

^{12.} A force $\vec{F} = (5\hat{i} + 3\hat{j} + 2\hat{k})$ N is applied over a particle which displaces it from its origin to the point

Kochi Branch: Bldg.No.41/352, Mulloth Ambady lane, Chittoor Road, Kochi - 11, Ph: 0484-2370094, 9388465944 Trivandrum Branch: TC.5/1703/30, Golf Links Road, Kowdiar Gardens, Housing Board Colony, Ph: 0471- 2438271, Mobile: 9387814438. Www.mathiit.com #1#

$\vec{r} = (2\hat{i} - \hat{j})$	m. The wor	k done on	the particle in	joules is:
(a) ₋ 7		(b) ⊥7	(\mathbf{C})	⊥10

(a)
$$\frac{mv_1t}{t_1}$$
 (b) $\frac{mv_1^2t}{t_1^2}$ (c) $\frac{mv_1t^2}{t_1}$ (d) $\frac{mv_1^2t}{t_1}$

14. A particle is acted upon by a force of constant magnitude which is always perpendicular to the velocity of the particle. The motion of the particle takes place in a plane, it follows that:(a) its velocity is constant(b) its acceleration is constant

- (d) it moves in a straight line
- 15. A solid sphere is rotating in free space. If the radius of the sphere is increased keeping mass same which one of the following will not be affected?
- (a) Moment of inertia (b) Angular momentum (c) Angular velocity (d) Rotational kinetic energy 16. A ball is thrown from a point with a speed v_0 at an angle of projection θ . From the same point and
- at the same instant, a person starts running with a constant speed $v_0/2$ to catch the ball. Will the person be able to catch the ball? If yes, what should be the angle of projection? (a) Yes, 60^0 (b) Yes, 30^0 (c) No (d) Yes, 45^0
- 17. One solid sphere A and another hollow sphere B are of same mass and same outer radii. Their moment of inertia about their diameters are respectively I_A and I_B such that:

(a)
$$I_A = I_B$$
 (b) $I_A > I_B$ (c) $I_A < I_B$ (d) $I_A/I_B = d_A/d_B$
where d_A and d_B are their densities.

18. A satellite of mass m revolves around the earth of radius R at a height x from its surface. If g is the acceleration due to gravity on the surface of the earth, the orbital speed of the satellite is:

(a)
$$gx$$
 (b) $\frac{gR}{R-x}$ (c) $\frac{gR^2}{R+x}$ (d) $\left(\frac{gR^2}{R+x}\right)^{1/2}$

19. The time period of an earth satellite in circular orbit is independent of:

- (a) the mass of the satellite (b) radius of its orbit
- (c) both the mass and radius of the orbit
- (d) neither the mass of the satellite nor the radius of its orbit
- 20. If g is the acceleration due to gravity on the earth's surface, the gain in the potential energy of an object of mass m raised from the surface of the earth to a height equal to the radius R of the earth, is:
 - (a) 2mgR (b) $\frac{1}{2}mgR$ (c) $\frac{1}{4}mgR$ (d) mgR
- 21. Suppose the gravitational force varies inversely as the nth power of distance. Then the time period of a planet in circular orbit of radius R around the sun will be proportional to:

(a)
$$R^{\left(\frac{n+1}{2}\right)}$$
 (b) $R^{\left(\frac{n-1}{2}\right)}$ (c) R_n (d) $R^{\left(\frac{n-2}{2}\right)}$

22. A wire fixed at the upper end stretches by length l by applying a force F. The work done in stretching is:

(a)
$$F/2l$$
 (b) Fl (c) $2Fl$ (d) $Fl/2$

23. Spherical balls of radius R are falling in a viscous fluid of viscosity η with a velocity v. The retarding viscous force acting on the spherical ball is:
(a) directly proportional to R but inversely proportional to y

(a) directly proportional to R but inversely proportional to v

Kochi Branch: Bldg.No.41/352, Mulloth Ambady lane, Chittoor Road, Kochi - 11, Ph: 0484-2370094, 9388465944 Trivandrum Branch: TC.5/1703/30, Golf Links Road, Kowdiar Gardens, Housing Board Colony, Ph: 0471- 2438271, Mobile: 9387814438. Www.mathiit.com #2#

- www.estudentzone.com (b) directly proportional to both radius R and velocity v (c) inversely proportional to both radius R and velocity v (d) inversely proportional to R but directly proportional to velocity v 24. If two soap bubbles of different radii are connected by a tube: (a) air flows from the bigger bubble to the smaller bubble till the sizes become equal (b) air flows from bigger bubble to the smaller bubble till the sizes are interchanged (c) air flows from the smaller bubble to the bigger (d) there is no flow of air The bob of a simple pendulum executes simple harmonic motion in water with a period t, while the 25. period of oscillation of the bob is t₀ in air. Neglecting frictional force of water and given that the density of the bob is $(4/3) \times 1000$ kg/m³. What relationship between t and t_o is true? (a) $t = t_{n}$ (b) $t = t_0/2$ (C) $t = 2t_0$ (d) $t = 4t_0$ 26. A particle at the end of a spring executes simple harmonic motion with a period t_1 , while the corresponding period for another spring is t₂. If the period of oscillation with the two springs in series is T, then: (a) $T = t_1 + t_2$ (b) $T^2 = t_1^2 + t_2^2$ (c) $T^{-1} = t_1^{-1} + t_2^{-1}$ (d) $T^{-2} = t_1^{-2} + t_2^{-2}$ The total energy of a particle, executing simple harmonic motion is: 27. (b) $\propto x^2$ (c) independent of x (d) $\propto x^{1/2}$ (a) $\propto x$ where x is the displacement from the mean position. The displacement y of a particle in a medium can be expressed as: 28. $y = 10^{-6} \sin(100t + 20x + \frac{\pi}{\Lambda}) m$, where t is in second and x in metre. The speed of the wave is: (a) 2000 m/s (b) 5 m/s (c) 20 m/s (d) $5\pi \, m/s$ 29. A particle of mass m is attached to a spring (of spring constant k) and has a natural angular frequency ω_0 . An external force F(t) proportional to $\cos \omega t \ (\omega \neq \omega_0)$ is applied to the oscillator. The time displacement of the oscillator will be proportional to: (b) $\frac{\mathrm{m}}{\mathrm{m}(\omega_0^2 - \omega^2)}$ (c) $\frac{1}{\mathrm{m}(\omega_0^2 + \omega^2)}$ (d) $\frac{\mathrm{m}}{\omega_0^2 + \omega^2}$ (a) $\frac{m}{\omega_a^2 - \omega^2}$ 30. In forced oscillation of a particle, the amplitude is maximum for a frequency ω_1 of the force while the energy is maximum for a frequency ω_2 of the force, then: (a) $\omega_1 = \omega_2$ (b) $\omega_1 > \omega_2$ (c) $\omega_1 < \omega_2$ when damping is small and $\omega_1 > \omega_2$ when damping is large (d) $\omega_1 < \omega_2$ 31. One mole of ideal monoatomic gas (v = 5/3) is mixed with one mole of diatomic gas (($\gamma = 7/5$). What is γ for the mixture? γ denotes the ratio of specific heat at constant pressure, to that at constant volume. (a) 3/2(b) 23/15 (C) 35/23 (d) 4/332. If the temperature of the sum were to increase from T to 2T and its radius from R to 2R, then the ratio of the radiant energy received on earth to what it was previously, will be: (a) 4 (b) 16 (c) 32 (d) 64 33. Which of the following statements is correct for any thermodynamic system? (a) The internal energy changes in all processes (b) Internal energy and entropy are state functions
 - (c) The change in entropy can never be zero

Kochi Branch:Bldg.No.41/352, Mulloth Ambady lane, Chittoor Road, Kochi - 11, Ph: 0484-2370094, 9388465944Trivandrum Branch:TC.5/1703/30, Golf Links Road, Kowdiar Gardens, Housing Board Colony, Ph: 0471- 2438271,
Mobile: 9387814438.Mobile:9387814438.

