AIEEE - 2002

1.

Physics and Chemistry

Which statement is incorrect?

	(a) all reversible cycles have same efficiency(b) reversible cycle has more efficiency than an irreversible one(c) Carnot cycle is a reversible one			
2.	Length of a strin	has the maximum eff g tied to two rigid supp produced on it is	•	m length (wave length in cm) of a
	(a) 20	(b) 80	(c) 40	(d)120
3.	The power facto and an angular v		ng resistance (R) and ir	nductance (L) connected in series
	(a) R/ωL	(b) $R/(R^2 + \omega^2 L^2)$	$^{1/2}$ (c) ω L/R	(d) $R/(R^2 - \omega^2 L^2)^{1/2}$
4. 5.	(a) reduce sphere (c) increase spa	n of observation	(b) have high reso (d) have low dispe	
	infinity is			
	(a) mgR/2	(b) 2mgR	(c) mgR	(d) mgR/4
6.	If an ammeter is	to be used in place of	f a voltmeter, then we m	nust connect with the ammeter a
	(a) low resistance	e in parallel	(b) high resistance	e in parallel
	(c) high resistan	ce in series	(d) low resistance	in series
7.	If in a circular co	il A of radius R, currer	nt I is flowing and in and	other coil B of radius 2R a current
	2I is flowing, the	n the ratio of the magr	netic fields B_{A} and B_{B} , p	roduced by them will be
	(a) 1	(b) 2	(c) 1/2	(d) 4
8.	If two mirrors are	e kept at 60° to each o	ther, then the number of	of images formed by them is
	(a) 5	(b) 6	(c) 7	(d) 8
9.		s which are connected		ipation P ₁ . Now the wire is cut into e supply. Power dissipation in this
	(a) 1	(b) 4	(c) 2	(d) 3
10.	If 13.6 eV energy electron from n =		ne hydrogen atom, then	the energy required to remove an
	(a) 10.2 eV	(b) 0 eV	(c) 3.4 eV	(d) 6.8 eV
11.	Tube A has both	ends open while tube	B has one end closed,	otherwise they are identical. The
	ratio of fundame	ntal frequency of tube	A and B is	
	(a) 1 : 2	(b) 1 : 4	(c) 2 : 1	(d) 4 : 1
12.	• •	` '	()	one fork of frquency 288 cps. A
	_			2 beats /sec. The frequency of the
	(a) 286 cps	(b) 292 cps	(c) 294 cps	(d) 288 cps

13.	. A wave $y = a \sin(\omega t - kx)$ on a string meets with another wave producing a node at $x = 0$. Then			
	the equation of the	unknown wave is		
	(a) $y = a \sin(\omega t + kx)$	()	(b) $y = -a \sin(\omega t + kx)$	
	(c) $y = a \sin(\omega t - kx)$	()	(d) $y = -a \sin(\omega t - kx)$	
14.	On moving a charge between the points	·	cm, 2 J of work is done, the	en the potential difference
15.	(a) curved path of e(b) they will move u	lectron and proton will ndeflected lectron is more curved	(c) 2 V nomenta enter perpendicular be same (ignoring the sendant that of the proton	-
16.	· · · · · · · · · · · · · · · · · · ·			
17.	Initial angular veloci	ty of a circular disc of r	mass M is $\omega_{_{\! 1}}$. Then two sm	all spheres of mass m are
	attached gently to divelocity of the disc?		oints on the edge of the dis	c. What is the final angular
	$\left(a\left(\frac{M+m}{M}\right)\omega_{1}\right)$	(b) $\left(\frac{M+m}{m}\right)\omega_1$	(c) $\left(\frac{M}{M+4m}\right)\omega_1$	(d) $\left(\frac{M}{M+2m}\right)\omega_1$
18.		city (in ms ⁻¹) with which nt of friction 0.6 to avo	ch a car driver must trave	rse a flat curve of radius
	(a) 60	(b) 30	(c) 15	(d) 25
19.			ed with water. The velocity e cylinder near its bottom is	
	(a) 10	(b) 20	(c) 25.5	(d) 5
20.	A spring of force co		an extension of 5 cm. The	work done is extending it
	(a) 16 J	(b) 8 J	(c) 32 J	(d) 24 J
21.	Two identical particl of centre of mass is		other with velocity 2v and	v respectively. The velocity
	(a) v	(b) v/3	(c) v/2	(d) zero
22.	• •	d through a spring the	` '	
	(a) expand	(b) compress	(c) remains same	(d) none of these
23.	Heat given to a bod	ly which raises its tem	perature by 1°C is	
24.	(a) water equivalent At absolute zero, Si	t (b) thermal capacity	(c) specific heat	(d) temperature gradient
	(a) non metal	(b) metal	(c) insulator	(d) none of these

25. Electromagnetic waves are transverse in nature is evident by (b) interference (d) diffraction (a) polarization (c) reflection Wires 1 and 2 carrying currents i, and i, respectively are inclined at an 26. angle θ to each other. What is the force on a small element dI of wire 2 at a distance of r from wire 1 (as shown in the figure) due to the magnetic field in of wire 1? (A) $\frac{\mu_0}{2\pi r}i_1i_2$ dltan θ (b) $\frac{\mu_0}{2\pi r}i_1i_2 dl\sin\theta$ (c) $\frac{\mu_0}{2\pi r}i_1i_2$ dlcos θ (d) $\frac{\mu_0}{4\pi r}i_1i_2$ dIsin θ 27. At a specific instant emission of radioactive compound is deflected in a magnetic field. The compound can emit (iii) He2+ (i) electrons (ii) protons (iv) neutrons The emission at instant can be (a) i, ii, iii (b) i, ii, iii, iv (c) iv (d) ii, iii Sodium and copper have work functions 2.3 eV and 4.5 eV respectively. Then the ratio of the 28. wave lengths is nearest to (a) 1:2 (b) 4:1 (c) 2:1 (d) 1:4 29. Formation of covalent bonds in compounds exhibits (a) wave nature of electron (b) particle nature of electron (c) both wave and particle nature of electron (d) none of these A conducting square loop of side L and resistance R moves in its plane + 30. with a uniform velocity v perpendicular to one of its sides. A magnetic induction B constant in time and space, pointing perpendicular and into + the plane at the loop exists everywhere with half the loop outside the $^{+}_{+}$ field, as shown in figure. The induced emf is (c) VBL/R (d) VBL (a) zero (b) RvB 31. Infra red radiation is detected by (a) spectrometer (b) pyrometer (c) nanometer (d) photometer If N_0 is the original mass of the substance of half-life period $t_{1/2} = 5$ years, then the amount of 32. substance left after 15 years is (b) $N_0/16$ (a) $N_0/8$ (c) $N_0/2$ $(d)N_0/4$

By increasing the temperature, the specific resistance of a conductor and a semiconductor

If there are n capacitors in parallel connected to V volt source, then the energy stored is equal to

- 35. Which of the following is more closed to a black body?
 - (a) black board paint (b) green leaves

(a) increases for both

(c) increases, decreases

33.

