HINTS \& SOLUTIONS

SECTIONI-PHYSICS

1. (b) Let O be the centre of mass of the disc having radius $2 R$. O^{\prime} is the new C.M.

Let $\mathrm{m}=$ mass of disc of radius R
$\mathrm{M}^{\prime}=$ mass of disc when the disc of radius R is removed.
$\mathrm{M}=$ mass of disc of radius 2 R
Now, $m=\left(\pi R^{2}\right) \cdot \sigma$,
where $\sigma=\frac{\mathrm{M}}{\pi(2 \mathrm{R})^{2}}=\frac{\mathrm{M}}{4 \pi \mathrm{R}^{2}}=$ the mass
per unit area

$$
\left.\begin{array}{rl}
\begin{array}{rl}
\mathrm{M}^{\prime} & =\left[\pi(2 \mathrm{R})^{2}-\pi \mathrm{R}^{2}\right] \cdot \sigma \\
& =3 \pi \mathrm{R}^{2} \sigma
\end{array} \\
\mathrm{M} & =\pi(2 \mathrm{R})^{2} \cdot \sigma=4 \pi \mathrm{R}^{2} \sigma
\end{array}\right\} \text { We have, } \frac{\mathrm{M}^{\prime} \cdot \mathrm{x}+\mathrm{m} \cdot \mathrm{R}}{\mathrm{M}^{\prime}+\mathrm{m}}=0 .
$$

(\because C.M. of the full disc is at the centre O)
or, $\quad M^{\prime} \cdot x+m \cdot R=0$
or, $\quad M^{\prime} x=-m R$
$\Rightarrow \quad \mathrm{x}=\left(-\frac{\mathrm{m}}{\mathrm{M}^{\prime}}\right) \mathrm{R}$
$=\left(-\frac{\pi \mathrm{R}^{2} \sigma}{3 \pi \mathrm{R}^{2} \sigma}\right) \cdot \mathrm{R}=\left(-\frac{1}{3}\right) \mathrm{R}$
But $x=\frac{\alpha}{R}$
$\therefore \frac{\alpha}{\mathrm{R}}=\left(-\frac{1}{3}\right) \cdot \mathrm{R}$

There appears misprint in this question.
There must be $\alpha \mathrm{R}$ instead of $\frac{\alpha}{\mathrm{R}}$. Then
$\alpha \mathrm{R}=\left(-\frac{1}{3}\right) \mathrm{R} \Rightarrow \alpha=-\frac{1}{3}$
$\therefore \quad|\alpha|=\frac{1}{3}$
2. (b) The acceleration of a solid sphere of mass M , radius R and moment of inertia I rolling down (without slipping) an inclined plane making an angle θ with the horizontal is given by
$\mathrm{a}=\frac{\mathrm{g} \sin \theta}{\mathrm{I}+\frac{\mathrm{K}^{2}}{\mathrm{R}^{2}}}$, where, $\mathrm{I}=\mathrm{MK}^{2}$
3. (d) Central forces always act along the axis of rotation. Therefore, the torque is zero. And if there is no external torque acting on a rotating body then its angular momentum is constant.
4. (b) Let the spring be compressed by x .

Clearly, Initial K.E. of block = Potential energy of spring + workdown against friction
or, $\quad \frac{1}{2} \mathrm{mv}^{2}=\frac{1}{2} \mathrm{kx}^{2}+\mathrm{fx}$
or, $\quad \frac{1}{2} \times 2 \times(4)^{2}=\left(\frac{1}{2} \times 10000 \times \mathrm{x}^{2}\right)+15 \mathrm{x}$
or, $\quad 16=5000 x^{2}+15 x$
or, $\quad 5000 x^{2}+15 x-16=0$

$$
\begin{aligned}
\therefore \quad & x=\frac{-15 \pm \sqrt{(15)^{2}-4 \times 5000 \times(-16)}}{2 \times 5000} \\
& =\frac{-15 \pm 565.88}{10000}=0.055 \mathrm{~m}
\end{aligned}
$$

(Ignoring -ve value)
$\therefore \quad \mathrm{x}=5.5 \mathrm{~cm}$.
5. (d) Let K^{\prime} be the K.E. at the highest point. Then $\mathrm{K}^{\prime}=\frac{1}{2} \mathrm{mv}_{\mathrm{x}}{ }^{2}\left(\because \mathrm{v}_{\mathrm{y}}=0\right.$ at highest point $)$

$=\frac{1}{2} \mathrm{~m}(\mathrm{u} \cos \theta)^{2}$
$=\frac{1}{2} m u^{2} \cos ^{2} \theta=K \cdot \cos ^{2} \theta$
$\left(\because \mathrm{K}=\frac{1}{2} \mathrm{mu}^{2}\right)$
or, $K^{\prime}=K \cdot \cos ^{2} 60^{\circ} \quad\left(\because \theta=60^{\circ}\right)$
$=\mathrm{K} \cdot\left(\frac{1}{2}\right)^{2}=\frac{\mathrm{K}}{4}$
6. (a) In young's double slit experiment, the intensity at a point is given by
$\mathrm{I}=\mathrm{I}_{0} \cos ^{2}\left(\frac{\phi}{2}\right)$
where, $\mathrm{I}_{0}=$ maximum intensity
$\phi=$ phase difference
Also, $\phi=\frac{2 \pi}{\lambda} \times$ path difference
$=\frac{2 \pi}{\lambda} \times \frac{\lambda}{6}=\frac{\pi}{3}$
$\therefore \quad \mathrm{I}=\mathrm{I}_{0} \cos ^{2}\left(\frac{\pi}{6}\right)$
or, $\quad \frac{\mathrm{I}}{\mathrm{I}_{0}}=\cos ^{2} 30^{\circ}=\left(\frac{\sqrt{3}}{2}\right)^{2}=\frac{3}{4}$
7. (a) The two springs are in parallel.
\therefore Effective spring constant,
$\mathrm{K}=\mathrm{K}_{1}+\mathrm{K}_{2}$.
Now, frequency of oscillation is given by
$\mathrm{f}=\frac{1}{2 \pi} \sqrt{\frac{\mathrm{~K}}{\mathrm{~m}}}$
or, $\mathrm{f}=\frac{1}{2 \pi} \sqrt{\frac{\mathrm{~K}_{1}+\mathrm{K}_{2}}{\mathrm{~m}}}$