34.	(d) The work done in an adiabatic process is always zero Two thermally insulated vessels 1 and 2 are filled with air at temperature (T_1, T_2) , volume (V_1, V_2) and pressure (P_1, P_2) respectively. If the valve joining the two vessels is opened, the temperature inside the vessel at equilibrium will be:
	(a) $T_1 + T_2$ (b) $(T_1 + T_2)/2$ (c) $\frac{T_1T_2(P_1V_1 + P_2V_2)}{P_1V_1T_2 + P_2V_2T_1}$ (d) $\frac{T_1T_2(P_1V_1 + P_2V_2)}{P_1V_1T_1 + P_2V_2T_2}$
35.	A radiation of energy E falls normally on a perfectly reflecting surface. The momentum transferred to the surface is:
	(a) E/c (b) $2E/c$ (c) Ec (d) E/c^2
36.	The temperature of the two outer surfaces of a composite slab, consisting
	of two materials having coefficients of thermal conductivity K and 2K and thickness x and 4x, respectively are T_2 and T_1 ($T_2 > T_1$). The rate $(\Delta(T_1 - T_1)K)$
	of heat transfer through the slab, in a steady state is $\left(\frac{\mathbf{A}(1_2 - 1_1)\mathbf{R}}{\mathbf{X}}\right)\mathbf{f}$,
	with t equals to: (a) $1/2$ (b) $1/2$ (c) $2/2$ (d) $1/2$
37.	(a) I (b) $1/2$ (c) $2/3$ (d) $1/3$ A light ray is incident perpendicular to one face of a 90° prism and is totally internally reflected at the glass-air interface. If the angle of reflection is 45°, we conclude that the refractive index n:
	(a) $n < \frac{1}{\sqrt{2}}$ (b) $n > \sqrt{2}$ (c) $n > \frac{1}{\sqrt{2}}$ (d) $n < \sqrt{2}$
38.	A plano-convex of refractive index 1.5 and radius of curvature 30 cm is silvered at the curved surface. Now this lens has been used to form the image of an object. At what distance from this lens, an object be placed in order to have a real image of the size of the object? (a) 20 cm (b) 20 cm (c) 50 cm (c) 50 cm (c) 50 cm (c) 50 cm
39.	The angle of incidence at which reflected light is totally polarized for reflection from air to glass (refractive index n), is:
	(a) $\sin^{-1}(n)$ (b) $\sin^{-1}(1/n)$ (c) $\tan^{-1}(1/n)$ (d) $\tan^{-1}(n)$
40.	The maximum number of possible interference maxima for slit-separation equal to twice the wavelength in Young's double-slit experiment, is;
	(a) infinite (b) five (c) three (d) zero
41.	An electromagnetic wave of frequency $v = 3.0$ MHz passes from vacuum into a dielectric medium
	with permittivity $\varepsilon = 4.0$. Then:
	(a) wavelength is doubled and frequency remains unchanged
	(b) wavelength is doubled and frequency becomes half
	(c) wavelength is halved and frequency both remain unchanged
42.	Two spherical conductors B and C having equal radii and carrying equal charges in them repel each
	other with a force F when kept apart at some distance. A third spherical conductor having same
	radius as that of B but uncharged, is brought in contact with B, then brought in contact with C and
	finally removed away from both. The new force of repulsion between B and C is:
	(a) $\frac{F}{4}$ (b) $\frac{3F}{4}$ (c) $\frac{F}{8}$ (d) $\frac{3F}{8}$
43.	A charged particle q is shot towards another charged particle Q which is fixed, with a speed v. It
	approaches Q upto a closest distance r and then returns. If q was given a speed 2v, the closest
<u>Koch</u> Triva	Branch: Bldg.No.41/352, Mulloth Ambady lane, Chittoor Road, Kochi - 11, Ph: 0484-2370094, 9388465944 Indrum Branch: TC.5/1703/30, Golf Links Road, Kowdiar Gardens, Housing Board Colony, Ph: 0471- 2438271,

Mobile: 9387814438.

www.mathiit.com #4#

distance of approach would be: $\stackrel{q}{\longrightarrow} \cdots \cdots \stackrel{\leftarrow}{\longleftarrow} \stackrel{r}{\longleftarrow}$ (b) 2r (a) r (c) r/2(d) r/4 44. Four charges equal to -Q are placed at the four corners of a square and a charge q is at its centre. If the system is in equilibrium, the value of q is: (a) $-\frac{Q}{4}(1+2\sqrt{2})$ (b) $\frac{Q}{4}(1+2\sqrt{2})$ (c) $-\frac{Q}{2}(1+2\sqrt{2})$ (d) $\frac{Q}{2}(1+2\sqrt{2})$ 45. Alternating current can not be measured by D.C. ammeter because: (a) A.C. cannot pass through D.C. ammeter (b) A.C changes direction ₹₃Ω (c) Average value of current for complete cycle is zero (d) D.C. ammeter will get damaged 46. The total current supplied to the circuit by the battery is: (a) 1 A (b) 2 A (d) 6 A (c) 4 A 47. The resistance of the series combination of two resistances is S. When they are joined in parallel, the total resistance is P. If S = nP, then the minimum possible value of n is: (a) 4 (b) 3 (c) 2(d) 1 An electric current is passed through a circuit containing two wires of the same material, connected 48. in parallel. If the lengths and radii of the wires are in the ratio of 4/3 and 2/3, then the ratio of the currents passing through the wire will be: (c) 8/9 (a) 3 (b) 1/3 (d) 2 49. In a metre bridge experiment, null point is obtaining at 20 cm from one end of the wire when resistance X is balanced against another resistance Y. If X < Y, then where will be the new position of the null point from the same end, if one decides to balance a resistance of 4X against Y? (b) 80 cm (c) 40 cm (d) 70 cm (a) 50 cm 50. The thermistors are usually made of: (a) metals with low temperature coefficient of resistivity (b) metals with high temperature coefficient of resistivity (c) metal oxides with high temperature coefficient of resistivity (d) semiconducting materials having low temperature coefficient of resistivity Time taken by a 836 W heater to heat one litre of water from 10° C to 40° C is: 51. (a) 50 s (b) 100 s (c) 150 s (d) 200 s 52. The thermo-emf of a thermocouple varies with the temperature θ of the hot junction as E = a θ + $b\theta^2$ in volts where the ratio a/b is 700°C. If the cold junction is kept at 0°C, then the neutral temperature is: (a) 700° C (b) 350°C (c) 1400° C (d) no neutral temperature is possible for this thermocouple 53. The electrochemical equivalent of metal is 3.3×10^{-7} kg per coulomb. The mass of the metal liberated at the cathode when a 3 A current is passed for 2 seconds, will be: (b) 9.9×10^{-7} kg (a) 19.8×10^{-7} kg (c) 6.6×10^{-7} kg (d) 1.1×10^{-7} kg 54. A current *i* ampere flows along an infinitely long straight thin walled tube, then the magnetic induction at any point inside the tube is: (c) $\frac{\mu_0}{4\pi} \cdot \frac{2i}{r}$ tesla (d) $\frac{2i}{r}$ tesla (a) infinite (b) zero 55. A long wire carries a steady current. It is bent into a circle of one turn and the magnetic field at the centre of the coil is B. It is then bent into a circular loop of n turns. The magnetic field at the centre Kochi Branch: Bldg.No.41/352, Mulloth Ambady lane, Chittoor Road, Kochi - 11, Ph: 0484-2370094, 9388465944 Trivandrum Branch: TC.5/1703/30, Golf Links Road, Kowdiar Gardens, Housing Board Colony, Ph: 0471- 2438271 Mobile: 9387814438. www.mathiit.com(#5#

www.estudentzone.com

[of the coil will be:					
	(a) nB (l	b) n^2B	(c) $2nB$	(d) $2n^2B$		
56.	The magnetic field due to	o a current carrying	circular loop of radius	3 cm at a point on the axis at		
	a distance of 4 cm from	the centre is 54 μ	I. What will be its value	ie at the centre of the loop?		
	(a) 250 μ T (b)	o) 150 μT	(c) 125 µT	(d) 75 µT		
57.	Two long conductors, sep exert a force F on each direction is reversed. The is:	orated by a distance other. Now the cur distance is also inc	e d carry currents I_1 and rent in one of them is reased to 3d. The new v	I I_2 in the same direction. They increased to two times and its value of the force between them		
	(a) -2F (l	b) F/3	(c) -2F/3	(d) -F/3		
58.	The length of a magnet is in a vibration magnetome parts are then placed on e will be:	s large compared to ter is 2s. The magne each other with their	its width and breadth. T et is cut along its length like poles together. The	The time period of its oscillation into three equal parts and three time period of this combination		
	(a) 2 s (b)	b) 2/3 s	(c) $2\sqrt{3}$ s	(d) $2/\sqrt{3}$ s		
59.	The materials suitable for	or making electroma	gnets should have:			
	(a) high retentivity and l	high coercivity	(b) low retentivity and	d low coercivity		
60	(c) high retentivity and l	low coercivity	(d) low retentivity and	d high coercivity		
00.	voltage across the LC co	ombination will be;	oss each of the compor	ients. L, C and K is 50 v. The		
	(a) 50 V (b	b) $50\sqrt{2}$ V	(C) 100 V	(d) 0 V (zero)		
61.	A coil having <i>n</i> turns and combination is moved in current in the circuit is:	d resistance $R\Omega$ is time t seconds from	connected with a galvan a magnetic field W_1 w	ometer of resistance $4R \Omega$. This veber to W_2 weber. The induced		
	(a) $\frac{W_2 - W_1}{5Rnt}$ (b)	$\frac{n\left(W_2 - W_1\right)}{5Rt}$	(c) $-\frac{(W_2 - W_1)}{Rnt}$	$(d) - \frac{n \left(W_2 - W_1\right)}{Rt}$		
62.	In a uniform magnetic fie the diameter of the circle mean power generated pe	eld of induction B, a e with angular frequ er period of rotation	wire in the form of server ω . If the total reprint is:	nicircle of radius r rotates about sistance of the circuit is R, the		
	(a) $\frac{B\pi r^2\omega}{\omega}$ (1)	$(B\pi r^2 \omega)^2$	(c) $\frac{(B\pi r\omega)^2}{(B\pi r\omega)^2}$	(d) $\frac{(B\pi r\omega^2)^2}{(B\pi r\omega^2)^2}$		
	2R	8R	2R	8R		
63.	In an LCR circuit, capa	citance is changed	from C to 2C. For the	e resonant frequency to remain		
	(a) 4L (1	e snould be change a) 2L	(c) $L/2$	(d) L/4		
64.	A metal conductor of leng	gth 1 m rotates verti	cally about one of its en	nds at angular velocity 5 radians		
	per second. If the horiz	contal component o	f earth's magnetic field	d is 0.2×10^{-4} T, then the emf		
	developed between the tw	wo ends of the con	ductor is:	(1) 50 V		
65	(a) $5\mu V$ (i) According to Finstein's ph	o) 50µ v	(c) 5 mV	(d) 50 mV		
05.	from a metal Vs the free	quency, of the incid	ent radiation gives a str	aight line whose slope:		
	(a) depends on the natur	e of the metal used	l (b) depends on the in	tensity of the radiation		
	(c) depends both on the	intensity of the rad	iation and the metal us	ed		
66	(a) is the same for all n The work function of a su	hetais and independent 40 eV Theorem	ent of the intensity of the longest wavelength of 1	ne radiation		
	emission from this subst	ance is approximate	ely:	ingine that can cause photoelection		
Koch	Kochi Branch: Bldg.No.41/352, Mulloth Ambady lane, Chittoor Road, Kochi - 11, Ph: 0484-2370094, 9388465944					

