Karunya University ### (Karunya Institute of Technology and Sciences) (Declared as Deemed to be University under Sec.3 of the UGC Act, 1956) #### **End Semester Examination – November/December 2010** Subject Title: ELECTRON DEVICES Time: 3 hours Subject Code: EC201 Maximum Marks: 100 # Answer ALL questions PART – A (10 x 1 = 10 MARKS) - 1. Draw the energy band structure of a semiconductor. - 2. Draw the V-I Characteristics of an ideal P-N diode. - 3. Write the generalized transistor equation. - 4. Write the relationship between α and β in the transistor. - 5. Draw the hybrid model for two-port network. - 6. What is another name for common emitter amplifier? - 7. Write any two PUT applications. - 8. Draw the equivalent circuit of SCR. - 9. Write the applications of phototransistor. - 10. What are the semiconductor materials used for the fabrication of LED? ### $\underline{PART - B (5 \times 3 = 15 \text{ MARKS})}$ - 11. What is mass action law? - 12. Define early effect. - 13. Define the h-parameters h_{fe} and $h_{oe.}$ - 14. Draw the structure of Enhancement MOSFET. - 15. What do you mean by tunneling in Tunnel diode? ## $\underline{PART - C (5 \times 15 = 75 \text{ MARKS})}$ 16. Explain about the open circuited PN junction. (OR) - 17. Explain the working principle of diode in the forward and reverse bias condition and draw its V-I characteristics. - 18. Draw the Common Base configuration and explain the input and output characteristics of the same. (OR - 19. The CE configuration circuit has V_{BB} =5V, V_{CC} =10V, R_{CC} =3k Ω , and R_{B} =50k Ω . If h_{FE} =100, determine whether or not the Si transistor is in saturation and I_{B} and Ic for two cases. i) R_{E} =0 Ω , ii) R_{E} =2k Ω . - 20. Obtain voltage gain, current gain, input impedance and output admittance of a transistor amplifier circuit using h-parameters. (OR) - 21. In the CE amplifier if R_L =10k Ω and R_s =1k Ω , find the various gains, input and output impedances. Assume h_{fe} =50, h_{oe} =25 μ A/V. - 22. Explain the working of an N channel FET and draw its drain and transfer characteristics. (OR) - 23. Explain the working principle of PUT. - 24. Explain the working principle of Zener Diode. (OR) 25. Discuss the operation of Tunnel diode.