When both K_{1} and K_{2} are made four times their original values, the new frequency is given by
$\mathrm{f}^{\prime}=\frac{1}{2 \pi} \sqrt{\frac{4 \mathrm{~K}_{1}+4 \mathrm{~K}_{2}}{\mathrm{~m}}}$
$=\frac{1}{2 \pi} \sqrt{\frac{4\left(\mathrm{~K}_{1}+4 \mathrm{~K}_{2}\right)}{\mathrm{m}}}=2\left(\frac{1}{2 \pi} \sqrt{\frac{\mathrm{~K}_{1}+\mathrm{K}_{2}}{\mathrm{~m}}}\right)$
$=2 \mathrm{f}$; from (i)
8. (b) For path iaf,
$\mathrm{Q}=50 \mathrm{cal}$
$\mathrm{W}=20 \mathrm{cal}$

By first law of thermodynamics,

$$
\Delta \mathrm{U}=\mathrm{Q}-\mathrm{W}=50-20=30 \mathrm{cal} .
$$

For path ibf
$\mathrm{Q}=36 \mathrm{cal}$
$\mathrm{W}=$?
By first law of thermodynamics,
$\mathrm{Q}=\Delta \mathrm{U}+\mathrm{W}$
or, $\quad \mathrm{W}=\mathrm{Q}-\Delta \mathrm{U}$
Since, the change in internal energy does not depend on the path, therefore
$\Delta \mathrm{U}=30 \mathrm{cal}$
$\therefore \quad \mathrm{W}=\mathrm{Q}-\Delta \mathrm{U}=36-30=6 \mathrm{cal}$.
9. (b) The kinetic energy of a particle executing S.H.M. is given by
$\mathrm{K}=\frac{1}{2} \mathrm{ma}^{2} \omega^{2} \sin ^{2} \omega \mathrm{t}$
where, $m=$ mass of particle
a = amplitude
$\omega=$ angular frequency
$\mathrm{t}=\mathrm{time}$
Now, average K.E. $=\langle K\rangle$
$=\left\langle\frac{1}{2} m \omega^{2} a^{2} \sin ^{2} \omega t\right\rangle$
$=\frac{1}{2} m \omega^{2} \mathrm{a}^{2}\left\langle\sin ^{2} \omega t\right\rangle$
$=\frac{1}{2} m \omega^{2} \mathrm{a}^{2}\left(\frac{1}{2}\right) \quad\left(\because<\sin ^{2} \theta>=\frac{1}{2}\right)$
$=\frac{1}{4} \mathrm{~m} \omega^{2} \mathrm{a}^{2}$
$=\frac{1}{4} \mathrm{ma}^{2}(2 \pi v)^{2} \quad(\because \mathrm{w}=2 \pi v)$
or, $\langle\mathrm{K}\rangle=\pi^{2} \mathrm{ma}^{2} v^{2}$
10. (b) Here, $x=2 \times 10^{-2} \cos \pi t$

Speed is given by
$\mathrm{v}=\frac{\mathrm{dx}}{\mathrm{dt}}=2 \times 10^{-2} \pi \sin \pi \mathrm{t}$
For the first time, the speed to be maximum,
$\sin \pi \mathrm{t}=1$
or, $\quad \sin \pi t=\sin \frac{\pi}{2}$
$\Rightarrow \quad \pi \mathrm{t}=\frac{\pi}{2} \quad$ or, $\quad \mathrm{t}=\frac{1}{2}=0.5 \mathrm{sec}$.
11. (c) We know that power consumed in a.c.
circuit is given by, $\mathrm{P}=\mathrm{E}_{\text {rms }} \cdot \mathrm{I}_{\mathrm{rms}} \cos \phi$
Here, $\mathrm{E}=\mathrm{E}_{0} \sin \omega \mathrm{t}$
$\mathrm{I}=\mathrm{I}_{0} \sin \left(\omega \mathrm{t}-\frac{\pi}{2}\right)$
which implies that the phase difference,
$\phi=\frac{\pi}{2}$
$\therefore \quad \mathrm{P}=\mathrm{E}_{\mathrm{rms}} \cdot \mathrm{I}_{\mathrm{rms}} \cdot \cos \frac{\pi}{2}=0$

$$
\left(\because \cos \frac{\pi}{2}=0\right)
$$

12. (c) The distance of point $\mathrm{A}(\sqrt{2}, \sqrt{2})$

from the origin,
$\mathrm{OA}=\left|\overrightarrow{\mathrm{r}}_{1}\right|=\sqrt{(\sqrt{2})^{2}+(\sqrt{2})^{2}}$
$=\sqrt{4}=2$ units.

The distance of point $\mathrm{B}(2,0)$ from the origin,
$\mathrm{OB}=\left|\overrightarrow{\mathrm{r}_{2}}\right|=\sqrt{(2)^{2}+(0)^{2}}=2$ units.
Now, potential at $\mathrm{A}, \mathrm{V}_{\mathrm{A}}=\frac{1}{4 \pi \epsilon_{0}} \cdot \frac{\mathrm{Q}}{(\mathrm{OA})}$
Potential at $\mathrm{B}, \mathrm{V}_{\mathrm{B}}=\frac{1}{4 \pi \epsilon_{0}} \cdot \frac{\mathrm{Q}}{(\mathrm{OB})}$
\therefore Potential difference between the points A and B is given by
$\mathrm{V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{B}}=\frac{1}{4 \pi \epsilon_{0}} \cdot \frac{\mathrm{Q}}{\mathrm{OA}}-\frac{1}{4 \pi \epsilon_{0}} \cdot \frac{\mathrm{Q}}{\mathrm{OB}}$
$=\frac{\mathrm{Q}}{4 \pi \epsilon_{0}}\left(\frac{1}{\mathrm{OA}}-\frac{1}{\mathrm{OB}}\right)=\frac{\mathrm{Q}}{4 \pi \epsilon_{0}}\left(\frac{1}{2}-\frac{1}{2}\right)$
$=\frac{\mathrm{Q}}{4 \pi \epsilon_{0}} \times 0=0$.
13. (a) Required Ratio
$=\frac{\text { Energy stored in capacitor }}{\text { Work done by the battery }}$
$=\frac{\frac{1}{2} \mathrm{CV}^{2}}{\mathrm{Ce}^{2}}$, where $\mathrm{C}=$ Capacitance of
capacitor
$\mathrm{V}=$ Potential difference,
$\mathrm{e}=\mathrm{emf}$ of battery
$=\frac{\frac{1}{2} \mathrm{Ce}^{2}}{\mathrm{Ce}^{2}} .(\because \mathrm{V}=\mathrm{e})$
$=\frac{1}{2}$
14. (a) We have, $I=I_{o}\left(1-e^{-\frac{R}{L} t}\right)$
(When current is in growth in LR circuit)
$=\frac{E}{R}\left(1-e^{-\frac{R}{L} t}\right)=\frac{5}{5}\left(1-\mathrm{e}^{-\frac{5}{10} \times 2}\right)$
$=\left(1-\mathrm{e}^{-1}\right)$
15. (d) Here, current is uniformly distributed across the cross-section of the wire, therefore, current enclosed in the amperean path formed at a distance $r_{1}\left(=\frac{a}{2}\right)$

