symmetric
subsets of size 2k+1. The result now follows since there is exactly one symmetric subset with only
one element.

Problem 5. In an acute triangle ABC, O is the circumcenter, H is the orthocenter and G is the

centroid. Let OD be perpendicular to BC and HE be perpendicular to CA, with D on BC and E
on CA. Let F be the midpoint of AB. Suppose the areas of triangles ODC, HEA and GFB are

equal. Find all the possible values of Ĉ.

Solution. Let R be the circumradius of △ABC and ∆ its area. We have OD = R cosA and
DC = a

2
, so

[ODC] =
1

2
· OD ·DC =

1

2
·R cosA ·R sinA =

1

2
R2 sinA cosA . (1)

Again HE = 2R cosC cosA and EA = c cosA. Hence

[HEA] =
1

2
·HE · EA =

1

2
· 2R cosC cosA · c cosA = 2R2 sinC cosC cos2 A . (2)

Further

[GFB] =
∆

6
=

1

6
· 2R2 sinA sinB sinC =

1

3
R2 sinA sinB sinC . (3)
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Equating (1) and (2) we get tanA = 4 sinC cosC. And equating (1) and (3), and using this relation
we get

3 cosA = 2 sinB sinC = 2 sin(C +A) sinC

= 2(sinC + cosC tanA) sinC cosA

= 2 sin2 C(1 + 4 cos2C) cosA .

Since cosA 6= 0 we get 3 = 2t(−4t + 5) where t = sin2 C. This implies (4t − 3)(2t − 1) = 0 and
therefore, since sinC > 0, we get sinC =

√
3/2 or sinC = 1/

√
2. Because △ABC is acute, it

follows that Ĉ = π/3 or π/4.
We observe that the given conditions are satisfied in an equilateral triangle, so Ĉ = π/3 is

a possibility. Also, the conditions are satisfied in a triangle where Ĉ = π/4, Â = tan−1 2 and
B̂ = tan−1 3. Therefore Ĉ = π/4 is also a possibility.

Thus the two possible values of Ĉ are π/3 and π/4.

Problem 6. Let a, b, c, x, y, z be positive real numbers such that a+b+c = x+y+z and abc = xyz.
Further, suppose that a ≤ x < y < z ≤ c and a < b < c. Prove that a = x, b = y and c = z.

Solution. Let
f(t) = (t− x)(t− y)(t− z)− (t− a)(t− b)(t− c) .

Then f(t) = kt for some constant k. Note that ka = f(a) = (a − x)(a − y)(a − z) ≤ 0 and hence
k ≤ 0. Similarly, kc = f(c) = (c − x)(c − y)(c − z) ≥ 0 and hence k ≥ 0. Combining the two, it
follows that k = 0 and that f(a) = f(c) = 0. These equalities imply that a = x and c = z, and
then it also follows that b = y.
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