Trivandrum Branch:TC.5/1703/30, Golf Links Road, Kowdiar Gardens, Housing Board Colony, Ph: 0471- 2438271,
Mobile: 9387814438.Mobile:9387814438.

\int	(a) 540 nm (b) 400 nm (c) 310 nm (d) 220 nm
67.	A charged oil drop is suspended in uniform field of 3×10^4 V/m so that it neither falls nor rises. The
	charge on the drop will be: (take the mass of the charge = 9.9×10^{-15} kg and g = 10 m/s ²)
	(a) 3.3×10^{-18} C (b) 3.2×10^{-18} C (c) 1.6×10^{-18} C (d) 4.8×10^{-18} C
68.	A nucleus disintegrates into two nuclear parts which have their velocities in the ratio 2 : 1. The rat
	of their nuclear sizes will be:
	(a) $2^{1/3}$: 1 (b) 1: $3^{1/2}$ (c) $3^{1/2}$: 1 (d) 1: $2^{1/3}$
69.	The binding energy per nucleon of deuteron $\begin{pmatrix} 2\\1 \end{pmatrix}$ and helium nucleus $\begin{pmatrix} 4\\2 \end{pmatrix}$ is 1.1 MeV and 7 Me
	respectively. If two deuteron nuclei reacts to form a single helium nucleus, then the energy release is:
	(a) 13.9 MeV (b) 26.9 MeV (c) 23.6 MeV (d) 19.2 MeV
70.	An α - particle of energy 5 MeV is scattered through 180° by a fixed uranium nucleus. The distance
	of the closest approach is of the order of:
	(a) 1 Å (b) 10^{-10} cm (c) 10^{-12} cm (d) 10^{-15} cm
71.	When <i>npn</i> transistor is used as an amplifier:
	(a) electrons move from base to collector (b) holes move from emitter to base
	(c) electrons move from collector to base (d) holes move from base to emitter
72.	For a transistor amplifier in common emitter configuration for load impedance of $1 k\Omega$ (h _e = 50 ar
	$h_{\mu} = 25 \mu A/V$, the current gain is:
	(a) -5.2 (b) -15.7 (c) -24.8 (d) -48.78
73.	A piece of copper and another of germanium are cooled from room temperature to 77 K, th
	resistance of :
	(a) each of them increases (b) each of them decreases
	(c) copper decreases and germanium increases (d) copper increases and germanium decreases
74.	The manifestation of band structure in solids is due to;
	(a) Heisenberg's uncertainty principle (b) Pauli's exclusion principle
	(c) Bohr's correspondence principle (d) Boltzmann's law
75.	When p - n junction diode is forward biased, then:
	(a) the depletion region is reduced and barrier height is increased
	(b) the depletion region is widened and barrier height is reduced
	(c) both the depletion region and barrier height are reduced
	(d) both the depletion region and barrier height are increased
76.	Which of the following sets of quantum numbers is correct for an electron in 4f orbital?
	(a) $n = 4, 1 = 3, m = +4, s = +1/2$ (b) $n = 4, 1 = 4, m = -4, s = -1/2$
	(c) $n = 4, 1 = 3, m = +1, s = +1/2$ (d) $n = 3, 1 = 2, m = -2, s = +1/2$
77.	Consider the ground state of Cr atom ($Z = 24$). The numbers of electrons with the azimuthal quantu
	numbers, $l = 1$ and 2 are, respectively:
	(a) 12 and 4 (b) 12 and 5 (c) 16 and 4 (d) 16 and 5
78.	Which one of the following ions has the highest value of ionic radius?
	(a) Li^+ (b) B^{3+} (c) O^{2-} (d) F^-
79.	The wavelength of the radiation emitted, when in a hydrogen atom electron falls from infinity
	stationary state 1, would be (Rydberg constant = 1.097×10^7 m ⁻¹) :
	(a) 91 nm (B) 192 nm (c) 406 nm (d) 9.1×10^{-8} nm
80.	The correct order of bond angles (smallest first) in H_2S , NH_3 , BF_3 and SiH_4 is:
	(a) $H_2S < SiH_4 < NH_3 < BF_3$ (b) $NH_3 < H_2S < SiH_4 < BF_3$
	(c) $H_2S < NH_3 < SIH_4 < BF_3$ (d) $H_2S < NH_3 < BF_3 < SiH_4$
81.	Which one of the following sets of ions represents the collection of isoelectronic species?
1	(a) K^+ , Ca^{2+} , Sc^{3+} , Cl^- (b) N^+ , Ca^{2+} , Sc^{3+} , F^-
<u>Koch</u> <u>Triva</u>	<mark>hi Branch:</mark> Bldg.No.41/352, Mulloth Ambady lane, Chittoor Road, Kochi - 11, Ph: 0484-2370094, 938846594 andrum Branch: TC.5/1703/30, Golf Links Road, Kowdiar Gardens, Housing Board Colony, Ph: 0471- 2438271,

Mobile: 9387814438.