34.

(c) black holes

(b) decreases for both

(d) decreases, increases

(d) red roses

36.	The inductance bet	ween A and D is		
	(a) 3.66 H (b) 9 H	H (c) 0.66 H	(d) 1 H $\frac{1}{A}$ $\frac{1}{3H}$	
37.	A ball whose kineti	c energy is E, is pro		30 30 -
	angle of 45° to the h	orizontal. The kineti	c energy of the ball at the	e highest point of its flight will be
	(a) E	(b) E/ $\sqrt{2}$	(c) E/2	(d) zero
38.	From a building two	balls A and B are th	rown such that A is throv	vn upwards A and B downwards
	(both vertically). If v	$v_{_{\rm A}}$ and $v_{_{\rm B}}$ are their re	spective velocities on re	aching the ground, then
	(a) $V_{B} > V_{A}$	5	(b) $V_A = V_B$	
	(c) $V_A > V_B$		(d) their velocities de	epend on their masses
39.	If a body looses hal	f of its velocity on pe	enetrating 3 cm in a woo	den block, then how much will it
	penetrate more bef	ore coming to rest?		
	(a) 1 cm	(b) 2 cm	(c) 3 cm	(d) 4 cm
40.	If suddenly the grav	ritational force of attr	action between Earth a	nd a satellite revolving around it
	becomes zero, ther	the satellite will		
	(a) continue to mov	e in its orbit with sar	ne velocity	
	(b) move tangential	ly to the originally or	bit in the same velocity	
	(c) become stationa	ary in its orbit	(d) move towards th	e earth.
41.	Cooking gas contain	ners are kept in a lo	orry moving with uniform	speed. The temperature of the
	gas molecules insid	le will		
	(a) increase		(b) decrease	
	(c) remain same		(d) decrease for son	ne, while increase for others
42.	When temperature	increases, the frequ	ency of a tuning fork	
	(a) increases		(b) decreases	
	(c) remains same		(d) increases or decre	eases depending on the material
43.	If mass-energy equ	ivalence is taken into	o account, when water is	s cooled to form ice, the mass of
	water should			
	(a) increase		(b) remain unchange	ed
	(c) decrease		(d) first increase the	n decrease
44.	The energy band ga	ap is maximum in		
	(a) metals	(b) superconducto	ors (c) insulators	(d) semiconductors
45.	The part of a transis	tor which is most hea	avily doped to produce la	rge number of majority carriers is
	(a) emmiter		(b) base	
	(c) collector		(d) can be any of the	e above three
46.	Energy required to	move a body of mas	ss m from an orbit of rad	ius 2R to 3R is
	(a) GMm/12R ²	(b) GMm/3R ²	(c) GMm/8R	(d) GMm/6R
47.	If a spring has time	period T, and is cut ir	ito n equal parts, then the	e time period of each part will be
	(a) $T\sqrt{n}$	(b) T/\sqrt{n}	(c) nT	E F
	(d) T			D
48.	A charged particle	q is placed at the cer	ntre O of cube of length I	- •
	(ABCDEFGH). A	Another same charge	e q is placed at a distance	$\Rightarrow H G G$
	L from O. Then the	electric flux through		A
	(a) q/4π∈ ₀ L	(b) zero (c) q/	$2\pi \in_{\scriptscriptstyle 0} L$ (d) $q/3\; \pi \in_{\scriptscriptstyle 0} L$	·

49.	If in the circuit, power	er dissipation is 150 W	/, then R is	√Å∧∧	
	(a) 2Ω	(b) 6Ω		\sim	
	(c) 5Ω	(d) 4Ω			
		. ,	0	1 15 V	
50.			•	and $\lambda_2 = 5000 \text{\AA}$, then	
	ratio of their respect	tive resolving powers	(corresponding to λ_1 and	λ_{2}) is	
	(a) 16 : 25	(b) 9:1	(c) 4:5	(d) 5 : 4	
51.	A child swinging on	a swing in sitting posit	ion, stands up, then the tin	ne period of the swing will	
	(a) increase	(b) decrease	(c) remains same		
	` '		ses if the child is short		
52.	A lift is moving down w	vith acceleration a. A mar	n in the lift drops a ball inside t	he lift. The acceleration of the	
	ball as observed by th	e man in the lift and a m	an standing stationary on the	ground are respectively	
	(a) g, g	. , .	(c) g - a, g	(d) a, g	
53.	•		n an electrochemical cell d	•	
	(a) $(lt)^{1/2}$	(b) IT	(c) I/t	(d) I ² t	
	•	period, for which the c	• •		
54.	At what temperature molecule at 47° C?	e is the r.m.s. velocity	of a hydrogen molecule e	equal to that of an oxygen	
	(a) 80 K	(b) - 73 K	(c) 3 K	(d) 20 K	
55.	•	charged particle unde	rgoing a circular motion in	a uniform magnetic field is	
	independent of its				
50	(a) speed	(b) mass	(c) charge	(d) magnetic induction	
56.				inclined plane (frictionless) the plane is for (no rolling)	
	(a) solid sphere	(b) hollow sphere	(c) ring	(d) all same	
57.		` '	`, •	it in the secondary coil are	
01.		· ·	nat in the secondary coil is	·	
	(a) 4 A	(b) 2 A	(c) 6 A	(d) 10 A	
58.	Even Carnot engine	cannot give 100% eff	ficiency because we canno	ot	
	(a) prevent radiation	1	(b) find ideal sources		
	(c) reach absolute z		(d) eliminate friction		
59.			ss M and radius R about its		
	(a) MR ² /2	(b) MR ²	(c) 2MR ²	(d) MR ² /4	
60.				at F ₂ and F ₃ are mutually	
		perpendicular, then the particle remains stationary. If the force $\boldsymbol{F}_{_{\! 1}}$ is now removed then the			
	acceleration of the				
	(a) F₁/m	(b) F_2F_3/mF_1	- - •	(d) F_2/m	
61.			_	eir resultant is 12 N which	
	is perpendicular to t	he smaller force. Then	the magnitudes of the for	ces are	
	(a) 12 N, 6 N	(b) 13 N, 5 N	(c) 10 N, 8 N	(d) 16 N, 2 N	
62.	-		•	The ratio of the respective	
		he two cars are stopp			
	(a) 1 : 1	(b) 1:4	(c) 1 : 8	(d) 1 : 16	

