Karunya University

(Karunya Institute of Technology and Sciences)

(Declared as Deemed to be University under Sec.3 of the UGC Act, 1956)

End Semester Examination – November/December 2010

Subject Title: ELECTRON DEVICES Time: 3 hours
Subject Code: EC201 Maximum Marks: 100

Answer ALL questions PART – A (10 x 1 = 10 MARKS)

- 1. Draw the energy band structure of a semiconductor.
- 2. Draw the V-I Characteristics of an ideal P-N diode.
- 3. Write the generalized transistor equation.
- 4. Write the relationship between α and β in the transistor.
- 5. Draw the hybrid model for two-port network.
- 6. What is another name for common emitter amplifier?
- 7. Write any two PUT applications.
- 8. Draw the equivalent circuit of SCR.
- 9. Write the applications of phototransistor.
- 10. What are the semiconductor materials used for the fabrication of LED?

$\underline{PART - B (5 \times 3 = 15 \text{ MARKS})}$

- 11. What is mass action law?
- 12. Define early effect.
- 13. Define the h-parameters h_{fe} and $h_{oe.}$
- 14. Draw the structure of Enhancement MOSFET.
- 15. What do you mean by tunneling in Tunnel diode?

$\underline{PART - C (5 \times 15 = 75 \text{ MARKS})}$

16. Explain about the open circuited PN junction.

(OR)

- 17. Explain the working principle of diode in the forward and reverse bias condition and draw its V-I characteristics.
- 18. Draw the Common Base configuration and explain the input and output characteristics of the same.

(OR

- 19. The CE configuration circuit has V_{BB} =5V, V_{CC} =10V, R_{CC} =3k Ω , and R_{B} =50k Ω . If h_{FE} =100, determine whether or not the Si transistor is in saturation and I_{B} and Ic for two cases. i) R_{E} =0 Ω , ii) R_{E} =2k Ω .
- 20. Obtain voltage gain, current gain, input impedance and output admittance of a transistor amplifier circuit using h-parameters.

(OR)

- 21. In the CE amplifier if R_L =10k Ω and R_s =1k Ω , find the various gains, input and output impedances. Assume h_{fe} =50, h_{oe} =25 μ A/V.
- 22. Explain the working of an N channel FET and draw its drain and transfer characteristics.

(OR)

- 23. Explain the working principle of PUT.
- 24. Explain the working principle of Zener Diode.

(OR)

25. Discuss the operation of Tunnel diode.