$=\left(\frac{\pi \mathrm{r}_{1}^{2}}{\pi \mathrm{a}^{2}}\right) \times \mathrm{I}$, where I is total current
$\therefore \quad$ Magnetic field at
$\mathrm{P}_{1}\left(\mathrm{~B}_{1}\right)=\frac{\mu_{0} \times \text { current enclosed }}{\text { Path }}$
$=\frac{\mu_{0} \times\left(\frac{\pi \mathrm{r}_{1}^{2}}{\pi \mathrm{a}^{2}}\right) \times \mathrm{I}}{2 \pi \mathrm{r}_{1}}=\frac{\mu_{0} \times \mathrm{Ir}_{1}}{2 \pi \mathrm{a}^{2}}$
Now, magnetic field at point P_{2},
$\left(B_{2}\right)=\frac{\mu_{0}}{2 \pi} \cdot \frac{I}{(2 a)}=\frac{\mu_{0} I}{4 \pi \mathrm{a}}$.
$\therefore \quad$ Required Ratio $=\frac{\mathrm{B}_{1}}{\mathrm{~B}_{2}}=\frac{\mu_{0} \mathrm{Ir}_{1}}{2 \pi \mathrm{a}^{2}} \times \frac{4 \pi \mathrm{a}}{\mu_{0} \mathrm{I}}$
$=\frac{2 \mathrm{r}_{1}}{\mathrm{a}}=\frac{2 \times \frac{\mathrm{a}}{2}}{\mathrm{a}}=1$.
16. (d) There is no current inside the pipe and hence Ampere's law can not be applied.
17. (c) Binding energy
$=\left[\mathrm{ZM}_{\mathrm{P}}+(\mathrm{A}-\mathrm{Z}) \mathrm{M}_{\mathrm{N}}-\mathrm{M}\right] \mathrm{c}^{2}$
$=\left[8 \mathrm{M}_{\mathrm{P}}+(17-8) \mathrm{M}_{\mathrm{N}}-\mathrm{M}\right] \mathrm{c}^{2}$
$=\left[8 \mathrm{M}_{\mathrm{P}}+9 \mathrm{M}_{\mathrm{N}}-\mathrm{M}\right] \mathrm{c}^{2}$
$=\left[8 \mathrm{M}_{\mathrm{P}}+9 \mathrm{M}_{\mathrm{N}}-\mathrm{M}_{0}\right] \mathrm{c}^{2}$
But the option (c) is negative of this.
18. (c) There is no change in the proton number and the neutron number as the γ-emission takes place as a result of excitation or deexcitation of nuclei.
19. (a) The current will flow through R_{L} when the diode is forward biased.
20. (a) Energy of a photon of frequency v is given by $\mathrm{E}=\mathrm{h} v$.
Also, $E=p c$, where p is the momentum of photon
$\therefore \quad \mathrm{h} \nu=\mathrm{pc} \Rightarrow \mathrm{p}=\frac{\mathrm{h} \nu}{\mathrm{c}}$.
21. (c) We know that
$\mathrm{v}=\frac{\mathrm{dx}}{\mathrm{dt}} \Rightarrow \mathrm{dx}=\mathrm{vdt}$
Integrating, $\int_{0}^{\mathrm{x}} \mathrm{dx}=\int_{0}^{\mathrm{t}} \mathrm{vdt}$
or $\quad \mathrm{x}=\int_{0}^{\mathrm{x}}\left(\mathrm{v}_{0}+\mathrm{gt}_{\mathrm{t}}+\mathrm{ft}^{2}\right) \mathrm{dt}$
$=\left[v_{0} t+\frac{\mathrm{gt}^{2}}{2}+\frac{\mathrm{ft}^{3}}{3}\right]_{0}^{\mathrm{t}}$
or, $\quad \mathrm{x}=\mathrm{v}_{0} \mathrm{t}+\frac{\mathrm{gt}^{2}}{2}+\frac{\mathrm{ft}^{3}}{3}+\mathrm{c}$
where c is the constant of integration.
By question,
$\mathrm{x}=0$ at $\mathrm{t}=0$.
$\therefore \quad 0=\mathrm{v}_{0} \times 0+\frac{\mathrm{g}}{2} \times 0+\frac{\mathrm{f}}{3} \times 0+\mathrm{c}$
$\Rightarrow \quad \mathrm{c}=0$.
$\therefore \quad \mathrm{x}=\mathrm{v}_{0} \mathrm{t}+\frac{\mathrm{gt}^{2}}{2}+\frac{\mathrm{ft}^{3}}{3}$
At $\mathrm{t}=1$,
$\mathrm{x}=\mathrm{v}_{0}+\frac{\mathrm{g}}{2}+\frac{\mathrm{f}}{3}$.
22. (d) By the theorem of perpendicular axes, $\mathrm{I}_{\mathrm{z}}=\mathrm{I}_{\mathrm{x}}+\mathrm{I}_{\mathrm{y}} \quad$ or, $\mathrm{I}_{\mathrm{z}}=2 \mathrm{I}_{\mathrm{y}}$ $\left(\therefore \mathrm{I}_{\mathrm{x}}=\mathrm{I}_{\mathrm{y}}\right.$ by symmetry of the figure)