63.	1 mole of a gas with	$\gamma = 7/5$ is mixed with	1 mole of a gas with $\gamma = 5$	/3, then the value of γ for
	the resulting mixture	is		
	(a) 7/5	(b) 2/5	(c) 24/16	(d) 12/7
64.	If a charge q is place	ed at the centre of the li	ine joining two equal charg	es Q such that the system
	is in equilibrium ther	the value of q is		
	(a) Q/2	(b) -Q/2	(c) Q/4	(d) -Q/4
65.	Capacitance (in F) of	of a spherical conducto	or with radius 1 m is	
	(a) 1.1×10^{-10}	(b) 10 ⁻⁶	(c) 9×10^{-9}	(d) 10 ⁻³
66.	A light string passing	ng over a smooth ligh	t pulley connects two bloc	cks of masses $\rm m_{_1}$ and $\rm m_{_2}$
	(vertically). If the acc	celeration of the system	m is g/8, then the ratio of the	he masses is
	(a) 8 : 1	(b) 9:7	(c) 4:3	(d) 5:3
67.	Two spheres of the s	same material have rad	dii 1 m and 4m and tempera	atures 4000 K and 2000 K
	respectively. The rati	o of the energy radiate	ed per second by the first sp	here to that by the second
	is			
	(a) 1 : 1	(b) 16:1	(c) 4:1	(d) 1:9
68.	Three identical bloc	ks of masses m = 2kg	are drawn by a force	
			on a frictions surface,	$C \longrightarrow B \longrightarrow A \longrightarrow F$
	then what is the tens	sion (in N) in the string	between the blocks B """	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	and C?			
	(a) 9.2	(b) 7.8	(c) 4	(d) 9.8
69.		• .	es over a massless and fri	
	•		r end is free. Maximum ten	
			ie of maximum safe accele	ration (in
	•	60 kg climb on the rope		(1) 2
70	(a) 16	(b) 6	(c) 4	(d) 8
70.	•	•	C with velocity v as shown). ↑
	•	momentum of the part		J-C
	(a) mvL		(b) mvl	
74	(c) mvr		(d) zero	P
71.		ng is used in optical fib		
	` '	ection (b) scattering	(c) diffraction	02
70	(d) refraction	of a bady danamda um		
72.		of a body depends up		(d) m3
72	(a) m ⁰	(b) m ¹	(c) m ²	(d) m ³
73.		ng are not electromagr		
	(a) cosmic rays	(b) gamma rays	(c) β-rays	(d) X- rays
74.	Identify the pair who	se dimensions are equ	ual	
	(a) torque and work	(b) stress and energy	y(c) force and stress	(d) force and work
75.	If θ_i , is the inversion cold junction, then	n temperature , $\theta_{_{n}}$ is the	ne neutral temperature, $ \theta_{\scriptscriptstyle c} $	is the temperature of the
	(a) $\theta_i + \theta_c = \theta_n$	(b) $\theta_i - \theta_c = 2\theta_n$	(c) $\frac{\theta_i + \theta_C}{2} = \theta_n$	(d) $\theta_c - \theta_i = 2\theta_n$

76.	-	sed through Hg ₂ S we (
	(a) HgS	(b) HgS + Hg $_2$ S	(c) Hg ₂ S	(d) Hg_2S_2
77.	Alum helps in pur			
	• •	nplex with clay particle		
		which combines with the	he dirt and removes it	
	(c) coagulating the	·		
	(d) making mud w			
78.	A square planar o	complex is formed by h	ybridisation of which at	omic orbitals?
	(a) s, p_x , p_y , d_{yz}	(b) $s, p_x, p_y, d_{x^2-y^2}$	(c) s, p_x, p_y, d_{z^2}	(d) s, p_y, p_z, d_{xy}
79.	Polymer formation	n from monomers start	ts by	
	(a) condensation	reaction between mon	omers	
	(b) coordinate rea	action between monom	iers	
	(c) conversion of	monomer to monomer	ions by protons	
	(d) hydrolysis of r	monomers		
80.	The type of isome	erism present in nitrope	entamine chromium (III)	chloride is
	(a) optical	(b) linkage	(c) ionization	(d) polymerisation
81.	Arrangement of (C	$CH_3)_3 - C-, (CH_3)_2 - CH-$, CH ₃ - CH ₂ - when attac	hed to benzyl or an unsaturated
	group in increasing	ng order of inductive ef	fect is	
	0 0	· -		$(CH_3)_2 - < CH - < (CH_3)_3 - C -$
	* -		_ * *	$H_3 - CH_2 - (CH_3)_2 - CH_3$
82.		n organo metallic com		
	(a) Mg - Br bond	(b) C - Mg bond	(c) C - Br bond	(d) C - H bond
83.		·	aqueous solution. The	
		•	(b) not a buffer solut	•
	• •	•	(d) a buffer solution	with pH > 7
84.		s both Bronsted acid a		
	· · · · •	(b) Na ₂ CO ₃		(d) OH ⁻¹
85.			of Mg(OH) ₂ be x then i	op.
	(a) 4x ³	(b) 108x ⁵	(c) 27x ⁴	(d) 9x
86.				molarity M unit are respectively
a -	(a) sec ⁻¹ , Msec ⁻¹		(c) Msec ⁻¹ , sec ⁻¹	(d) M, sec ⁻¹
87.		· ·	pairs of Xe are respect	
	(a) 2, 3, 1	(b) 1, 2, 3	(c) 4, 1, 2	(d) 3, 2, 1
88.	In which of the fol	loiwng species the inte	eratomic bond angle is	109º28′?
	(a) NH ₃ , (BF ₄) ⁻¹	(b) (NH ₄)+, BF ₃	(c) NH ₃ , BF ₄	(d) $(NH_2)^{-1}$, BF_3
89.	For the reaction A	$A + 2B \longrightarrow C$, rate is	given by $R = [A][B]^2$ th	en the order of the reaction is
	(a) 3	(b) 6	(c) 5	(d) 7
90.	RNA is different f	rom DNA because RN	IA contains	
	(a) ribose sugar a	and thymine	(b) ribose sugar and	l uracil
	(c) deoxyribose s	ugar and thymine	(d) deoxyribose sug	ar and uracil