www.mathiit.com(#7#

ſ	(c) K^+ , Cl^- , Mg^{2+} , Sc^{3+} (d) Na^+ , Mg^{2+} , Al^{3+} , Cl^-
	(Atomic numbers F = 9, Cl = 17, Na = 11, Mg = 12, Al = 13, K = 19, Ca = 20, Sc = 21)
82.	Among Al ₂ O ₃ , SiO ₂ , P ₂ O ₃ and SO ₂ the correct order of acid strength is:
	(a) $SO_2 < P_2O_2 < SiO_2 < Al_2O_2$ (b) $SiO_2 < SO_2 < Al_2O_2 < P_2O_2$
	(c) $Al_2O_2 < SiO_2 < SO_2 < P_2O_2$ (d) $Al_2O_2 < SiO_2 < P_2O_2 < SO_2$
83.	The bond order in NO is 2.5 while that in NO ⁺ is 3. Which of the following statements is true for
	these two species?
	(a) Bond length in NO^+ is greater than in NO (b) Bond length in NO is greater than in NO^+
	(c) Bond length in NO ⁺ is equal to that in NO (d) Bond length is unpredictable
84.	The formation of the oxide ion $O^{2-}(g)$ requires first an exothermic and then an endothermic step as
	shown below.
	O(x) + x = O(x) + x = 142 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +
	$O(g) + e = O(g); \Delta H^{\circ} = -142$ KJmol [*]
	$O(g)^{-} + e^{-} = O^{2-}(g); \Delta H^{0} = 844 \text{ kJmol}^{-1}$
	This is because:
	(a) oxygen is more electronegative (b) oxygen has high electron affinity
	(c) O ⁻ ion will tend to resist the addition of another electron
	(d) O ion has comparatively larger size than oxygen atom
85.	The states of hybridisation of boron and oxygen atoms in boric acid (H ₃ BO ₃) are respectively:
	(a) sp^2 and sp^2 (b) sp^2 and sp^3 (c) sp^3 and sp^2 (d) sp^3 and sp^3
86.	Which one of the following has the regular tetrahedral structure?
	(a) XeF_4 (b) SF_4 (c) BF_4^{-} (d) $[Ni(CN)_4]^{2-}$
	(Atomic numbers $B = 5$, $S = 16$, $Ni = 28$, $Xe = 54$)
87.	Of the following outer electronic configurations of atoms, the highest oxidation state is achieved by
	which one of them?
	(a) $(n - 1) d^8ns^2$ (b) $(n - 1) d^5ns^1$ (c) $(n - 1) d^3ns^2$ (d) $(n - 1) d^5ns^2$
88.	As the temperature is raised from 20°C to 40°C, the average kinetic energy of neon atoms changes
	by a factor of which of the following?
	(a) $1/2$ (b) $\sqrt{313/293}$ (c) $313/293$ (d) 2
89.	The maximum number of 90° angles between bond pair-bond pair of electrons is observed in:
	(a) dsp ³ hybridisation (b) sp ³ d hybridisation (c) dsp ² hybridisation (d) sp ³ d ² hybridisation
90.	Which one of the following aqueous solutions will exhibit highest boiling point?
	(a) 0.01 M Na ₂ SO ₄ (b) 0.01 M KNO ₃ (c) 0.015 M urea (d) 0.015 M glucose
91.	Which among the following factors is the most important in making fluorine the strongest oxidising
	agent?
	(a) Electron affinity (b) Ionisation enthalpy
	(c) Hydration enthalpy (d) Bond dissociation energy
92.	In Van der Waals equation of state of the gas law, the constant 'b' is a measure of:
	(a) intermolecular repulsions (b) intermolecular attraction
	(c) volume occupied by the molecules (d) intermolecular collisions per unit volume
93.	The conjugate base of $H_2PO_4^-$ is:
	(a) PO_{4}^{3-} (b) $P_{2}O_{5}$ (c) $H_{3}PO_{4}$ (d) HPO_{4}^{2-}
94.	6.02×10^{20} molecules of urea are present in 100 mL of its solution. The concentration of urea solution
	is:
	(a) 0.001 M (b) 0.01 M (c) 0.02 M (d) 0.1 M
	(Avogadro constant, $N_A = 6.02 \times 10^{23} \text{ mol}^{-1}$)
95.	To neutralise completely 20 mL of 0.1 M aqueous solution of phosphorus acid (H ₃ PO ₃), the volume
	of 0.1 M aqueous KOH solution required is:
Koch	i Branch: Bldg.No.41/352, Mulloth Ambady lane, Chittoor Road, Kochi - 11, Ph: 0484-2370094, 9388465944
Triva	ndrum Branch: TC.5/1703/30, Golf Links Road, Kowdiar Gardens, Housing Board Colony, Ph: 0471- 2438271,
l	Mobile: 9387814438. www.mathiit.com #8#

\square	(a) 10 mL	(b) 20 mL	(c) 40 mL	(d) 60 mL
96.	For which of the fol	lowing parameters the	structural isomers C	C ₄ H ₂ OH and CH ₂ OCH ₂ would be
	expected to have the	same values?		2 5 5 5
	(a) Heat of vaporisation	on	(b) Vapour pressure	at the same temperature
	(c) Boiling points	(d) Gaseous densities	s at the same temperative	ature and pressure
97	Which of the followir	g liquid pairs shows	a positive deviation fr	rom Raoult's law?
_	(a) Water - hydrochlo	ric acid	(b) Benzene - meth	anol
	(c) Water - nitric acid		(d) Acetone - chlor	oform
98	Which one of the foll	owing statements is fa	lse?	
10.	(a) Raoult's law states	that the vapour pressu	re of a component ov	er a solution is proportional to its
	mole fraction	that the support presso		er a seranon is proportional to he
	(b) The osmotic press	ure (π) of a solution	is given by the equa	ation $\pi = MRT$, where M is the
	molarity of the solution)n	8	
	(c) The correct order	of osmotic pressure for	or 0.01 M aqueous so	plution of each compound is
	BaCl > KCl > CH.Cl	OOH > sucrose		
	(d) Two sucrose solution	ons of same molality p	repared in different so	lvents will have the same freezing
	point depression	J J J J J J J J J J	I	
99.	What type of crystal	defect is indicated in	the diagram below?	
	Na ⁺ , Cl ⁻ , Na ⁺ , Cl ⁻ , Na ⁺	, Cl ⁻	C	
	Cl ⁻ ● Cl ⁻ Na ⁺ ● Na	+		
	$N_{0+} C^{1-} \Theta = C^{1-} N_{0+} C$	1-		
		1		
	$Cl^{-} Na^{+} Cl^{-} Na^{+} \bullet Na$	a^+		
	(a) Frenkel defect	(b) Schottky defect	(c) Interstitial defect	(d) Frenkel and Schottky defects
100.	An ideal gas expands	in volume from 1×1	$0^{-3}m^3$ to $1 \times 10^{-2}m^3$ at	300K against a constant pressure
	of 1×10^5 Nm ⁻² . The v	work done is:		
	(a) -900 J	(b) -900 kJ	(c) 270 kJ	(d) 900 kJ
101.	In a hydrogen-oxygen	fuel cell, combustion	of hydrogen occurs	to:
	(a) generate heat	(b) cre	ate potential difference	e between the two electrodes
	(c) produce high purit	y water (d) rem	ove absorbed oxygen	from electrode surfaces
102.	In a first order reaction	on, the concentration	of the reactant, decrea	ases from 0.8 M to 0.4 M in 15
	minutes. The time tak	en for the concentration	on to change from 0.1	M to 0.025 M is:
100	(a) 30 min	(b) 15 min	(c) 7.5 min	(d) 60 min
103.	What is the equilibriu	m expression for the	reaction	
		$P_4(s) + 5O_2(g) \rightleftharpoons$	$P_4O_{10}(s)?$	
	$[P_4O_{10}]$	$[P_4O_{10}]$	(\cdot) \mathbf{V} [O]5	(l) y 1
	(a) $K_c = \frac{1}{[P_4][O_2]^5}$	(b) $K_c = \frac{1}{5[P_A][O_2]}$	(c) $\mathbf{K}_{c} = [\mathbf{O}_{2}]^{3}$	(d) $K_c = \frac{1}{[O_2]^5}$
104	Equitien	2 492 29		22
$ ^{104}$.	For the reaction,		1.	
	$CO(g) + CI_2(g) \rightleftharpoons$	$\text{COCl}_2(g)$, the K_p/K_c is	equal to:	
	(a) 1/RT	(b) RT	(c) \sqrt{RT}	(d) 1.0
105.	The equilibrium const	ant for the reaction		
		$N_2(g) + O_2(g) \rightleftharpoons$	2NO(g)	
	at temperature T is 4;	$\times 10^{-4}$. The value of K	for the reaction:	
	NO(g) =	$\Rightarrow \frac{1}{2}N_2(g) + \frac{1}{2}O_2(g)$	at the same temperatur	re is :
	(a) 2.5×10^2	(b) 50	(c) 4×10^{-4}	(d) 0.02
Kochi	Branch: Bldg.No.41/352	, Mulloth Ambady lane,	Chittoor Road, Kochi -	11, Ph: 0484-2370094, 9388465944
<u>Triva</u>	ndrum Branch: TC.5/1703	/30, Golf Links Road, Kow	diar Gardens, Housing Bo	oard Colony, Ph: 0471- 2438271,
	Mobile: 9	307014430.		www.mainiit.com(#9#