$\therefore \quad \mathrm{I}_{\mathrm{EF}}=\frac{\mathrm{I}_{\mathrm{Z}}}{2}$
... (i)
Again, by the same theorem
$\mathrm{I}_{\mathrm{z}}=\mathrm{I}_{\mathrm{AC}}+\mathrm{I}_{\mathrm{BD}}=2 \mathrm{I}_{\mathrm{AC}}$
$\left(\therefore \mathrm{I}_{\mathrm{AC}}=\mathrm{I}_{\mathrm{BD}}\right.$ by symmetry of the figure $)$
$\therefore \quad \mathrm{I}_{\mathrm{AC}}=\frac{\mathrm{I}_{\mathrm{Z}}}{2}$
...(ii)
From (i) and (ii), we get
$\mathrm{I}_{\mathrm{EF}}=\mathrm{I}_{\mathrm{AC}}$.
23. (a) Here,
$\mathrm{x}=\mathrm{x}_{0} \cos (\omega \mathrm{t}-\pi / 4)$
\therefore Velocity,
$\mathrm{v}=\frac{\mathrm{dx}}{\mathrm{dt}}=-\mathrm{x}_{0} \omega \sin \left(\omega \mathrm{t}-\frac{\pi}{4}\right)$
Acceleration,
$\mathrm{a}=\frac{\mathrm{dv}}{\mathrm{dt}}=-\mathrm{x}_{0} \omega^{2} \cos \left(\omega \mathrm{t}-\frac{\pi}{4}\right)$
$=\mathrm{x}_{0} \omega^{2} \cos \left[\pi+\left(\omega \mathrm{t}-\frac{\pi}{4}\right)\right]=\mathrm{x}_{0} \omega^{2}$
$\cos \left(\omega \mathrm{t}+\frac{3 \pi}{4}\right)$
But by question,
Acceleration, $\mathrm{a}=\mathrm{A} \cos (\omega \mathrm{t}+\delta)$
Comparing the two accelerations, we get
$\mathrm{A}=\mathrm{x}_{0} \omega^{2}$ and $\delta=\frac{3 \pi}{4}$.
24. (a) As shown in the figure, the resultant electric fields before and after interchanging the charges will have the same magnitude but opposite directions.
Also, the potential will be same in both cases as it is a scalar quantity.

25. (b) By question,

Half life of $\mathrm{X}, \mathrm{T}_{1 / 2}=\tau_{\mathrm{av}}$, average life of Y
$\Rightarrow \quad \frac{\ell \mathrm{n} 2}{\lambda_{\mathrm{x}}}=\frac{1}{\lambda_{\gamma}} \quad$ or, $\quad \lambda_{\mathrm{x}}=(\ln 2) \cdot \lambda_{\mathrm{Y}}$
$\Rightarrow \quad \lambda_{\mathrm{x}}=(0.693) \cdot \lambda_{\mathrm{Y}}$
$\therefore \quad \lambda_{\mathrm{x}}<\lambda_{\mathrm{Y}}$.
Now, the rate of decay is given by
$R=R_{0} e^{-\lambda t}$
For $X, R_{x}=R_{0} e^{-\lambda_{x} t}$
For $Y, R_{y}=R_{0} e^{-\lambda y t}$
Hence, $\mathrm{R}_{\mathrm{x}}>\mathrm{R}_{\mathrm{y}}$.
Thus, X will decay faster than Y .
26. (c) The efficiency (η) of a Carnot engine and the coefficient of performance (β) of a refrigerator are related as
$\beta=\frac{1-\eta}{\eta}$

Here, $\eta=\frac{1}{10}$
$\therefore \quad \beta=\frac{1-\frac{1}{10}}{\left(\frac{1}{10}\right)}=9$.
Also, Coefficient of performance (β) is given by $\beta=\frac{Q_{2}}{w}$, where Q_{2} is the energy absorbed from the reservoir.
or, $\quad 9=\frac{\mathrm{Q}_{2}}{10}$
$\therefore \quad \mathrm{Q}_{2}=90 \mathrm{~J}$.
27. (a) Si and Ge are semiconductors but C is an insulator. Also, the conductivity of Si and Ge is more than C because the valence electrons of Si, Ge and C lie in third, fouth and second orbit repsectively.
28. (b) Here, \vec{E} and \vec{B} are perpendicular to each other and the velocity \vec{v} does not change; therefore
$q E=q v B \Rightarrow v=\frac{E}{B}$
Also, $\left|\frac{\overrightarrow{\mathrm{E}} \times \overrightarrow{\mathrm{B}}}{\mathrm{B}^{2}}\right|=\frac{\mathrm{EB} \sin \theta}{\mathrm{B}^{2}}$
$=\frac{E B \sin 90^{\circ}}{B^{2}}=\frac{E}{B}=|\vec{v}|=v$
\therefore Option (b) is correct.
29. (a) Here, $\mathrm{V}(\mathrm{x})=\frac{20}{\mathrm{x}^{2}-4}$ volt

We know that $\mathrm{E}=-\frac{\mathrm{dv}}{\mathrm{dx}}=-\frac{\mathrm{d}}{\mathrm{dx}}\left(\frac{20}{\mathrm{x}^{2}-4}\right)$
or, $\quad E=+\frac{40 x}{\left(x^{2}-4\right)^{2}}$
At $x=4 \mu \mathrm{~m}$,
$E=+\frac{40 \times 4}{\left(4^{2}-4\right)^{2}}=+\frac{160}{144}=+\frac{10}{9}$ volt $/ \mu \mathrm{m}$.
Positive sign indicates that $\overrightarrow{\mathrm{E}}$ is in +ve xdirection.
30. (d) We have to find the frequency of emitted photons. For emission of photons the transition must take place from a higher energy level to a lower energy level which are given only in options (c) and (d).
Frequency is given by
$\mathrm{h} v=-13.6\left(\frac{1}{\mathrm{n}_{1}^{2}}-\frac{1}{\mathrm{n}_{2}^{2}}\right)$
For transition from $\mathrm{n}=6$ to $\mathrm{n}=2$,
$v_{1}=\frac{-13.6}{h}\left(\frac{1}{6^{2}}-\frac{1}{2^{2}}\right)=\frac{2}{9} \times\left(\frac{13.6}{\mathrm{~h}}\right)$
For transition from $\mathrm{n}=2$ to $\mathrm{n}=1$,
$\mathrm{v}_{2}=\frac{-13.6}{\mathrm{~h}}\left(\frac{1}{2^{2}}-\frac{1}{1^{2}}\right)=\frac{3}{4} \times\left(\frac{13.6}{\mathrm{~h}}\right)$.
$\therefore \quad \mathrm{v}_{1}>\mathrm{v}_{2}$
Hence option (d) is the correct answer.
31. (d) Writing free body-diagrams for $\mathrm{m} \& \mathrm{M}$,

we get
$\mathrm{T}=\mathrm{ma}$ and $\quad \mathrm{F}-\mathrm{T}=\mathrm{Ma}$
where T is force due to spring
$\Rightarrow \mathrm{F}-\mathrm{ma}=\mathrm{Ma}$
or, $\quad \mathrm{F}=\mathrm{Ma}+\mathrm{ma}$
$\therefore \quad \mathrm{a}=\frac{\mathrm{F}}{\mathrm{M}+\mathrm{m}}$.
Now, force acting on the block of mass m is
$\mathrm{ma}=\mathrm{m}\left(\frac{\mathrm{F}}{\mathrm{M}+\mathrm{m}}\right)=\frac{\mathrm{mF}}{\mathrm{m}+\mathrm{M}}$.
32. (c) Power of combination is given by
$P=P_{1}+P_{2}=(-15+5) D=-10 D$.
Now, $\mathrm{P}=\frac{1}{\mathrm{f}} \Rightarrow \quad \mathrm{f}=\frac{1}{\mathrm{P}}=\frac{1}{-10}$ metre
$\therefore \quad \mathrm{f}=-\left(\frac{1}{10} \times 100\right) \mathrm{cm}=-10 \mathrm{~cm}$.
33. (d) Let T be the temperature of the interface. As the two sections are in series, the rate of flow of heat in them will be equal.