91.	Which of the following are arranged in an increasing order of their bond strengths?			
	(a) $O_2^- < O_2^- < O_2^+ < O_2^{2-}$	(b)	$O_2^{2-} < O_2^- < O_2^- < O_2^+$	
	(c) $O_2^- < O_2^{2-} < O_2 < O_2^+$	(d)	$O_2^+ < O_2^- < O_2^- < O_2^{2-}$	
92.	If an endothermic reaction is non- at its boiling point, then	spantaneous	s at freezing point of w	rater and becomes feasible
	(a) ΔH is – ve, ΔS is + ve	(b)	ΔH and ΔS both a	re + ve
	(c) ΔH and ΔS both are – ve	(d)	ΔH is + ve, ΔS is -	-ve
93.	A heat engine absorbs heat Q_1 at the engine is $J(Q_1 + Q_2)$. This data		T ₁ and heat Q ₂ at ten	nperature T ₂ . Work done by
	 (a) violates 1st law of thermodyna (c) violates 1st law of thermodyna (d) does not violate 1st law of ther 	mics if Q_2 is	-ve	ermodynamics if Q ₁ is -ve
94.	Most common oxidation states of	Ce (cerium)	are	
	(a) +2, +3 (b) +2, +4	(c)	+3, +4	(d) +3, +5
95.	Arrange Ce $^{+3}$, La $^{+3}$, Pm $^{+3}$ and Yb $^{+3}$		-	
	(a) $Yb^{+3} < Pm^{+3} < Ce^{+3} < La^{+3}$			
	(c) $Yb^{+3} < Pm^{+3} < La^{+3} < Ce^{+3}$	(d)	$Pm^{+3} < La^{+3} < Ce^{+3} <$: Yb+3
96.	KO ₂ (potassium super oxide) is us	sed in oxyger	n cylinders in space a	and submarines because it
	(a) absorbs CO ₂ and increases C	content (b) eliminates moisture	
	(c) absorbs CO ₂	•	l) produces ozone.	
97.	A similarity between optical and g			
	(a) each forms equal number of is		•	
	(b) If in a compound one is preser			
	(c) both are included in stereoisor	, ,	•	ty
98.	Which of the following does not should be a sixty of the sixty of t	J		
	(a) 1, 2-dichloro - 1- pentene		1, 3 - dichloro - 2- pe	
00	(c) 1, 1- dichloro - 1- pentene		1, 4 - dichloro - 2- pe	
99.	In case of nitrogen, NCl ₃ is possib	ie but not inc	while in case of ph	ospnorous, PCI ₃ as well as
	PCI ₅ are possible. It is due to	in D hout not	: NI	
	(a) availability of vacant d orbitals		IN IN	
	(b) lower electronegativity of P that(c) lower tendency of H - bond for		han N	
	(d) occurrence of P in solid while			aratura
100	For an ideal gas, number of mo	•	•	
100.	temperature T is	os per inte	in terms or its press	die 1, gas contain it and
	(a) PT/R (b) PRT	(c)	P/RT	(d) RT/P
101.	The formation of gas at the surface	` ,		` '
	(a) 0 (b) 1	(c)		(d) insufficient data
102.	The solubility of Mg(OH) ₂ is S mo			• •
	(a) $4S^3$ (b) $3S^4$		4S ²	(d) S ³

103.	How do we different	iate between Fe3+ and	Cr ³⁺ in group III?	
	(a) by taking excess	s of NH ₄ OH solution	(b) by increasing NH ₄ ⁺ ion	n concentration
	(c) by decreasing O	H ⁻ ion concentration	(d) both (b) and (c)	
104.	In a compound C, I	H and N atoms are pr	esent in 9:1:35 by wei	ght. Molecular weight of
	compound is 108. N	Molecular formula of co	mpound is	
	(a) $C_2H_6N_2$	(b) C_3H_4N	(c) $C_6H_8N_2$	(d) $C_9H_{12}N_3$
105.		o, which is found in am		
	(a) -COOH group	(b) - NH ₂ group	(c) - CH ₃ group	(d) both (a) and (b)
106.	Conductivity (unit Signature)	emen's S) is directly pro	pportional to area of the ves	sel and the concentration
	of the solution in it a	and is inversely proport	ional to the length of the v	essel then the unit of the
	constant of proportion	onality is		
	(a) Sm mol ⁻¹	(b) Sm ² mol ⁻¹	(c) S ⁻² m ² mol	(d) S ² m ² mol ⁻²
107.	In a hydrogen atom excited state is	, if energy of an electr	on in ground state is 13.6	eV, then that in the 2nd
	(a) 1.51 eV	(b) 3.4 eV	(c) 6.04 eV	(d) 13.6 eV
108.	Which of the following	ng statements is true?		
	(a) HF is less polar	than HBr		
	(b) absolutely pure	water does not contain	any ions	
	(c) chemical bond for	mation take place when	forces of attraction overcome	e the forces of repulsion
	• •	nsference of electron t	•	
109.		ng compounds has wro	-	
	(a) $CH_3 - CH_2 - CH$	$I_2 - COO - CH_2CH_3 -$	—→ethyl butanoate	
	(b) CH ₃ -CH-CH CH	H_2 – CHO \longrightarrow 3-met	hyl-butanal	
	(a) CU CU CU	I C∐ \2 moth	d 2 hutanal	
		$I-CH_3{\longrightarrow\!\!\!\!-}2$ - methy I_3	/I—3—bu tanoi	
	OH CH	I_3		
	0			
	(d) CH _a -CH-C-	-CH ₀ -CH ₀ >2 -	methyl-3-pentanone	
	ا ا	2 3	, ,	
	CH₃			
110.	CH ₃ CH ₂ COOH—C	$A \xrightarrow{\text{alc. KOH}} B$. Wh	nat is B?	
	(a) CH ₃ CH ₂ COCI	(b) CH ₃ CH ₂ CHO	(c) CH ₂ = CHCOOH	(d) CICH,CH,COOH
111.		ted by the electrolysis	=	2 2
	(a) bauxite	(b) alumina	(c) alumina mixed with me	olten cryolite
	(d) molten cryolite			
112.	The metal extracted	by leaching with a cya	anide is	
	(a) Mg	(b) Ag	(c) Cu	(d) Na
113.	Value of gas consta	` , •	•	
	•	(b) 0.987 cal mol ⁻¹ K ⁻¹	(c) 8.3 J mol ⁻¹ K ⁻¹	(d) 83 erg mol ⁻¹ K ⁻¹
	· ·	· •		_