106. The rate equation for the reaction $2A + B \longrightarrow C$ is found to be : rate = k = [A][B]. (a) unit of k must be s⁻¹ (b) $t_{1/2}$ is a constant (c) rate of formation of C is twice the rate of disappearance of A (d) value of k is independent of the initial concentrations of A and B 107. Consider the following E^0 values: $E^0_{Fe3+/Fe2+} = +0.77 V$ $E^{0}_{Sn^{2+}/Sn} = -0.14 V$ Under standard conditions the potential for the reaction $Sn(s) + 2Fe^{3+}$ (aq) $\rightarrow 2Fe^{2+}$ (aq) $+ Sn^{2+}$ (aq) is: (b) 1.40 V (a) 1.68 V (c) 0.91 V (d) 0.63 V 108. The molar solubility (in mol L⁻¹) of a sparingly soluble salt MX_4 is 's'. The corresponding solubility product is K_{sp} . s is given in terms of K_{sp} by the relation: (b) s = $(128 \text{ K}_{sp})^{1/4}$ (c) s = $(256 \text{ K}_{sp})^{1/5}$ (a) s = $(K_{sn}/128)^{1/4}$ (d) s = $(K_{sp}/256)^{1/5}$ 109. The standard e.m.f of a cell, involving one electron change is found to be 0.591 V at 25°C. The equilibrium constant of the reaction is (F = 96,500 C mol⁻¹, R = 8.314 JK⁻¹ mol⁻¹): (d) 1.0×10^{30} (a) 1.0×10^{1} (b) 1.0×10^5 (c) 1.0×10^{10} 110. The enthalpies of combustion of carbon and carbon monoxide are -393.5 and -283 kJ mol⁻¹ respectively. The enthalpy of formation of carbon monoxide per mole is: (a) 110.5 kJ (b) 676.5 kJ (c) -676.5 kJ (d) -110.5 kJ 111. The limiting molar conductivities \wedge^0 for NaCl, KBr and KCl are 126, 152 and 150 S cm² mol⁻¹ respectively. The \wedge^0 for NaBr is: (a) $128 \text{ S cm}^2 \text{ mol}^{-1}$ (b) 176 S cm² mol⁻¹ (c) 278 S cm² mol⁻¹ (d) $302 \text{ S cm}^2 \text{ mol}^{-1}$ 112. In a cell that utilizes the reaction $Zn(s) + 2H^+$ (aq) $\rightarrow Zn^{2+}$ (aq) + H₂(g) addition of H₂SO₄ to cathode compartment, will: (a) lower the E and shift equilibrium to the left (b) lower the E and shift the equilibrium to the right (c) increase the E and shift the equilibrium to the right (d) increase the E and shift the equilibrium to the left 113. Which one of the following statements regarding helium is incorrect? (a) It is used to fill gas balloons instead of hydrogen because it is lighter and non-inflammable (b) It is used as a cryogenic agent for carrying out experiments at low temperatures (c) It is used to produce and sustain powerful superconducting magnets (d) It is used in gas-cooled nuclear reactors 114. Identify the correct statement regarding enzymes: (a) Enzymes are specific biological catalysts that can normally function at very high temperatures (T - 1000K). (b) Enzymes are normally heterogeneous catalysts that are very specific in their action (c) Enzymes are specific biological catalysts that cannot be poisoned (d) Enzymes are specific biological catalysts that possess well defined active sites. 115. One mole of magnesium nitride on the reaction with an excess of water gives: (a) one mole of ammonia (b) one mole of nitric acid (c) two moles of ammonia (d) two moles of nitric acid 116. Which one of the following ores is best concentrated by froth-floatation method? (a) Magnetite (b) Cassiterite (c) Galena (d) Malachite 117. Beryllium and aluminium exhibit many properties which are similar. But, the two elements differ in: (a) exhibiting maximum covalency in compounds (b) forming polymeric hydrides (c) forming covalent halides (d) exhibiting amphoteric nature in their oxides 118. Aluminium chloride exists as dimer, Al₂Cl₆ in solid state as well as in solution of non-polar solvents such as benzene. When dissolved in water, it gives: Kochi Branch: Bldg.No.41/352, Mulloth Ambady lane, Chittoor Road, Kochi - 11, Ph: 0484-2370094, 9388465944 Trivandrum Branch: TC.5/1703/30, Golf Links Road, Kowdiar Gardens, Housing Board Colony, Ph: 0471- 2438271,

www.mathiit.com(#10#

Mobile: 9387814438.

(b) $[Al(H_2O)_{c}]^{3+} + 3Cl^{-}$ (c) $[Al(OH)_{c}]^{3-} + 3HCl$ (d) $Al_2O_3 + 6HCl$ (a) $Al^{3+} + 3Cl^{-}$ 119. The soldiers of Napoleon army while at Alps during freezing winter suffered a serious problem as regards to the tin buttons of their uniforms. White metallic tin buttons got converted to grey powder. This transformation is related to: (a) a change in the crystalline structure of tin (b) an interaction with nitrogen of the air at very low temperatures (c) a change in the partial pressure of oxygen in the air (d) an interaction with water vapour contained in the humid air 120. The $E_{M^{3+}/M^{2+}}^{0}$ values of Cr, Mn, Fe and Co are -0.41, + 1.57, +0.77 and +1.97 V respectively. For which one of these metals the change in oxidation state from +2 to +3 is easiest? (b) Mn (c) Fe (a) Cr (d) Co 121. Excess of KI reacts with CuSO₄ solution and then Na₂S₂O₃ solution is added to it. Which of the statements is incorrect for this reaction? (a) Cu_2I_2 is formed (b) CuI₂ is formed (c) $Na_2S_2O_3$ is oxidised (d) Evolved I₂ is reduced 122. Among the properties (A) reducing (B) oxidising (C) complexing, the set of properties shown by CNion towards metal species is: (a) A, B (b) B, C (c) C, A (d) A, B, C 123. The co-ordination number of a central metal atom in a complex is determined by: (a) the number of ligands around a metal ion bonded by sigma bonds (b) the number of ligands around a metal ion bonded by pi-bonds (c) the number of ligands around a metal ion bonded by sigma and pi-bonds both (d) the number of only anionic ligands bonded to the metal ion 124. Which one of the following complexes is an outer orbital complex? (a) $[Fe(CN)_{2}]^{4-}$ (b) $[Mn(CN)_{2}]^{4-}$ (c) $[Co(NH_3)_6]^{3+}$ (d) $[Ni(NH_2)_2]^{2+}$ 125. Co-ordination compounds have great importance in biological systems. In this context which of the following statements is incorrect? (a) Chlorophylls are green pigments in plants and contain calcium (b) Haemoglobin is the red pigments of blood and contains iron (c) Cyanocobalamin is vitamin B_{12} and contains cobalt (d) Carboxypeptidase-A is an enzyme and contains zinc 126. Cerium (Z = 58) is an important member of the lanthanides. Which of the following statements about cerium is incorrect? (a) The common oxidation states of cerium are +3 and +4(b) The +3 oxidation state of cerium is more stable than the +4 oxidation state (c) The +4 oxidation state of cerium is not known in solutions (d) Cerium (IV) acts as an oxidising agent 127. Which one of the following has largest number of isomers? (b) $[Co(NH_3)_5 Cl]^{2+}$ (c) $[Ir(PR_3)_7 H (CO)]^{2+}$ (d) $[Co(en)_7 Cl_7]^{+}$ (a) $[Ru(NH_3)_4 Cl_2]^+$ (R = alkyl group, en = ethylenediamine)128. The correct order of magnetic moments (spin only values in (B.M.) among the following is: (Atomic numbers Mn = 25, Fe = 26, Co = 27) 129. Consider the following nuclear reactions: $^{238}_{92}M \rightarrow^{x}_{y}N+2 \;^{4}_{2}He \; ; \; \;^{x}_{y}N \rightarrow^{A}_{B}L+2\beta^{+}$ The number of neutrons in the element L is: (a) 142 (b) 144 (c) 140 (d) 146 Kochi Branch: Bldg.No.41/352, Mulloth Ambady lane, Chittoor Road, Kochi - 11, Ph: 0484-2370094, 9388465944 Trivandrum Branch: TC.5/1703/30, Golf Links Road, Kowdiar Gardens, Housing Board Colony, Ph: 0471- 2438271 Mobile: 9387814438. www.mathiit.com(#11#

143.	On mixing ethyl acetate with aqueous sodium	n chloride, the composition of the resultant solution is:
	(a) $CH_3COOC_2H_5 + NaCl$	(b) $CH_3COONa + C_2H_5OH$
	(c) $CH_3COC1 + C_2H_5OH + NaOH$	(d) $CH_3Cl + C_2H_5COONa$
144.	Acetyl bromide reacts with excess of CH_3M_8	gI followed by treatment with a saturated solution of
	NH_4Cl gives:	
	(a) acetone (b) acetamide	(c) 2-methyl-2-propanol (d) acetyl iodide
145.	Which one of the following is reduced with	zinc and hydrochloric acid to give the corresponding
	hydrocarbon?	
	(a) Ethyl acetate (b) Acetic acid	(c) Acetamide (d) Butan-2-one
146.	Which one of the following undergoes react corresponding alcohol and acid?	ion with 50% sodium hydroxide solution to give the
	(a) Phenol (b) Benzaldehyde	(c) Butanal (d) Benzoic acid
147.	Among the following compounds which can	be dehydrated very easily?
		О Н I
	(a) $CH_3CH_2CH_2CH_2CH_2OH$	(b) $C H_3 C H_2 C H_2 C H C H_3$
	CH ₃	
	(c) $C H_3 C H_2 C C H_2 C H_3$	(d) C H 3C H 2C H C H 2C H 2O H
	ОН	CH ₃
148.	Which of the following compounds is not cl	hiral?
	(a) 1-chloropentane	(b) 2-chloropentane
1.10	(c) 1-chloro-2-methyl pentane	(d) 3-chloro-2-methyl pentane
149.	Insulin production and its action in human	body are responsible for the level of diabetes. This
	compound belongs to which of the following	g categories?
1.50	(a) A co-enzyme (b) A hormone	(c) An enzyme (d) An antibiotic
150.	The smog is essentially caused by the present	nce or:
	(a) O_2 and O_3 (b) O_2 and N_2	(c) oxides of support and mitrogen (d) O_3 and N_2
1		
1		
1		
1		
1		
1		
Ka-1	Provola Dido No 11/259 Multure Auchander 1	Chittoon Doad Kochi 11 DL. 0404 2270004 0200465044
<u>nucni</u>	Dianch. Diag. NO.41/552, Mulloth Ambaay lane,	Спинов Коии, Кости - 11, Р.т. 0404-25/0094, 9588405944

