\qquad

GUJARAT TECHNOLOGICAL UNIVERSITY

M.E Sem-I Remedial Examination January/ February 2011

Subject code: 710401
 Subject Name: Statistical Signal Analysis

Date: 31 /01/2011
Time: $02.30 \mathrm{pm} \mathbf{- 0 5 . 0 0} \mathrm{pm}$
Total Marks: 60

Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q. 1 (a) Define the following terms
(1) Random experiment
(3) Sample space
(2) Random variable
(4) Random process
(b) Consider an experiment of tossing a fair coin twice. Let (X, Y) be a bivariate random variable, where X is the number of heads that occurs in the two tosses and Y is the number of tails that occurs in the two tosses.
(a) What is the range Rx of X ?
(b) What is the range Ry of Y?
(c) Find and sketch the range Rxy of (X, Y).
(d) Find $\mathrm{P}(\mathrm{X}=2, \mathrm{Y}=0), \mathrm{P}(\mathrm{X}=0, \mathrm{Y}=2)$, and $\mathrm{P}(\mathrm{X}=1, \mathrm{Y}=1)$.
(c) Suppose a random process $\mathrm{X}(\mathrm{t})$ has a mean square derivative $\mathrm{X}^{\prime}(\mathrm{t})$.
(a) Find $E\left[X^{\prime}(t)\right]$.
(b) Find the cross-correlation function of $X(t)$ and $X^{\prime}(t)$.
(c) Find the autocorrelation function of $X^{\prime}(t)$.
Q. 2 (a) A committee of 5 persons is to be selected randomly from a group of 5 men and 10 women.
(a) Find the probability that the committee consists of 2 men and $\mathbf{3}$ women.
(b) Find the probability that the committee consists of all women.
(b) Prove the following statements
4. For any event $\mathrm{A}, \mathrm{P}(\mathrm{A})=1-\mathrm{P}\left(\mathrm{A}^{\prime}\right)$
5. For any events $A \& B, P(A U B)=P(A)+P(B)-P(A \cap B)$
6. If $A_{1}, A_{2}, A_{3}, \ldots \ldots, A_{n}$ are pair wise mutually exclusive, then $\mathrm{P}\left(\mathrm{A}_{1}\right) \mathrm{UP}\left(\mathrm{A}_{2}\right) \mathrm{U} \ldots \ldots . \mathrm{U} P\left(\mathrm{~A}_{\mathrm{n}}\right)=\mathrm{P}\left(\mathrm{A}_{1}\right)+\mathrm{P}\left(\mathrm{A}_{2}\right)+\ldots \ldots+\mathrm{P}\left(\mathrm{A}_{\mathrm{n}}\right)$

OR

(b) Two dice are tossed. One die is regular and the other is biased with probabilities
$\mathrm{P}(1)=\mathrm{P}(6)=1 / 6, \mathrm{P}(2)=\mathrm{P}(4)=0, \mathrm{P}(3)=\mathrm{P}(6)=1 / 3$.
Determine the probabilities of obtaining a sum (1) 4 (2) 5 (3) 6
Q. 3 (a) 1. If random variables \underline{X} and Y are uncorrelated and have zero means
than prove that $\quad(\mathrm{X}+\mathrm{Y})^{2}=\overline{\mathrm{X}^{2}}+\overline{\mathrm{Y}^{2}}$
2. Given $X=\cos \theta$ and $Y=\sin \theta$, where θ is a random variable uniformly distributed in the range $(0,2 \pi)$. Show that X and Y are uncorrelated but are not independent.
(b) Explain the central limit theorem and prove that under certain conditions, the sum of a large numbers of independent random variables tends to be a gaussian random variable, independent of the probability densities of the variables added.
Q. 3 (a) Determine mean, mean square and the variance of the random variable X for the following $\mathrm{P}_{\mathrm{X}}(\mathrm{X})=0.5|\mathrm{X}| \mathrm{e}^{-|\mathrm{X}|}$
(b) A player chooses any 6 numbers out of 49 numbers. Six balls are drawn randomly without replacement from 49 balls numbered 1 through 49.
(a) Find the probability of matching all 6 balls to the 6 numbers chosen by the player
(b) Find the probability of matching exactly 4 balls
(c) Find the probability of matching exactly 4 balls
Q. 4 (a) The joint cdf of a bivariate random variable (X, Y) is given by

$$
F_{X Y}(x, y)= \begin{cases}\left(1-e^{-\alpha x}\right)\left(1-e^{-\beta y}\right) & x \geq 0, y \geq 0, \alpha, \beta>0 \\ 0 & \text { otherwise }\end{cases}
$$

(a) Find the marginal cdf's of X and Y .
(b) Show that X and Y are independent.
(c) Find $\mathrm{P}(\mathrm{X} \leq 1, \mathrm{Y} \leq \mathrm{I}), \mathrm{P}(\mathrm{X} \leq \mathrm{I}), \mathrm{P}(\mathrm{Y}>\mathrm{I})$, and $\mathrm{P}(\mathrm{X}>\mathrm{x}, \mathrm{Y}>\mathrm{y})$.
(b) Explain CDF and PDF with its properties and prove all these properties.

OR

Q. 4 (a) Consider an experiment of drawing randomly three balls from an urn containing two red, three white, and four blue balls. Let (X, Y) be a bivariate random variable. Where X and Y denote, respectively, the number of red and white balls chosen.

1. Find the range of (X, Y).
2. Find the joint pmf's of (X, Y).
3. Find the marginal pmf's of X and Y.
4. Are X and Y independent?
(b) Explain in detail different laws of large numbers
Q. 5 (a) Classify the random processes explain each in detail
(b) Let $\mathrm{Xn}=\cos \left(2 \pi f_{0} \mathrm{n}+\theta\right)$, where θ is a uniformly distributed random variable in the interval $(0,2 \pi)$. Find $\operatorname{Sx}(f)$.

OR

Q. 5 (a) Let $R x(\mathrm{k})=4(1 / 2)^{|\mathrm{k}|}+16(1 / 4)^{|\mathrm{k}|}$, Find Sx (f).
(b) A binary source generates digits 1 and 0 randomly with equal probability. Assign 06
probabilities to the following events. In ten digits generated by the source (a)
there are exactly two 1's and eight 0 's (b) there are at least four 0's. (c) there are
at least five 1's