114. Freezing point of an aqueous solution is (-0.186)°C. Elevation of boiling point of the same solution

	is $K_b = 0.512$ °C, $K_f = 1.86$ °C, find the incr	ease in boiling point.	
	(a) 0.186 °C (b) 0.0512 °C		(d) 0.2372 °C
115.	EMF of a cell in terms of reduction potenta	al of its left and right electro	odes is
	(a) $E = E_{left} - E_{right}$ (b) $E = E_{left} + E_{right}$	(c) $E = E_{right} - E_{left}$	(d) $E = -(E_{right} + E_{left})$
116.	Uncertainity in position of a minute particle	· ·	•
	in its velocity (in ms ⁻¹) ? (h = $6.6 \times 10^{-34} \text{ J}$		·
	(a) 2.1×10^{-34} (b) 0.5×10^{-34}	•	(d) 0.5×10^{-23}
117.	Which of these will not react with acetylen	• •	,
	(a) NaOH (b) ammonical AgNC		(d) HCI
118	Change in volume of the system does no	3	()
	equilibria?		J
	(a) $N_2(g) + O_2(g) = 2 NO(g)$	(b) PCI ₋ (a) ——— PCI	(a) + Cl _a (a)
	(c) $N_2(g) + 3H_2(g) \longrightarrow 2NH_3(g)$		
119.	For the reactions,	(3) 3 2 2 (3)	- 2 (3)
	$C+O_2 \longrightarrow CO_2$; $\Delta H = -393J$		
	$2Zn + O_2 \longrightarrow 2ZnO$; $\Delta H = -412J$		
	(a) carbon can oxidise Zn	(b) oxidation of carbon is	not feasible
	(c) oxidation of Zn is not feasible	(d) Zn can oxidise carbor	า
120.	Which of the following ions has the maxim	um magnetic moment?	
	(a) Mn ⁺² (b) Fe ⁺²	(c) Ti ⁺²	(d) Cr ⁺²
121.	In which of the following species is the unc	derlined carbon having sp ³	hybridisation?
	(a) CH ₃ COOH (b) CH ₃ CH ₂ OH	(c)CH ₃ COCH ₃	(d) $CH_2 = \underline{C}H - CH_3$
122.	Racemic mixture is formed by mixing two		
	(a) isomeric compounds	(b) chiral compounds	
	(c) meso compounds	(d) optical isomers	
123.	The differential rate law for the reaction H		
	(a) $-\frac{d[H_2]}{dt} = -\frac{d[I_2]}{dt} = -\frac{d[HI]}{dt}$	(b) $\frac{d[H_2]}{dt} = \frac{d[I_2]}{dt} = \frac{1}{2} \frac{d[H]}{dt}$	I]
	$\frac{d}{dt} = \frac{d}{dt} = \frac{d}{dt}$	(b) $\frac{1}{dt} - \frac{1}{dt} - \frac{1}{2} \frac{1}{dt}$	_
	$(1 \text{ d}[H_2] - 1 \text{ d}[I_2] - \text{ d}[HI]$	$d[H_2] = d[I_2]$	d[HI]
	(c) $\frac{1}{2} \frac{d[H_2]}{dt} = \frac{1}{2} \frac{d[I_2]}{dt} = -\frac{d[HI]}{dt}$	(d) $-2\frac{d[H_2]}{dt} = -2\frac{d[I_2]}{dt} =$	dt
124.	Number of sigma bonds in P ₄ O ₁₀ is		
	(a) 6 (b) 7	(c) 17	(d) 16
125.	Kinetic theory of gases proves		
	(a) only Boyle's law (b) only Charles' law	(c) only Avogadro's law	(d) all of these
126.	A metal M readily forms its sulphate MSO	$_{_4}$ which is water - soluble. If	t forms its oxide MO which
	becomes inert on heating. It forms an ins	soluble hydroxide M(OH) ₂	which is soluble in NaOH
	solution. Then M is		
	(a) Mg (b) Ba	(c) Ca	(d) Be
127.	If φ denotes reduction potential, then whice	h is true ?	

 $(a) \ \mathsf{E}_{\text{cell}}^{\text{0}} = \varphi_{\text{right}} - \varphi_{\text{left}} \quad (b) \ \mathsf{E}_{\text{cell}}^{\text{0}} = \varphi_{\text{left}} + \varphi_{\text{right}} \quad \ (c) \ \mathsf{E}_{\text{cell}}^{\text{0}} = \varphi_{\text{left}} - \varphi_{\text{right}} \qquad \qquad \\ (d) \ \mathsf{E}_{\text{cell}}^{\text{0}} = -(\varphi_{\text{left}} + \varphi_{\text{right}}) = -(\varphi_$

128. What is the product when acetylene reacts with hypochlorous acid? (a) CH₂COCI (b) CICH₂CHO (c) Cl₂CHCHO (d) CICHCOOH 129. On vigorous oxidation by permanganate solution $(CH_3)_2C = CH - CH_2 - CHO$ gives CH OH >COOH+CH3CH2COOH (a) CH₃ - C - CH - CH₂CH₃ CH CH₃ \ CH-OH+CH2CH2CH2OH (d) (c) CH₃ OCOCH₃ COOH 130. The compound is used as (a) antiseptic (b) antibiotic (c) analgesic (d) pesticide 131. What will be the emf for the given cell $Pt \mid H_2(P_1) \mid H^+(aq) \mid H_2(P_2) \mid Pt$ (a) $\frac{RT}{f}log\frac{P_1}{P_2}$ (b) $\frac{RT}{2f}log\frac{P_1}{P_2}$ (c) $\frac{RT}{f}log\frac{P_2}{P_2}$ (d) none of these 132. When primary amine reacts with chloroform in ethanoic KOH then the product is (a) an isocyanide (b) an aldehyde (d) an alcohol (c) a cyanide 133. Which of the following reaction is possible at anode? (a) $2Cr^{_{3+}} + 7H_{_2}O \rightarrow Cr_{_2}O_{_7}^{_{2-}} + 14H^{_+}$ (b) $F_{_2} \rightarrow 2F^{_-}$ (c) $(1/2) O_2 + 2H^+ \rightarrow H_2O$ (d) none of these 134. The reaction: $(CH_3)_3C-Br \xrightarrow{H_2O} (CH_3)_3-C-OH$ (a) elimination reaction (b) substitution reaction (c) free radical reaction (d) displacement reaction 135. If half-life of a substance is 5 yrs, then the total amount of substance left after 15 years, when initial amount is 64 grams is (a) 16 grams (b) 2 grams (c) 32 grams (d) 8 grams 136. Cyanide process is used for the extraction of (a) barium (b) aluminium (c) boron (d) silver 137. Which is the correct order of ionic sizes? (a) Ce > Sn > Yb > Lu (b) Sn > Ce > Lu > Yb (c) Lu > Yb > Sn > Ce (d) Sn > Yb > Ce > Lu

(Atomic Number : Ce = 58, Sn = 50, Yb = 70 and Lu = 71)

(b) weight fraction of solute

(d) mole fraction

138. With increase of temperature, which of these changes?

(c) fraction of solute present in water

(a) molality

139.	eta . The integrated rate equation is Rt = log $oldsymbol{ extsf{C}}_{ ext{o}}$ - log $oldsymbol{ extsf{C}}_{ ext{t}}$. The straight line graph is obtained by plotting			line graph is obtained by
	(a) time vs log C _t	(b) $\frac{1}{\text{time}}$ vs C _t	(c) time vs C _t	(d) $\frac{1}{\text{time}}$ vs $\frac{1}{C_t}$
140.	In which of the follo	wing reactions, increa	ase in the volume at consta	ant temperature does not
	affect the number of	moles at equilibrium		
	(a) $2NH_3 \rightarrow N_2 + 3H_3$	H_2	(b) $C(g) + (1/2)O_2(g) \rightarrow$	CO(g)
	(c) $H_2(g) + O_2(g) -$	\rightarrow H ₂ O ₂ (g)	(d) none of these	
141.	When the sample of	f copper with zinc imp	purity is to be purified by ele	ectrolysis, the appropriate
	electrodes are	_		_
	cathode	anode	cathode	anode
		pure copper impure sample		pure copper
142	The most stable ion		(d) pure copper	impure sample
1 12.		(b) [Fe(Cl) ₆] ³⁻	(c) [Fe(CN) ₆] ³⁻	(d) $[Fe(H_2O)_6]^{3+}$
143.	β - particle is emitte	ed in radioactivity by		
	(a) conversion of pro	oton to neutron	(b) from outermost orbit	
	(c) conversion of ne	utron to proton	(d) β -particle is not emit	ted
144. In mixture A and B component show -ve deviation as				
	(a) $\Delta V_{mix} > 0$		(b) $\Delta H_{mix} < 0$	
	(c) A - B interaction	is weaker than A - A	and B - B interaction	
	(d) A - B interaction	is stronger than A - A	and B - B interaction	
145.	•	· ·	re of body by 1 K is called	
4.40	(a) specific heat		(c) water equivalent	(d) none of these
146.		in the unit cell of thei	pe crystals respectively, the	en the number of atoms of
		(b) 9 and 14		(d) 2 and 4
147.	` '	` '	$\frac{1}{100}$ of Fe = 55.85 g mol ⁻¹) is	(a) <u>_</u> a.i.a .
	(a) twice that in 60 g		(b) 6.023×10^{22}	
	(c) half that in 8g He	9	(d) $558.5 \times 6.023 \times 10^{23}$	
148.	When KMnO ₄ acts	as an oxidising agen	t and ultimately forms [Mn	O_4^{-1} , MnO_2 , Mn_2O_3 , Mn^{+2}
			in each case respectively i	
4.40	(a) 4, 3, 1, 5	(b) 1, 5, 3, 7		(d) 3, 5, 7, 1
149.	Which of the following	ng is a redox reaction	?	
	(a) NaCl+KNO ₃ —	NaNO ₃ + KCI	(b) $CaC_2O_4 + 2HCI =$	+ CaCl2 + H2C2O4
	(c) $Mg(OH)_2 + 2NH$	$_{4}CI \rightarrow MgCl_{2} + 2NH_{4}O$	OH (d) $Zn+2AgCN \rightarrow 2A$	$Ag + Zn(CN)_2$
150.	For the reaction CC	$O(g) + (1/2)O_2(g) = CO$	$O_2(g), K_p/K_c$ is	
	(a) RT	(b) (RT) ⁻¹	(c) (RT) ^{-1/2}	(d) (RT) ^{1/2}