$\therefore \quad \frac{\mathrm{K}_{1} \mathrm{~A}\left(\mathrm{~T}_{1}-\mathrm{T}\right)}{\ell_{1}}=\frac{\mathrm{K}_{2} \mathrm{~A}\left(\mathrm{~T}-\mathrm{T}_{2}\right)}{\ell_{2}}$,
where A is the area of cross-section.
or, $\quad \mathrm{K}_{1} \mathrm{~A}\left(\mathrm{~T}_{1}-\mathrm{T}\right) \ell_{2}=\mathrm{K}_{2} \mathrm{~A}\left(\mathrm{~T}-\mathrm{T}_{2}\right) \ell_{1}$
or, $\mathrm{K}_{1} \mathrm{~T}_{1} \ell_{2}-\mathrm{K}_{1} \mathrm{~T} \ell_{2}=\mathrm{K}_{2} \mathrm{~T} \ell_{1}-\mathrm{K}_{2} \mathrm{~T}_{2} \ell_{1}$
or, $\quad\left(\mathrm{K}_{2} \ell_{1}+\mathrm{K}_{1} \ell_{2}\right) \mathrm{T}=\mathrm{K}_{1} \mathrm{~T}_{1} \ell_{2}+\mathrm{K}_{2} \mathrm{~T}_{2} \ell_{1}$

$$
\begin{aligned}
\therefore \quad \mathrm{T} & =\frac{\mathrm{K}_{1} \mathrm{~T}_{1} \ell_{2}+\mathrm{K}_{2} \mathrm{~T}_{2} \ell_{1}}{\mathrm{~K}_{2} \ell_{1}+\mathrm{K}_{1} \ell_{2}} \\
& =\frac{\mathrm{K}_{1} \ell_{2} \mathrm{~T}_{1}+\mathrm{K}_{2} \ell_{1} \mathrm{~T}_{2}}{\mathrm{~K}_{1} \ell_{2}+\mathrm{K}_{2} \ell_{1}}
\end{aligned}
$$

34. (a) We have, $\mathrm{L}_{1}=10 \log \left(\frac{\mathrm{I}_{1}}{\mathrm{I}_{0}}\right)$
$\mathrm{L}_{2}=10 \log \left(\frac{\mathrm{I}_{2}}{\mathrm{I}_{0}}\right)$
$\therefore \quad \mathrm{L}_{1}-\mathrm{L}_{2}=10 \log \left(\frac{\mathrm{I}_{1}}{\mathrm{I}_{0}}\right)-10 \log \left(\frac{\mathrm{I}_{2}}{\mathrm{I}_{0}}\right)$
or, $\quad \Delta \mathrm{L}=10 \log \left(\frac{\mathrm{I}_{1}}{\mathrm{I}_{0}} \times \frac{\mathrm{I}_{2}}{\mathrm{I}_{0}}\right)$
or, $\quad \Delta \mathrm{L}=10 \log \left(\frac{\mathrm{I}_{1}}{\mathrm{I}_{2}}\right)$
or, $\quad 20=10 \log \left(\frac{I_{1}}{\mathrm{I}_{2}}\right)$
or, $\quad 2=\log \left(\frac{\mathrm{I}_{1}}{\mathrm{I}_{2}}\right)$
or, $\quad \frac{\mathrm{I}_{1}}{\mathrm{I}_{2}}=10^{2}$
or, $\quad \mathrm{I}_{2}=\frac{\mathrm{I}_{1}}{100}$.
\Rightarrow Intensity decreases by a factor 100 .
35. (b) We have,

Molar heat capacity $=$ Molar mass \times Specific heat
capacity per unit mass
$\therefore \quad C_{p}=28 C_{p} \quad$ (for nitrogen)
and $\mathrm{C}_{\mathrm{v}}=28 \mathrm{C}_{\mathrm{v}}$
Now, $\mathrm{C}_{\mathrm{p}}-\mathrm{C}_{\mathrm{v}}=\mathrm{R}$
or, $\quad 28^{\mathrm{p}} \mathrm{C}_{\mathrm{p}}-28 \mathrm{C}_{\mathrm{v}}=\mathrm{R}$
$\Rightarrow C_{p}-C_{v}=\frac{R}{28}$.
36. (b) When a charged particle enters a magnetic field at a direction perpendicular to the direction of motion, the path of the motion is circular. In circular motion the direction of velocity changes at every point (the magnitude remains constant). Therefore, the momentum will change at every point. But kinetic energy will remain constant as it is given by $\frac{1}{2} m v^{2}$ and v^{2} is the square of the magnitude of velocity which does not change.
37. (c) Clearly, the magnetic fields at a point P , equidistant from AOB and COD will have directions perpendicular to each other, as they are placed normal to each other.

$\therefore \quad$ Resultant field, $\mathrm{B}=\sqrt{\mathrm{B}_{1}^{2}+\mathrm{B}_{2}^{2}}$
But $B_{1}=\frac{\mu_{0} I_{1}}{2 \pi d}$ and $B_{2}=\frac{\mu_{0} I_{2}}{2 \pi d}$
$\therefore \quad B=\sqrt{\left(\frac{\mu_{0}}{2 \pi \mathrm{~d}}\right)^{2}\left(\mathrm{I}_{1}^{2}+\mathrm{I}_{2}^{2}\right)}$
or, $\quad B=\frac{\mu_{0}}{2 \pi \mathrm{~d}}\left(\mathrm{I}_{1}^{2}+\mathrm{I}_{2}^{2}\right)^{1 / 2}$
38. (d) We know that
$\mathrm{R}_{\mathrm{t}}=\mathrm{R}_{0}(1+\alpha \mathrm{t})$,
$\Rightarrow \mathrm{R}_{50}=\mathrm{R}_{0}(1+50 \alpha)$
$\mathrm{R}_{100}=\mathrm{R}_{0}(1+100 \alpha)$
From (i), $\mathrm{R}_{50}-\mathrm{R}_{0}=50 \alpha \mathrm{R}_{0}$
From (ii), $\mathrm{R}_{100}-\mathrm{R}_{0}=100 \alpha \mathrm{R}_{0}$
Dividing (iii) by (iv), we get
$\frac{\mathrm{R}_{50}-\mathrm{R}_{0}}{\mathrm{R}_{100}-\mathrm{R}_{0}}=\frac{1}{2}$
Here, $\mathrm{R}_{50}=5 \Omega$ and $\mathrm{R}_{100}=6 \Omega$
$\therefore \quad \frac{5-\mathrm{R}_{0}}{6-\mathrm{R}_{0}}=\frac{1}{2}$
or, $\quad 6-\mathrm{R}_{0}=10-2 \mathrm{R}_{0}$
or, $\mathrm{R}_{0}=4 \Omega$.
39. (a) The potential energy of a charged capacitor is given by $\mathrm{U}=\frac{\mathrm{Q}^{2}}{2 \mathrm{C}}$.
If a dielectric slab is inserted between the plates, the energy is given by $\frac{Q^{2}}{2 K C}$, where
K is the dielectric constant.
Again, when the dielectric slab is removed slowly its energy increases to initial potential energy. Thus, work done is zero.
40. (b) Electronic charge does not depend on acceleration due to gravity as it is a universal constant.
So, electronic charge on earth
= electronic charge on moon
$\therefore \quad$ Required ratio $=1$.