	<u>AIEEE</u>	2004 Physics	<u>& Chemistry</u>	<u>Answer Key</u>	
	с	51.	c	101.	b
	a	52.	d	102.	a
	с	53.	a	103.	d
	a	54.	D	104.	a 1
	C b	55. 56	D	105.	D
	U d	50.	a	100.	a
	u d	59	t h	107.	C
	u	50	0	108.	D
	a b	<i>5</i> 9.	d	109.	C d
•	U	61	u b	110.	u
•	a b	62	b	111.	a
•	b	63	0	112.	C
•	C	64	b	113.	d d
•	b b	65	d	115	u C
•	a	66	C C	115.	c c
•	u C	67	a	117	e a
•	d	68	d	117.	a b
•	a	69.	c	110.	a
	b	70.	c	120	a
	a	71.	d	121	u b
	d	72.	d	122.	c
	b	73.	c	123	a
	c	74.	b	124.	d
•	С	75.	C	125.	a
	b	76.	С	126.	с
	с	77.	b	127.	d
	b	78.	с	128.	а
•	b	79.	а	129.	b
	а	80.	с	130.	с
•	a	81.	a	131.	а
•	d	82.	d	132.	с
	b	83.	b	133.	d
	с	84.	с	134.	c
	b	85.	b	135.	с
	d	86	с	136	b
	b	87.	d	137.	a
	а	88.	с	138.	с
	d	99.	d	139.	d
•	b	90.	a	140.	d
•	с	91.	с	141.	а
•	d	92.	с	142.	b
•	d	93.	d	143.	а
•	b	94.	b	144.	С
•	с	95.	с	145.	d
•	с	96.	d	146.	b
•	a	97.	b	147.	С
•	b	98.	d	148.	a
•	a	99.	b	149.	b
•	с	100.	а	150.	с

www.mathiit.com #14# Mobile: 9387814438.

22.	If $u = \sqrt{a^2 \cos^2 \theta + b^2}$	$\sin^2 \theta + \sqrt{a^2 \sin^2 \theta + b^2}$	$\frac{1}{\cos^2\theta}$ then the different	nce between the maximum and		
	minimum values of u ²	² is given by:				
	(a) $2(a^2 + b^2)$	(b) $2\sqrt{a^2+b^2}$	(c) $(a + b)^2$	(d) $(a - b)^2$		
23.	The sides of a triangle	are $\sin \alpha$, $\cos \alpha$ and	$\sqrt{1+\sin\alpha\cos\alpha}$ for som	the $0 < \alpha < \frac{\pi}{2}$. Then the greatest		
	angle of the triangle i	s:				
24	(a) 60°	(b) 90°	(c) 120°	(d) 150°		
24.	on the opposite bank of	of the river is 60° and	when he retires 40 mete	rs away from the tree the angle		
	of elevation becomes	30° . The breadth of t	he river is:			
	(a) 20 m	(b) 30 m	(c) 40 m	(d) 60 m		
25.	If $f: \mathbf{R} \to \mathbf{S}$, defined	by $f(x) = \sin x - \sqrt{3} c$	$\cos x + 1$, is onto, then the	e interval of S is:		
	(a) [0, 3]	(b) [-1, 1]	(c) [0, 1]	(d) [-1, 3]		
26.	The graph of the funct (a) $f(x + 2) = f(x - 2)$	tion $y = f(x)$ is symm (b) $f(2 + x) = f(2)$	netrical about the line x 2 - x) (c) $f(x) = f(-x)$	= 2, then: (d) $f(x) = -f(-x)$		
27.	The domain of the fu	nction $f(x) = \frac{\sin^{-1}(x - x)}{\sqrt{9 - x}}$	$\frac{-3)}{2}$ is:			
	(a) [2, 3]	(b) [2, 3)	(c) [1, 2]	(d) [1, 2)		
28.	If $\lim_{x \to \infty} \left(1 + \frac{a}{x} + \frac{b}{x^2} \right)^{2x}$	$=e^{2}$, then the values	of a and b, are:			
	(a) $a \in R, b \in R$	(b) $a = 1, b \in R$	(c) $a \in R, b = 2$	(d) $a = 1, b = 2$		
29.	Let $f(x) = \frac{1 - \tan x}{4x - \pi}$, x	$\neq \frac{\pi}{4}, x \in \left[0, \frac{\pi}{2}\right]$. If the formula $x \in \left[0, \frac{\pi}{2}\right]$ is the formula $x \in \left[0, \frac{\pi}{2}\right]$.	$f(\mathbf{x})$ is continuous in $\begin{bmatrix} 0, \\ \end{bmatrix}$	$\left[\frac{\pi}{2}\right]$, then $f\left(\frac{\pi}{4}\right)$ is:		
	(a) 1	(b) $\frac{1}{2}$	(c) $-\frac{1}{2}$	(d) -1		
30.	If $x = e^{y + e^{y + \dots + \infty}}$, $x > 0$,	then $\frac{dy}{dx}$ is:				
	x	1	1-x	1+x		
	(a) $\frac{1+x}{1+x}$	$\begin{pmatrix} b \end{pmatrix} = \frac{1}{X}$	(c) $\frac{1}{x}$	(d) $\frac{1}{X}$		
31.	A point on the parabolis:	bla $y^2 = 18x$ at which	the ordinate increases a	t twice the rate of the abscissa		
	(a) (2, 4)	(b) (2, -4)	(c) $\left(\frac{-9}{8}, \frac{9}{2}\right)$	(d) $\left(\frac{9}{8}, \frac{9}{2}\right)$		
32.	A function $y = f(x)$ has	as a second order deriv	vative $f'' = 6(x - 1)$. If its	s graph passes through the point		
	(2, 1) and at that point (2) $(7 - 1)^2$	the tangent to the g	graph is $y = 3x - 5$, then	the function is: $(A) (m + 1)^2$		
22	(a) $(X - 1)^2$ The normal to the our	(D) $(X - 1)^{3}$	(c) $(X + 1)^{c}$ $x = a \sin \theta$ at $ \theta $ always	(u) $(X + 1)^{n}$		
35.	(a) $(a, 0)$	$v = x - a(1 + \cos \theta),$ (b) (0, a)	$y = asin \Theta$ at Θ always (c) (0, 0)	(d) (a, a)		
V. J	· · · · · · · · · · · · · · · · · · ·			1 DL. 0404 0070004 0000465044		
Koch <u>Triv</u> a	<u>и вrancn:</u> Bldg.No.41/352 undrum Branch: TC.5/1703,	z, Muttoth Ambady lane, /30, Golf Links Road, Kov	Cnittoor Road, Kochi - 1 vdiar Gardens, Housing Boai	1, Pn: 0484-23/0094, 9388465944 d Colony, Ph: 0471- 2438271,		
	Mobile: 9387814438. www.mathiit.com #17#					

If 2a + 3b + 6c = 0, then at least one root of the equation $ax^2 + bx + c = 0$ lies in the interval: 34. (c) (2, 3) (a) (0, 1)(b) (1, 2) (d) (1, 3) 35. $\lim_{n\to\infty}\sum_{n=1}^{n}\frac{1}{n}e^{r/n}$ is: (b) e - 1 (c) 1 - e (a) e (d) e + 136. If $\int \frac{\sin x}{\sin(x-\alpha)} dx = Ax + B \log \sin(x-\alpha) + C$, then value of (A, B) is: (b) $(\cos\alpha, \sin\alpha)$ (c) $(-\sin\alpha, \cos\alpha)$ (d) $(-\cos\alpha, \sin\alpha)$ (a) $(\sin \alpha, \cos \alpha)$ 37. $\int \frac{dx}{\cos x - \sin x}$ is equal to: (a) $\frac{1}{\sqrt{2}}\log\left|\tan\left(\frac{x}{2}-\frac{\pi}{8}\right)\right|+c$ (b) $\frac{1}{\sqrt{2}}\log\left|\cot\left(\frac{x}{2}\right)\right|+c$ (c) $\frac{1}{\sqrt{2}}\log\left|\tan\left(\frac{x}{2}-\frac{3\pi}{8}\right)\right|+c$ (d) $\frac{1}{\sqrt{2}}\log\left|\tan\left(\frac{x}{2}+\frac{3\pi}{8}\right)\right|+c$ 38. The value of $\int_{-2}^{3} |1-x^2| dx$ is: (a) $\frac{28}{3}$ (b) $\frac{14}{2}$ (c) $\frac{7}{2}$ (d) $\frac{1}{3}$ 39. The value of $I = \int_0^{\pi/2} \frac{(\sin x + \cos x)^2}{\sqrt{1 + \sin 2x}} dx$ is: (a) 0 (c) 2 (b) 1 (d) 3 40. If $\int_0^{\pi} xf(\sin x) dx = A \int_0^{\pi/2} f(\sin x) dx$, then A is equal to: (c) $\frac{\pi}{4}$ (a) 0 (b) π (d) 2π 41. If $f(x) = \frac{e^x}{1+e^x}$, $I_1 = \int_{f(-a)}^{f(a)} xg\{x(1-x)\} dx$ and $I_2 = \int_{g(x(1-x))}^{f(a)} g\{x(1-x)\} dx$, then the value of $\frac{1_2}{1_1}$ is: (a) 2 (b) -3(c) -1 42. The area of the region bounded by the curves y = |x - 2|, x = 1, x = 3 and the x-axis is: (c) 3(b) 2 (a) 1 The differential equation for the family of curves $x^2 + y^2 - 2ay = 0$, where a is an arbitrary constant 43. (a) $2(x^2 - y^2)y' = xy$ (b) $2(x^2 + y^2)y' = xy$ (c) $(x^2 - y^2)y' = 2xy$ (d) $(x^2 + y^2)y' = 2xy$ 44. The solution of the differential equation $ydx + (x + x^2y) dy = 0$ is: (b) $-\frac{1}{xy} + \log y = c$ (c) $\frac{1}{xy} + \log y = c$ (d) $\log y = cx$ (a) $-\frac{1}{xy} = c$ 45. Let A (2, -3) and B (-2, 1) be vertices of a triangle ABC. If the centroid of this triangle moves on the line 2x + 3y = 1, then the locus of the vertex C is the line: (a) 2x + 3y = 9(b) 2x - 3y = 7(c) 3x + 2y = 5(d) 3x - 2y = 346. The equation of the straight line passing through the point (4, 3) and making intercepts on the coordinate axes whose sum is -1 is: (a) $\frac{x}{2} + \frac{y}{3} = -1$ and $\frac{x}{-2} + \frac{y}{1} = -1$ (b) $\frac{x}{2} - \frac{y}{3} = -1$ and $\frac{x}{-2} + \frac{y}{1} = -1$ Kochi Branch: Bldg.No.41/352, Mulloth Ambady lane, Chittoor Road, Kochi - 11, Ph: 0484-2370094, 9388465944 Trivandrum Branch: TC.5/1703/30, Golf Links Road, Kowdiar Gardens, Housing Board Colony, Ph: 0471- 2438271 Mobile: 9387814438. www.mathiit.com(#18#