AIEEE - 2002

Mathematics

- If $\alpha \neq \beta$ but $\alpha^2 = 5\alpha 3$ and $\beta^2 = 5\beta 3$ then the equation having α/β and β/α as its roots is 1.
 - (a) $3x^2 19x + 3 = 0$

(b) $3x^2 + 19x - 3 = 0$

(c) $3x^2 - 19x - 3 = 0$

- (d) $x^2 5x + 3 = 0$
- If y = $(x + \sqrt{1 + x^2})^n$, then $(1 + x^2) \frac{d^2y}{dx^2} + x \frac{dy}{dx}$ is 2.
- (b) $-n^2y$

- (d) $2x^{2}y$
- If 1, $\log_9 (3^{1-x} + 2)$, $\log_3 (4.3^x 1)$ are in A.P. then x equals 3.
- (b) 1+ log₂ 4
- (c) 1 log₄ 3
- (d) log₄ 3
- A problem in mathematics is given to three students A, B, C and their respective probability of

solving the problem is $\frac{1}{2}$, $\frac{1}{3}$ and $\frac{1}{4}$. Probability that the problem is solved is

- (a) $\frac{3}{4}$
- (b) $\frac{1}{2}$
- (c) $\frac{2}{3}$

(d) $\frac{1}{3}$

- 5. The period of $\sin^2 \theta$ is
 - (a) π^2
- (b) π
- (c) 2π

- (d) $\pi/2$
- I, m, n are the $p^{\text{th}},\,q^{\text{th}}$ and r^{th} term of a G.P. all positive, then 6.
 - (a) -1
- (b) 2
- (c) 1

(d) 0

- $\lim_{x\to 0} \frac{\sqrt{1-\cos 2x}}{\sqrt{2}x}$ is 7.
 - (a) 1
- (b) -1
- (c) zero
- (d) does not exist

- 8. A triangle with vertices (4, 0), (-1, -1), (3, 5) is
 - (a) isosceles and right angled
- (b) isosceles but not right angled
- (c) right angled but not isosceles
- (d) neither right angled nor isoceles
- 9. In a class of 100 students there are 70 boys whose average marks in a subject are 75. If the average marks of the complete class is 72, then what is the average of the girls?
 - (a) 73
- (b) 65
- (c) 68

(d) 74

- $\cot^{-1}(\sqrt{\cos\alpha}) = \tan^{-1}(\sqrt{\cos\alpha}) = x$, then $\sin x =$ 10.
 - (a) $tan^2 \left(\frac{\alpha}{2}\right)$ (b) $cot^2 \left(\frac{\alpha}{2}\right)$
- (c) tanα
- (d) $\cot \left(\frac{\alpha}{2}\right)$

- The order and degree of the differential equation $\left(1+3\frac{dy}{dx}\right)^{2/3}=4\frac{d^3y}{dx^3}$ are
 - (a) $(1,\frac{2}{2})$
- (b) (3, 1) (c) (3, 3)

- (d)(1, 2)
- A plane which passes through the point (3, 2, 0) and the line $\frac{x-4}{1} = \frac{y-7}{5} = \frac{z-4}{4}$ is

- (a) x y + z = 1 (b) x + y + z = 5 (c) x + 2y z = 1 (d) 2x y + z = 5
- The solution of the equation $\frac{d^2y}{dv^2} = e^{-2x}$

- (a) $\frac{e^{-2x}}{4}$ (b) $\frac{e^{-2x}}{4} + cx + d$ (c) $\frac{1}{4}e^{-2x} + cx^2 + d$ (d) $\frac{1}{4}e^{-4x} + cx + d$
- 14. $\lim_{x \to \infty} \left(\frac{x^2 + 5x + 3}{x^2 + x + 3} \right)^{\frac{1}{x}}$
 - (a) e4
- (b) e^2
- (c) e^3

(d) 1

- 15. The domain of $\sin^{-1} [\log_3 (x/3)]$ is
 - (a) [1, 9]
- (b) [-1,9]
- (c) [-9, 1]
- (d) [-9, -1]

- The value of $2^{1/4}$, $4^{1/8}$, $8^{1/6} + \dots \infty$ is 16.
- (b) 2
- (c) 3/2

- (d) 4
- 17. Fifth term of a GP is 2, then the product of its 9 terms is
 - (a) 256
- (b) 512
- (c) 1024
- (d) none of these

- $\int_{0}^{10\pi} |\sin x| dx is$
- (c) 10

(d) 18

- 19. $I_n = \int_0^{\pi/4} \tan^n x \, dx$ then $\lim_{n \to \infty} n[I_n + I_{n-2}]$ equals
 - (a) $\frac{1}{2}$
- (b) 1
- (c) ∞

(d) zero

- 20. $\int_{0}^{\sqrt{2}} [x^2] dx$ is
 - (a) $2 \sqrt{2}$
- (b) $2+\sqrt{2}$ (c) $\sqrt{2}-1$
- (d) $\sqrt{2} 2$

- 21. $\int_{-\pi}^{\pi} \frac{2x(1+\sin x)}{1+\cos^2 x} dx \text{ is}$
 - (a) $\frac{\pi^2}{\Lambda}$
- (b) π^2
- (c) zero