SECTION II - CHEMISTRY

41. (b) According to Kohlrausch's law, molar conductivity of weak electrolyte acetic acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$ is given as follows:

$$
\Lambda_{\mathrm{CH}_{3} \mathrm{COOH}}^{\circ}=\Lambda_{\mathrm{CH}_{3} \mathrm{COONa}}^{\circ}+\Lambda_{\mathrm{HCl}}^{\circ}-\Lambda_{\mathrm{NaCl}}^{\circ}
$$

$\therefore \quad$ Value of $\Lambda^{\circ}{ }_{\mathrm{NaCl}}$ should also be known for calculating value of $\Lambda^{\circ} \mathrm{CH}_{3} \mathrm{COOH}$.
42. (d) Aromatic amines are less basic than aliphatic amines. Among aliphatic amines the order of basicity is $2^{\circ}>1^{\circ}>3^{\circ}(\because$ of decreased electron density due to crowding in 3° amines)
\therefore dimethylamine (2° aliphatic amine) is strongest base among given choices.
43. (d) When alkyl benzene are oxidised with alkaline $\mathbf{K M n O}_{4}$, the entire alkyl group is oxidised to -COOH group regardless of length of side chain.

44. (a)

45. (b) Diamagnetic species have no unpaired electrons
$\mathrm{O}_{2}{ }^{2-} \Rightarrow \sigma 1 \mathrm{~s}^{2}, \sigma^{*} 1 \mathrm{~s}^{2}, \sigma * \mathrm{~s}^{2}, \sigma 2 \mathrm{p}_{\mathrm{z}}^{2}, \pi 2 \mathrm{p}_{\mathrm{x}}{ }^{2}$, $\pi 2 \mathrm{p}_{\mathrm{y}}{ }^{2}, \pi * 2 \mathrm{p}_{\mathrm{x}}{ }^{2}, \pi * 2 \mathrm{p}_{\mathrm{y}}{ }^{2}$
46. (c) Reluctance of valence shell electrons to participate in bonding is called inert pair effect. The stability of lower oxidation state (+2 for group 14 element) increases on going down the group. So the correct order is $\mathrm{SiX}_{2}<\mathrm{GeX}_{2}<\mathrm{PbX}_{2}<\mathrm{SnX}_{2}$
47. (d) Chlorine reacts with excess of ammonia to produce ammonium chloride and nitrogen.

$$
8 \mathrm{NH}_{3}+3 \mathrm{Cl}_{2} \longrightarrow \mathrm{~N}_{2}+\mathrm{NH}_{4} \mathrm{Cl}
$$

48. (d) Smaller the size and higher the charge more will be polarising power of cation. So the correct order of polarising power is
$\mathrm{K}^{+}<\mathrm{Ca}^{2+}<\mathrm{Mg}^{2+}<\mathrm{Be}^{2+}$
49. (d) Mass of 3.6 moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$
$=$ Moles \times Molecular mass
$=3.6 \times 98 \mathrm{~g}=352.8 \mathrm{~g}$
$\therefore \quad 1000 \mathrm{ml}$ solution has 352.8 g of $\mathrm{H}_{2} \mathrm{SO}_{4}$

Given that 29 g of $\mathrm{H}_{2} \mathrm{SO}_{4}$ is present in $=100$ g of solution
$\therefore \quad 352.8{\mathrm{~g} \text { of } \mathrm{H}_{2} \mathrm{SO}_{4} \text { is present in }}$
$=\frac{100}{29} \times 352.8 \mathrm{~g}$ of solution
$=1216 \mathrm{~g}$ of solution
Density $=\frac{\text { Mass }}{\text { Volume }}=\frac{1216}{1000}=1.216 \mathrm{~g} / \mathrm{ml}$

$$
=1.22 \mathrm{~g} / \mathrm{ml}
$$

50. (d) $\mathrm{H}_{2} \mathrm{~A} \rightleftharpoons \mathrm{H}^{+}+\mathrm{HA}^{-}$
$\therefore \quad \mathrm{K}_{1}=1.0 \times 10^{-5}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{HA}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{~A}\right]}$
$\mathrm{HA}^{-} \longrightarrow \mathrm{H}^{+}+\mathrm{A}^{-}$
$\therefore \quad \mathrm{K}_{2}=5.0 \times 10^{-10}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right]}{\left[\mathrm{HA}^{-}\right]}$
$\mathrm{K}=\frac{\left[\mathrm{H}^{+}\right]^{2}\left[\mathrm{~A}^{2^{-}}\right]}{\left[\mathrm{H}_{2} \mathrm{~A}\right]}=\mathrm{K}_{1} \times \mathrm{K}_{2}$
$=\left(1.0 \times 10^{-5}\right) \times\left(5 \times 10^{-10}\right)=5 \times 10^{-15}$
51. (b) Given $\mathrm{p}_{\mathrm{A}}^{0}=?, \mathrm{p}_{\mathrm{B}}^{0}=200 \mathrm{~mm}, \mathrm{x}_{\mathrm{A}}=0.6$,
$\mathrm{x}_{\mathrm{B}}=1-0.6=0.4, \mathrm{P}=290$
$\mathrm{P}=\mathrm{p}_{\mathrm{A}}+\mathrm{p}_{\mathrm{B}}=\mathrm{p}_{\mathrm{A}}^{0} \mathrm{x}_{\mathrm{A}}+\mathrm{p}_{\mathrm{B}}^{0} \mathrm{x}_{\mathrm{B}}$
$\Rightarrow \quad 290=\mathrm{p}_{\mathrm{A}}^{0} \times 0.6+200 \times 0.4$
$\therefore \quad \mathrm{p}_{\mathrm{A}}^{0}=350 \mathrm{~mm}$
52. (a) $\Delta \mathrm{G}^{\circ}=\Delta \mathrm{H}^{\circ}-\mathrm{T} \Delta \mathrm{S}^{\circ}$