	(c) $\frac{x}{2} + \frac{y}{3} = 1$ and $\frac{x}{-2} + \frac{y}{1} = 1$	(d) $\frac{x}{2} - \frac{y}{3} = 1$ and $\frac{x}{-2} + \frac{y}{1}$	-=1
47.	If the sum of the slopes of the lines given b	$x^2 - 2cxy - 7y^2 = 0$	is four times their product, then
	c has the value: (a) 1 (b) -1	(c) 2	(d) -2
18	(a) I (b) -1 If one of the lines given by $6x^2 - xy + 4cy^2$	(c) 2 -0 is $3x + 4y - 0$ f	$(\mathbf{u}) - 2$
40.	(a) 1 (b) -1	= 0 15 5x + 4y = 0, 1	(d) -3
49	(a) I (b) -1 If a circle passes through the point (a, b) and	(u) 5 cuts the circle $\mathbf{x}^2 + \mathbf{y}^2$	-4 orthogonally then the locus
T <i>J</i> .	of its centre is:	euts the chere x + y	- + orthogonarry, then the locus
	(a) $2ax + 2by + (a^2 + b^2 + 4) = 0$	(b) $2ax + 2by - (a^2 +$	$b^2 + 4) = 0$
	(c) $2ax + 2by + (a^2 + b^2 + 4) = 0$	(d) $2ax - 2by - (a^2 + a^2)$	$b^{2} + 4) = 0$
50.	A variable circle passes through the fixed po	bint $A(p, q)$ and touches	s x-axis. The locus of the other
	end of the diameter through A is:		
	(a) $(x - p)^2 = 4qy$ (b) $(x - q)^2 = 4py$	(c) $(y - p)^2 = 4qx$	(d) $(y - q)^2 = 4px$
51.	If the lines $2x + 3y + 1 = 0$ and $3x - y - 4 =$	= 0 lie along diameters of	of a circle of circumference 10π ,
	then the equation of the circle is:		
	(a) $x^2 + y^2 - 2x + 2y - 23 = 0$	(b) $x^2 + y^2 - 2x - 2y$	-23 = 0
	(c) $x^2 + y^2 + 2x + 2y - 23 = 0$	(d) $x^2 + y^2 + 2x - 2y$	-23 = 0
52.	The intercept on the line $y = x$ by the circle	$x^2 + y^2 - 2x = 0$ is Al	B. Equation of the circle on AB
	as a diameter is:		
	(a) $x^2 + y^2 - x - y = 0$ (b) $x^2 + y^2 - x + y = 0$	$= 0$ (c) $x^2 + y^2 + x + y^2$	$y = 0$ (d) $x^2 + y^2 + x - y = 0$
53.	If $a \neq 0$ and the line $2bx + 3cy + 4d = 0$ pa	isses through the points	of intersection of the parabolas
	$y^2 = 4ax$ and $x^2 = 4ay$, then: (a) $d^2 + (2b + 3c)^2 = 0$ (b) $d^2 + (3b + 2c)^2$	$= 0$ (c) $d^2 + (2h - 3c)$	$a^{2} = 0$ (d) $d^{2} + (3b - 2c)^{2} = 0$
	$(a) \mathbf{u} + (20 + 3\mathbf{c}) = 0 (0) \mathbf{u} + (30 + 2\mathbf{c})$	= 0 (c) u + (20 - 3c)	= 0 (u) u + (30 - 2c) = 0
54.	The eccentricity of an ellipse, with its centre	at the origin, is $\frac{1}{2}$. If	one of the directrices is $x = 4$,
	then the equation of the ellipse is:		
	(a) $3x^2 + 4y^2 = 1$ (b) $3x^2 + 4y^2 = 12$	(c) $4x^2 + 3y^2 = 12$	(d) $4x^2 + 3y^2 = 1$
55.	A line makes the same angle θ , with each o	f the x and z axis. If th	e angle β , which it makes with
	y-axis, is such that $\sin^2\beta = 3\sin^2\theta$, then co	$s^2 \theta$ equals:	
	2 1	3	2
	(a) $\frac{1}{3}$ (b) $\frac{1}{5}$	(c) $\frac{1}{5}$	(d) $\frac{1}{5}$
56.	Distance between two parallel planes 2x + y	+ 2z = 8 and $4x + 2y$	+ 4z + 5 = 0 is:
	3 5	7	9
	(a) $\frac{1}{2}$ (b) $\frac{1}{2}$	(c) $\frac{1}{2}$	(d) $\frac{1}{2}$
57.	A line with direction cosines proportional to	2, 1, 2 meets each of	the line $x = y + a = z$ and
	x + a = 2y = 2z. The co-ordinates of each	of the points of interse	ction are given by:
	(a) (3a, 3a, 3a,), (a, a, a)	(b) (3a, 2a, 3a), (a, a,	, a)
	(c) (3a, 2a, 3a,), (a, a, 2a)	(d) (2a, 3a, 3a), (2a,	a, a)
58.	If the straight lines $x = 1 + s$, $y = -3 - \lambda s$, z	= 1 + λ s and x = $\frac{t}{\lambda}$, y =	= 1 + t, $z = 2 - t$, with parameter
		2,5	·, · · · · ·
	s and t respectively, are co-planar, then λ e	equals:	
	(a) -2 (b) -1	(c) $-\frac{1}{2}$	(d) 0
59.	The intersection of the spheres $x^2 + y^2 + z^2$.	+ 7x - 2y - z = 13 and	$x^{2} + y^{2} + z^{2} - 3x + 3y + 4z =$
	8 is the same as the intersection of one of	the sphere and the plan	e:
	(a) $x - y - z = 1$ (b) $x - 2y - z = 1$	(c) $x - y - 2z = 1$	(d) $2x - y - z = 1$
<u>Koch</u> <u>T</u> riva	<u>i Branch:</u> Bldg.No.41/352, Mulloth Ambady lane, <u>ndrum Branch:</u> TC.5/1703/30, Golf Links Road. Kow	Chittoor Road, Kochi - 1 diar Gardens, Housing Boa	1, Ph: 0484-2370094, 9388465944 rd Colony, Ph: 0471- 2438271.