(d) $\frac{\pi}{2}$

22.	Let $f(x) = 4$ and $f'($	$(x) = 4$. Then $\lim_{x\to 2} \frac{xf(x)}{x}$	$\frac{2) - 2f(x)}{x - 2}$ is given by			
	(a) 2	(b) - 2	(c) - 4	(d) 3		
23.	z and w are two no	n zero complex no.s s	such that $ z = w $ and Arg	$yz + Argw = \pi$ then z equals		
	(a) ₩	(b) <u></u> w	(c) w	(d) - w		
24.		s solution is given by	. ,	. ,		
		•	(c) Re $(z) > 3$	(d) $Re(z) > 2$		
25.				= a and $ z - z_2 = b$ externally		
(z, z ₁ and z ₂ are complex numbers) will be						
	(a) an ellipse		(c) a circle	(d) none of these		
26.	Sum of infinite num	nber of terms of GP is	20 and sum of their square	e is 100. The common ratio of		
	GP is					
	(a) 5	(b) 3/5	(c) 8/5	(d) 1/5		
27.	$1^3 - 2^3 + 3^3 - 4^3 + \dots$	+93 =				
	(a) 425	(b) - 425	(c) 475	(d) - 475		
28.	Difference betwee	n the corresponding r	coots of $x^2 + ax + b = 0$ and	$1x^2 + bx + a = 0$ is same and		
	$a \neq b$, then					
	(a) $a + b + 4 = 0$	(b) $a + b - 4 = 0$	(c) $a - b - 4 = 0$	(d) $a - b + 4 = 0$		
29.	Product of real roo	ots of the equation t2x2	$ x ^2 + x + 9 = 0$			
	(a) is always positive		(b) is always negative	(b) is always negative		
	(c) does not exist		(d) none of these			
30.	•	oots of the equation >				
		. , .	(c) $p = -2$, $q = 0$	• • • •		
31.			and $a^2 + b^2 + c^2 = 1$ then ab			
	(a) less than 1		(c) greater than 1			
32.	Total number of for allowed) are	ur digit odd numbers t	hat can be formed using 0,	1, 2, 3, 5, 7 (using repetition		
	(a) 216	(b) 375	(c) 400	(d) 720		
33.	Number greater th	an 1000 but less thar	1 4000 is formed using the	digits 0, 1, 2, 3, 4 (repetition		
	allowed) is					
	(a) 125	(b) 105	(c) 375	(d) 625		
34.	•	•	ed using 0, 1, 2, 3, 4, 6 ar	nd 7 without repetition. Total		
	number of such nu	ımbers are				
	(a) 312	(b) 3125	(c) 120	(d) 216		
35.	•		are divisible by 2 or 5 is			
	(a) 3000	(b) 3050	(c) 3600	(d) 3250		
36.		f x ^p and x ^q in the expa	• •			
	(a) equal		(b) equal with opposite	signs		
	(c) reciprocals of e		(d) none of these			
37.		petficients in the expa	nsion of $(a + b)^n$ is 4096, th	en the greatest coefficient in		
	the expansion is	(L) 700	(-) 004	(-1) 000 4		
	(a) 1594	(b) 792	(c) 924	(d) 2924		

38.	The positive integer	just greater than (1+0	.0001) ¹⁰⁰⁰⁰ is	
	(a) 4	(b) 5	(c) 2	(d) 3
39.	·	integers $r > 1$, $n > 2$ are equal, then n equ	and coefficient of $(r + 2)^{th}$	term and 3rth term in the
	(a) 3r	(b) 3r + 1	(c) 2r	(d) 2r + 1
			a b a	x+b
40.	If a > 0 discriminant	of $ax^2 + 2bx + c$ is -ve	e, then $\begin{vmatrix} a & b & ax \\ b & c & bx \\ ax+b & bx+c \end{vmatrix}$	$\begin{bmatrix} x+c \\ 0 \end{bmatrix}$ is
	(a) +ve	(b) $(ac - b^2) (ax^2 + 2b^2)$	ox + c) (c) -ve	(d) 0
41.	If $a_n = \sqrt{7 + \sqrt{7 + \sqrt{7}}}$	7+ having n radio	al signs then by methods	of mathematical induciton
	which is true			
	(a) $a_n > 7 \ \forall \ n \ge 1$	(b) $a_n > 7 \forall n \ge 1$	(c) $a_n < 4 \forall n \ge 1$	(d) $a_n < 3 \ \forall \ n \ge 1$
42.		gle are 3x + 4y, 4x+37 (b) obtuse angled	and 5x + 57 where x, y > (c) equilateral	0 then the triangle is (d) none of these
43.	Locus of mid point o	f the portion between	the axes of x cos α + y sin o	$\alpha = p$ where p is constant
	is	·	, i	
	(a) $x^2 + y^2 = \frac{4}{p^2}$	(b) $x^2 + y^2 = 4p^2$	(c) $\frac{1}{x^2} + \frac{1}{y^2} = \frac{2}{p^2}$	(d) $\frac{1}{x^2} + \frac{1}{y^2} = \frac{4}{p^2}$
44.	If the pair of lines ax	$x^2 + 2hxy + by^2 + 2gx +$	-2fy + c = 0 intersect on the	ne y - axis then
	(a) $2fgh = bg^2 + ch^2$	(b) $bg^2 \neq ch^2$	(c) $abc = 2fgh$	(d) none of these
45.	The point of lines re	presented by 3ax2+5x	$y + (a^2-2)y^2 = 0$ and perper	ndicular to each other for
	(a) two values of a	(b) ∀ a	(c) for one value of a	(d) for no values of a
46.	If the chord y = mx - segment of the circle		= 1 subtends an angle of	measure 45° at the major
	(a) $2 \pm \sqrt{2}$	(b) $-2 \pm \sqrt{2}$	(c) $-1 \pm \sqrt{2}$	(d) none of these
47.			dius 3, lie on the circle x^2 +	• •
	•	(b) $x^2 + y^2 < 25$	(c) $x^2 + y^2 \ge 25$	(d) $3 < x^2 + y^2 < 9$
48.			0, 0) and (1, 0) and touchin	
	(a) $\left(\frac{1}{2}, \frac{1}{2}\right)$	(b) $\left(\frac{1}{2}, -\sqrt{2}\right)$	(c) $\left(\frac{3}{2}, \frac{1}{2}\right)$	(d) $\left(\frac{1}{2}, \frac{3}{2}\right)$

The equation of a circle with origin as a centre and passing through equilateral triangle whose

49.