For a spontaneous reaction $\Delta \mathrm{G}^{\circ}<0$
or $\Delta \mathrm{H}^{\circ}-\mathrm{T} \Delta \mathrm{S}^{\circ}<0 \quad \Rightarrow \mathrm{~T}>\frac{\Delta \mathrm{H}^{\circ}}{\Delta \mathrm{S}^{\circ}}$
$\Rightarrow \quad \mathrm{T}>\frac{179.3 \times 10^{3}}{160.2}>1117.9 \mathrm{~K} \approx 1118 \mathrm{~K}$
53. (a) $\Delta \mathrm{H}_{\mathrm{R}}=\mathrm{E}_{\mathrm{f}}-\mathrm{E}_{\mathrm{b}}=180-200=-20 \mathrm{~kJ} / \mathrm{mol}$

The nearest correct answer given in choices may be obtained by neglecting sign.
54. (d) $\mathrm{E}_{\text {cell }}=0$; when cell is completely discharged.

$$
\mathrm{E}_{\text {cell }}=\mathrm{E}_{\text {cell }}^{\circ}-\frac{0.059}{2} \log \left(\frac{\left[\mathrm{Zn}^{2+}\right]}{\left[\mathrm{Cu}^{2+}\right]}\right)
$$

$$
\begin{aligned}
& \text { or } \quad 0=1.1-\frac{0.059}{2} \log \left(\frac{\left[\mathrm{Zn}^{2+}\right]}{\left[\mathrm{Cu}^{2+}\right]}\right) \\
& \log \left(\frac{\left[\mathrm{Zn}^{2+}\right]}{\left[\mathrm{Cu}^{2+}\right]}\right)=\frac{2 \times 1.1}{0.059}=37.3 \\
& \therefore \quad\left(\frac{\left[\mathrm{Zn}^{2+}\right]}{\left[\mathrm{Cu}^{2+}\right]}\right)=10^{37.3}
\end{aligned}
$$

55. (d) For acidic buffer $\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \left[\frac{\mathrm{A}^{-}}{\mathrm{HA}}\right]$

Given $\mathrm{pK}_{\mathrm{a}}=4.5$ and acid is 50% ionised.
$[\mathrm{HA}]=\left[\mathrm{A}^{-}\right]$(when acid is 50% ionised)
$\therefore \quad \mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log 1$
$\therefore \quad \mathrm{pH}=\mathrm{pK}_{\mathrm{a}}=4.5$
$\mathrm{pOH}=14-\mathrm{pH}=14-4.5=9.5$
56. (b) From the given data we can say that order of reaction with respect to $B=1$ because change in concentration of B does not change half life. Order of reaction with respect to $\mathrm{A}=1$ because rate of reaction doubles when concentration of A is doubled keeping concentration of A constant.
$\therefore \quad$ Order of reaction $=1+0=1$ and units of first order reaction are $\mathrm{L} \mathrm{mol}^{-1} \mathrm{sec}^{-1}$.
57. (a) 4 f orbital is nearer to nucleus as compared to $5 f$ orbital therefore, shielding of 4 f is more than 5 f.
58. (a) Complexes with dsp ${ }^{2}$ hybridisation are square planar. So $\left[\mathrm{PtCl}_{4}\right]^{2-}$ is square planar in shape.
59. (b) The organic compounds which have chiral carbon atom and do not have plane of symmetry rotate plane polarised light.

60. (b) Proteins have two types of secondary structures α-helix and β-plated sheet.
61. (b) The reaction follows Markownikoff rule which states that when unsymmetrical reagent adds across unsymmetrical double or triple bond the negative part adds to carbon atom having lesser number of hydrogen atoms.

> 2, 2-dibromo-propane
62. (a) This is carbylamine reaction.
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2}+\mathrm{CHCl}_{3}+3 \mathrm{KOH}$

$$
\longrightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NC}+3 \mathrm{KCl}
$$

63. (d) FeCl_{3} is Lewis acid. In presence of FeCl_{3} side chain hydrogen atoms of toluene are substituted.

