KVS Junior Mathematics Olympiad (JMO) - 2001

M.M. 100

Time : 3 hours
Note : (i) Please check that there are two printed pages and ten question in all.
(ii) Attempt all questions. All questions carry equal marks.

1. Fill in the blanks :
(a) If $x+y=1, x^{3}+y^{3}=4$, then $x^{2}+y^{2}=\ldots \ldots \ldots$
(b) After 15 litres of petrol was added to the fuel tank of a car, the tank was 75% full. If the capacity of the tank is 28 litres, then the number of litres in the tank before adding the petrol was \qquad
(c) The perimeter of a rectangle is 56 metres. The ratio of its length to width is $4: 3$. The length of the diagonal in metres is \qquad
(d) If April 23 falls on Tuesday, then March 23 of the same year was a
\qquad
(e) The sum of the digits of the number $2^{2000} 5^{2004}$ is
2. (a) Arrange the following in ascending order :
$2^{5555}, 3^{3333}, 6^{2222}$
(b) Two rectangles, each measuring $3 \mathrm{~cm} \times 7 \mathrm{~cm}$, are placed as in the adjoining figure :

Find the area of the overlapping portion (shaded) in cm^{2}.
3. (a) Solve :

$$
\frac{\log _{10}\left(35-x^{3}\right)}{\log _{10}(5-x)}=3
$$

(b) Simplify :

$$
\frac{a-b}{a+b}+\frac{b-c}{b+c}+\frac{c-a}{c+a}+\frac{(a-b)(b-c)(c-a)}{(a+b)(b+c)(c+a)}
$$

4. (a) Factorize :

$$
(x-y)^{3}+(y-z)^{3}+(z-x)^{3}
$$

(b) If $\mathrm{x}^{2}-\mathrm{x}-1=0$, then find the value of $\mathrm{x}^{3}-2 \mathrm{x}+1$
5. ABCD is a square. A line through B intersects CD produced at E , the side AD at F and the diagonal AC at G .

If $\mathrm{BG}=3$, and $\mathrm{GF}=1$, then find the length of FE ,
6. (a) Find all integers n such that $\left(n^{2}-n-1\right)^{n+2}=1$
(b) If $x=\frac{4 a b}{a+b}$, find the value of $\frac{x+2 a}{x-2 a}+\frac{x+2 b}{x-2 b}$
7. (a) Find all the positive perfect cubes that divide 9^{9}.
(b) Find the integer closest to $100(12-\sqrt{143})$
8. In a triangle $\mathrm{ABC}, \angle \mathrm{BCA}=90^{\circ}$. Points E and F lie on the hypotenuse AB such that $\mathrm{AE}=\mathrm{AC}$ and $\mathrm{BF}=\mathrm{BC}$. Find $\angle \mathrm{ECF}$.

9. An ant crawls 1 centimetre north, 2 centimetres west, 3 centimetres south, 4 centimetres east, 5 centimetres north and so on, at 1 centimetre per second. Each segment is 1 centimetre longer than the preceding one, and at the end of a segment, the ant makes a left turn. In which direction is the ant moving 1 minute after the start?
10. Find the lengths of the sides of a triangle with 20,28 and 35 as the lengths of its altitudes.