Mobile: 9387814438.

www.mathiit.com #19#

www.estudentzone.com

60.	Let \vec{a} , \vec{b} and \vec{c} be three	non-zero vectors such	that no two of these a	are collinear. If the vector $\vec{a} + 2\vec{b}$
	is collinear with \vec{c} and equals:	$1\vec{b}+3\vec{c}$ is collinear with	th \vec{a} (λ being some \vec{a}	non-zero scalar) then $\vec{a} + 2\vec{b} + 6\vec{c}$
	(a) λā	(b) λ <i>b</i>	(c) $\lambda \vec{c}$	(d) 0
61.	A particle is acted up	oon by constant forces	$4\hat{i} + \hat{j} - 3\hat{k}$ and $3\hat{i} + \hat{j} - \hat{k}$	which displace it from a point
	$\hat{i} + 2\hat{j} + 3\hat{k}$ to the point (a) 40	$5\hat{i}+4\hat{j}+\hat{k}$. The work (b) 30	done is standard units (c) 25	by the forces is given by: (d) 15
62.	If $\overline{a}, \overline{b}, \overline{c}$ are non-copla (2 λ -1) \overline{c} are non-copl (a) all values of λ	nar vectors and λ is a anar for:	a real number, then the (b) all except one val	vectors $\overline{a} + 2\overline{b} + 3\overline{c}$, $\lambda\overline{b} + 4\overline{c}$ and lue of λ
	(c) all except two value	ues of λ	(d) no value of $\boldsymbol{\lambda}$	
63.	Let $\overline{u}, \overline{v}, \overline{w}$ be such that	$ \overline{\mathbf{u}} = 1, \overline{\mathbf{v}} = 2, \overline{\mathbf{w}} = 3$. If the projection \overline{v} alo	ng \overline{u} is equal to that of \overline{w} along
	\overline{u} and \overline{v} , \overline{w} are perpe	endicular to each other	then $ \overline{u} - \overline{v} + \overline{w} $ equals	:
	(a) 2	(b) $\sqrt{7}$	(c) $\sqrt{14}$	(d) 14
64.	Let \overline{a} , \overline{b} and \overline{c} be non	-zero vectors such that	$(\overline{\mathbf{a}} \times \overline{\mathbf{b}}) \times \overline{\mathbf{c}} = \frac{1}{3} \overline{\mathbf{b}} \overline{\mathbf{c}} \overline{\mathbf{a}}.$	If θ is the acute angle between
	the vectors \overline{b} and \overline{c} , the vectors \overline{b} and \overline{c} .	then sin θ equals:		
	(a) $\frac{1}{3}$	(b) $\frac{\sqrt{2}}{3}$	(c) $\frac{2}{3}$	(d) $\frac{2\sqrt{2}}{3}$
65.	Consider the following (i) Mode can be comp (iii) Variance is indepe Which of these is/are	g statements: puted from histogram endent of change of or correct?	(ii) Median is not inc igin and scale	lependent of change of scale
66.	(a) only (i)In a series of 2n observation of the observation	(b) only (ii) ervations, half of them vations is 2, then a e	(c) only (i) and (ii) equal a and remainin equals:	(d) (i), (ii) and (iii) g half equal -a. If the standard
	(a) $\frac{1}{n}$	(b) $\sqrt{2}$	(c) 2	(d) $\frac{\sqrt{2}}{n}$
67.	The probability that A	speaks truth is $\frac{4}{5}$ while	le this probability for B	is $\frac{3}{4}$. The probability that they
	contradict each other	when asked to speak c	on a fact is:	
	(a) $\frac{3}{20}$	(b) $\frac{1}{5}$	(c) $\frac{7}{20}$	(d) $\frac{4}{5}$
68.	A random variable X X: 1	has the probability dis 2 3	stribution: 4 5	6 7 8
	P(X): 0.15	0.23 0.12	0.10 0.20	0.08 0.07 0.05
	For the events $E = \{X, (a), 0.87\}$	K is a prime number} a (b) 0.77	and $F = \{X < 4\}$, the p (c) 0.35	probability P(E \cup F) is: (d) 0.50
69.	The mean and the var of 2 successes is:	iance of a binomial dis	stribution are 4 and 2 r	respectively. Then the probability
Koch	<u>i Branch:</u> Bldg.No.41/352	, Mulloth Ambady lane,	Chittoor Road, Kochi - 1	1, Ph: 0484-2370094, 9388465944
Triva	ndrum Branch: TC.5/1703, Mobile: 0	/30, Golf Links Road, Kowa 387814438	liar Gardens, Housing Boa	rd Colony, Ph: 0471- 2438271,
	moone. 9.			W W W.III

www.estudentzone.com

(a) $\frac{37}{256}$	(b) $\frac{219}{256}$	(c) $\frac{128}{256}$	(d) $\frac{28}{256}$
230	230	230	230

70. With two forces acting at a point, the maximum effect is obtained when their resultant is 4N. If they act at right angles, then their resultant is 3N. Then the forces are

(a)
$$(2+\sqrt{2})N$$
 and $(2-\sqrt{2})N$
(b) $(2+\sqrt{3})N$ and $(2-\sqrt{3})N$
(c) $\left(2+\frac{1}{2}\sqrt{2}\right)N$ and $\left(2-\frac{1}{2}\sqrt{2}\right)N$
(d) $\left(2+\frac{1}{2}\sqrt{3}\right)N$ and $\left(2-\frac{1}{2}\sqrt{3}\right)N$

71. In a right angle $\triangle ABC$, $\angle A = 90^{\circ}$ and sides a, b, c are respectively, 5cm, 4 cm and 3 cm. If a force \vec{F} has moments 0, 9 and 16 in N cm unit respectively about vertices A, B and C, the magnitude of \vec{F} is:

- (a) 3 (b) 4 (c) 5 (d) 9
- 72. Three forces \vec{P}, \vec{Q} and \vec{R} acting along IA, IB and IC, where I is the incentre of a $\triangle ABC$, are in equilibrium. Then $\vec{P}: \vec{Q}: \vec{R}$ is:

(a)
$$\cos\frac{A}{2}:\cos\frac{B}{2}:\cos\frac{C}{2}$$
 (b) $\sin\frac{A}{2}:\sin\frac{B}{2}:\sin\frac{C}{2}$ (c) $\sec\frac{A}{2}:\sec\frac{B}{2}:\sec\frac{C}{2}$ (d) $\csc\frac{A}{2}:\csc\frac{B}{2}:\csc\frac{C}{2}$

- 73. A particle moves towards east from a point A to a point B at the rate of 4 km/h and then towards north from B to C at rate of 5 km/h. If AB = 12 km and BC = 5 km, then its average speed for its journey from A to C and resultant average velocity direct from A to C are respectively:
 - (a) $\frac{17}{4}$ km/h and $\frac{13}{4}$ km/h (b) $\frac{13}{4}$ km/h and $\frac{17}{4}$ km/h (c) $\frac{17}{9}$ km/h and $\frac{13}{9}$ km/h (d) $\frac{13}{9}$ km/h and $\frac{17}{9}$ km/h
- 74. A velocity $\frac{1}{4}$ m/s is resolved into two components along OA and OB making angles 30^o and 45^o respectively with the given velocity. Then the component along OB is:

(a)
$$\frac{1}{8}$$
 m/s (b) $\frac{1}{4}$ $(\sqrt{3}-1)$ m/s (c) $\frac{1}{4}$ m/s (d) $\frac{1}{8}(\sqrt{6}-\sqrt{2})$ m/s

75. If t_1 and t_2 are the times of flight of two particles having the same initial velocity u and range R on the horizontal, then $t_1^2 + r_2^2$ is equal to:

(a)
$$\frac{u^2}{g}$$
 (b) $\frac{4u^2}{g^2}$ (c) $\frac{u^2}{2g}$ (d) 1

Kochi Branch: Bldg.No.41/352, Mulloth Ambady lane, Chittoor Road, Kochi - 11, Ph: 0484-2370094, 9388465944 Trivandrum Branch: TC.5/1703/30, Golf Links Road, Kowdiar Gardens, Housing Board Colony, Ph: 0471- 2438271, Mobile: 9387814438. Www.mathiit.com #21#

					MATHUT
AIEEE 2004 Mathematics Answer Key					
1.	с	26.	b	51.	а
2.	а	27.	b	52.	а
3.	с	28.	b	53.	а
4.	d	29.	с	54.	b
5.	b	30.	c	55.	c
6.	d	31.	d	56.	c
7.	d	32.	b	57.	b
8.	а	33.	а	58.	а
9.	b	34.	а	59.	d
10.	с	35.	b	60.	d
11.	b	36	b	61.	а
12.	с	37.	d	62.	с
13.	b	38.	а	63.	с
14.	а	39.	с	64.	d
15.	с	40.	b	65.	с
16.	b	41.	а	66.	с
17.	а	42.	а	67.	с
18.	а	43.	с	68.	b
19.	b	44.	b	69.	d
20.	b	45.	а	70.	с
21.	а	46.	d	71.	с
22.	d	47.	с	72.	a
23	с	48.	d	73.	a
24.	а	49.	b	74.	d
25.	d	50.	а	75.	b
Kochi Branch: Bldg.No.41/352, Mulloth Ambady lane, Chittoor Road, Kochi - 11, Ph: 0484-2370094, 9388465944					

Kochi Branch: Bldg.No.41/352, Mulloth Ambady lane, Chittoor Road, Kochi - 11, Ph: 0484-2370094, 9388465944 Trivandrum Branch: TC.5/1703/30, Golf Links Road, Kowdiar Gardens, Housing Board Colony, Ph: 0471- 2438271, Mobile: 9387814438. Www.mathiit.com #22#