median is of length 3a is

50.	Two common tangents to the circle $x^2 + y^2 = 2a^2$ and parabola $y^2 = 8ax$ are					
E1	• • • • • • • • • • • • • • • • • • • •		(c) $X = \pm (y + a)$			
51.			which are the ex- radii) the (c) a > b and b < c			
52.		tion of tan $x + \sec x =$		(a) a \ b and b > 0		
JZ.			- '	(4) 4		
53.	(a) 2 Which one is not pe	(b) 3	(c) 0	(d) 1		
55.	•	(b) $\cos \sqrt{x} + \cos^2 x$	(c) $\cos 4y + \tan^2 y$	(d) cos 2x + sin x		
			(c) cos 4x + tan x	(u) cos 2x + siii x		
54.	$\lim_{n\to\infty} \frac{1^{p} + 2^{p} + 3^{p} +}{n^{p+1}}$	is				
	(a)	(b) <u>1</u>	(c) $\frac{1}{p} - \frac{1}{p-1}$	(d) <u>1</u>		
	^(a) p+1	^(D) 1-p	$\frac{(c)}{p} = \frac{1}{p-1}$	(d) p+2		
55.	$\underset{x\rightarrow 0}{\text{Lim}}\frac{\log x^{n}-[x]}{[x]},n\in$	$\lim_{x\to 0} \frac{\log x^n - [x]}{[x]}$, $n \in \mathbb{N}$ ([x] denotes greatest integer less than or equal to x)				
	` '	(b) has value 0	(c) has value 1	(d) does not exist		
56.	If $f(1) = 1$, $f'(1) = 2$, then $\lim_{x \to 1} \frac{\sqrt{f(x)} - 1}{\sqrt{x} - 1}$ is					
	(a) 2	(b) 4	(c) 1	(d) 1/2		
57.	f is defined in [-5, 5] as $f(x) = x$ if x is rational and = -x is irrational. Then					
	(a) $f(x)$ is continuous at every x, except $x = 0$					
	(b) f(x) is discontinuous at every x, except x = 0					
	(c) f(x) is continuous(d) f(x) is discontinu	-				
58.		-	0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 <	a"(v) – 0		
50.	f(x) and $g(x)$ are two differentiable functions on [0, 2] such that $f''(x) - g''(x) = 0$					
	f'(1) = 2g'(1) = 4f(2) =	= 3g(2) = 9 then $f(x) -$	g(x) at $x = 3/2$ is			
	(a) 0	(b) 2	(c) 10	(d) 5		
59.	If $f(x + y) = f(x) \cdot f(y)$	\forall x.y and f(5) =2, f'((0)=3 then f'(5)is			
	(a) 0	(b) 1	(c) 6	(d) 2		
60.	The maximum distance from origin of a point on the curve $x = a \sin t - b \sin \left(\frac{at}{b}\right)$					
	$y = a \cos t - b \cos \left(\right)$	$\left(\frac{at}{b}\right)$, both a, b > 0 is				
	(a) a - b	(b) a + b	(c) $\sqrt{a^2 + b^2}$	(d) $\sqrt{a^2 - b^2}$		
61.	If $2a + 3b + 6c = 0$ ($2a + 3b + 6c = 0$ (a,b,c \in R) then the quadratic equation $ax^2 + bx + c = 0$ has				
	(a) at least one root	in [0, 1]	(b) at least one root in [2,	3]		
62.		c) at least one root in $[4, 5]$ (d) none of these f y = f(x) makes +ve intercept of 2 and 0 unit on x and y axes and encloses an area or				
	square unit with the axes then $\int_{0}^{2} xf'(x) dx$ is					
	(a) 3/2	(b) 1	(c) 5/4	(d) -3/4		

63.	The area bounded to (a) 4 sq. units	by the curves $y = lnx$, y (b) 6 sq. units	y = In x , y = In x and y (c) 10 sq. units	= In x is (d) none of these			
64.	If $ \vec{a} =4$, $ \vec{b} =2$ and the angle between \vec{a} and \vec{b} is $\pi/6$ then $(\vec{a}\times\vec{b})^2=2$ is equal to						
	(a) 48	(b) 16	(c) ā	(d) none of these			
65.	If $\vec{a}, \vec{b}, \vec{c}$ are vectors such that $[\vec{a} \ \vec{b} \ \vec{c}] = 4$ then $[\vec{a} \times \vec{b} \ \vec{b} \times \vec{c} \ \vec{c} \times \vec{a}] =$						
	(a) 16	(b) 64	(c) 4	(d) 8			
66.	If $\vec{a}, \vec{b}, \vec{c}$ are vectors such that $\vec{a} + \vec{b} + \vec{c} = 0$ and $ \vec{a} = 7$, $ \vec{b} = 5$, $ \vec{c} = 3$ then angle between						
	vector \vec{b} and \vec{c} is						
	(a) 60	(b) 30°	(c) 45°	(d) 90°			
67.	If $ a =5$, $ b =4$, $ c =3$ thus what will be the value of $ a.b+b.c+c.a $, given that $\vec{a}+\vec{b}+\vec{c}=0$						
	(a) 25	(b) 50	(c) - 25	(d) - 50			
68.	$3\lambda\vec{c} + 2\mu(\vec{a}\times\vec{b}) = 0$	$\lambda \vec{c} + 2\mu(\vec{a} \times \vec{b}) = 0$ then					
	(a) $3\lambda + 2\mu = 0$	(b) $3\lambda = 2\mu$	(c) $\lambda = \mu$	(d) $\lambda + \mu = 0$			
69.	$\vec{a} = 3\hat{i} - 5\hat{j}$ and $\vec{b} = 6\hat{i} + 3\hat{j}$ are two vectors and \vec{c} is a vector such that $\vec{c} = \vec{a} \times \vec{b}$ then						
	ā : b : c						
	(a) $\sqrt{34}$: $\sqrt{45}$: $\sqrt{39}$	(b) $\sqrt{34}$: $\sqrt{45}$: 39	(c) 34 : 39 : 45	(d) 39:35:34			
70.	If $\vec{a} \times \vec{b} = \vec{b} \times \vec{c} = \vec{c} \times \vec{a}$ then $\vec{a} + \vec{b} + \vec{c} =$						
	(a) abc	(b) -1	(c) 0	(d) 2			
71.	A and B are events such that $P(A \cup B) = 3/4$, $P(A \cap B) = 1/4$, $P(\overline{A}) = 2/3$ then $P(\overline{A} \cap B)$ is						
70	(a) 5/12	(b) 3/8	(c) 5/8	(d) 1/4			
72.	A die is tossed 5 times. Getting an odd number is considered a success. Then the variance of distribution of success is						
	(a) 8/3	(b) 3/8	(c) 4/5	(d) 5/4			
73.	The d.r. of normal to the plane through (1, 0, 0) , (0, 1, 0) which makes an angle $\pi/4$ with plane $x+y=3$ are						
	(a) 1, $\sqrt{2}$,1	(b) 1, 1, $\sqrt{2}$	(c) 1, 1, 2	(d) $\sqrt{2}$, 1, 1			
74.	The sum of two forces is 18 N and resultant whose direction is at right angles to the smaller						
	force is 12 N. The m (a) 13, 5	agnitude of the two for (b) 12, 6	rces are (c) 14, 4	(d) 11, 7			
75.		. , .	rcular wire in a vertical pla				
	by a light thread to the highest point of the wire and in equilibrium, the thread is taut and make						
	an angle θ with the vertical then tension of the thread and reaction of the wire on the bead are						
	(a) $T = w \cos \theta$ (c) $T = w$	$R = w \tan \theta$ $R = w \sin \theta$	(b) $T = 2w \cos \theta$ (d) $T = w \sin \theta$	R = w $R = w \cot \theta$			