64. (a) Nitro is electron withdrawing group, so it deactivates the ring towards electrophilic substitution.
65. (c)
(a) N_{2} : bond order 3, paramagnetic
N_{2}^{-}: bond order, 2.5 paramagnetic
(b) C_{2} : bond order 2, diamagnetic
C_{2}^{+}: bond order 1.5, paramagnetic
(c) NO : bond order 2.5, paramagnetic
NO^{+}: bond order 3, diamagnetic
(d) O_{2} : bond order 2, paramagnetic O_{2}^{+}: bond order 2.5, paramagnetic
$\therefore \quad$ (c) is correct answer
66. (a) More the distance between nucleus and outer orbitals, lesser will be force of attraction on them. Distance between nucleus and 5 f orbitals is more as compared to distance between 4 f orbital and nucleus. So actinoids exhibit more number of oxidation states in general than the lanthanoids.
67. (d) Let the mass of methane and oxygen $=\mathrm{mgm}$. Mole fraction of O_{2}
$=\frac{\text { Moles of } \mathrm{O}_{2}}{\text { Moles of } \mathrm{O}_{2}+\text { Moles of } \mathrm{CH}_{4}}$
$=\frac{\mathrm{m} / 32}{\mathrm{~m} / 32+\mathrm{m} / 16}=\frac{\mathrm{m} / 32}{3 \mathrm{~m} / 32}=\frac{1}{3}$
Partial pressure of $\mathrm{O}_{2}=$ Total pressure \times mole
fraction if $\mathrm{O}_{2}=\mathrm{P} \times \frac{1}{3}=\frac{1}{3} \mathrm{P}$
68. (a) Osmotic pressure of isotonic solutions (π) are equal. For solution of unknown substance ($\pi=$ CRT)
$\mathrm{C}_{1}=\frac{5.25 / \mathrm{M}}{\mathrm{V}}$
For solution of urea, C_{2} (concentration)
$=\frac{1.5 / 60}{\mathrm{~V}}$
Given
$\pi_{1}=\pi_{2}$
$\because \pi=$ CRT
$\therefore \quad \mathrm{C}_{1} \mathrm{RT}=\mathrm{C}_{2} \mathrm{RT}$ or $\mathrm{C}_{1}=\mathrm{C}_{2}$
or $\quad \frac{5.25 / \mathrm{M}}{\mathrm{V}}=\frac{1.8 / 60}{\mathrm{~V}}$
$\therefore \quad \mathrm{M}=210 \mathrm{~g} / \mathrm{mol}$
69. (d) Given $\Delta \mathrm{H}=41 \mathrm{~kJ} \mathrm{~mol}^{-1}=41000 \mathrm{~J} \mathrm{~mol}^{-1}$
$\mathrm{T}=100^{\circ} \mathrm{C}=273+100=373 \mathrm{~K}$
$\mathrm{n}=1$
$\Delta \mathrm{U}=\Delta \mathrm{H}-\Delta \mathrm{nRT}=41000-(2 \times 8.314 \times 373)$
$=37898.88 \mathrm{~J} \mathrm{~mol}^{-1} \simeq 37.9 \mathrm{kJmol}^{-1}$
70. (c) Let $x=$ solubility
$\mathrm{AgIO}_{3} \rightleftharpoons \mathrm{Ag}^{+}+\mathrm{IO}_{3}^{-}$
$\mathrm{K}_{\mathrm{sp}}=\left[\mathrm{Ag}^{+}\right]\left[\mathrm{IO}_{3}^{-}\right]=\mathrm{x} \times \mathrm{x}=\mathrm{x}^{2}$
Given $K_{\text {sp }}=1 \times 10^{-8}$
$\therefore \quad \mathrm{x}=\sqrt{\mathrm{K}_{\mathrm{sp}}}=\sqrt{1 \times 10^{-8}}=1.0 \times 10^{4}$
$\mathrm{mol} / \mathrm{lit}$
$=1.0 \times 10^{-4} \times 283 \mathrm{~g} / \mathrm{lit}$
$=\frac{1.0 \times 10^{-4} \times 283 \times 100}{1000} \mathrm{gm} / 100 \mathrm{ml}$
$=2.83 \times 10^{-3} \mathrm{gm} / 100 \mathrm{ml}$
71. (a) Let activity of safe working $=\mathrm{A}$

Given $\mathrm{A}_{0}=10 \mathrm{~A}$
$\lambda=\frac{0.693}{t_{1 / 2}}=\frac{0.693}{30}$
$\mathrm{t}_{1 / 2}=\frac{2.303}{\lambda} \log \frac{\mathrm{~A}_{0}}{\mathrm{~A}}=\frac{2.303}{0.693 / 30} \log \frac{10 \mathrm{~A}}{\mathrm{~A}}$
$=\frac{2.303 \times 30}{0.693} \times \log 10=100$ days.
72. (b) Chiral conformation will not have plane of symmetry. Since twisted boat does not have plane of symmetry it is chiral.
73. (c) In $\mathrm{S}_{\mathrm{N}}{ }^{2}$ mechanism transition state is pentavelent. For bulky alkyl group it will have sterical hinderance and smaller alkyl group will favour the $\mathrm{S}_{\mathrm{N}}{ }^{2}$ mechanism. So the decreasing order of reactivity of alkyl halides is

$$
\mathrm{RCH}_{2} \mathrm{X}>\mathrm{R}_{2} \mathrm{CHX}>\mathrm{R}_{3} \mathrm{CX}
$$

74. (d)

(D)
n-propyl alcohol
75. (c)
(a) $\mathrm{n}=3, \ell=0$ means 3s-orbital
(b) $\mathrm{n}=3, \ell=1$ means 3 p -orbital
(c) $\mathrm{n}=3, \ell=2$ means 3d-orbital
(d) $\mathrm{n}=4, \ell=0$ means 4 s -orbital

Increasing order of energy among these orbitals is
$3 \mathrm{~s}<3 \mathrm{p}<4 \mathrm{~s}<3 \mathrm{~d}$
$\therefore \quad 3 \mathrm{~d}$ has highest energy.
76. (c) Greater the difference between electronegativity of bonded atoms, stronger will be bond.
$\therefore \quad \mathrm{F}-\mathrm{H}$. \qquad F is the strongest bond.
77. (c) $2 \mathrm{Al}_{(\mathrm{s})}+6 \mathrm{HCl}_{(\mathrm{aq})} \rightarrow 2 \mathrm{Al}^{3+}{ }_{(\mathrm{aq})}+6 \mathrm{Cl}_{(\mathrm{aq})}+3 \mathrm{H}_{2(\mathrm{~g})}$
$\therefore 6$ moles of HCl produces $=3$ moles of H_{2}

$$
=3 \times 22.4 \mathrm{~L}^{2} \mathrm{H}_{2}{ }^{2}
$$

$\therefore 1$ mole of HCl produces

$$
=\frac{3 \times 22.4}{6}=11.2 \mathrm{~L} \text { of } \mathrm{H}_{2}
$$

$\because 2$ moles of Al produces 3 moles of H_{2}

$$
=3 \times 22.4 \mathrm{~L}^{\text {of }} \mathrm{H}_{2}
$$

$\therefore 1$ mole of Al produces

$$
=\frac{3 \times 22.4}{2}=33.6 \mathrm{~L} \text { of } \mathrm{H}_{2}
$$

78. (a) $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow 2 \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{NH}_{4} \mathrm{OH}$ $\mathrm{H}_{2} \mathrm{SO}_{4}$ is strong acid and increases the acidity of soil.
79. (b) Spontaneity of reaction depends on tendency to acquire minimum energy state and maximum randomness. For a spontaneous process in an isolated system the change in entropy is positive.
80. (b) Isotopes are atoms of same element having same atomic number but different atomic masses. Neutron has atomic number 0 and atomic mass 1 . So loss of neutron will generate isotope.

SECTIONIII-MATHEMATICS

81. (c) Given : Force $\mathrm{P}=\mathrm{Pn}, \mathrm{Q}=3 \mathrm{n}$, resultant $\mathrm{R}=7 \mathrm{n}$
$\& P^{\prime}=P n, Q^{\prime}=(-3) n, R^{\prime}=\sqrt{19}$

We know that

$$
\mathrm{R}^{2}=\mathrm{P}^{2}+\mathrm{Q}^{2}+2 \mathrm{PQ} \cos \alpha
$$

$\Rightarrow \quad(7)^{2}=\mathrm{P}^{2}+(3)^{2}+2 \times \mathrm{P} \times 3 \cos \alpha$
$\Rightarrow \quad 49=\mathrm{P}^{2}+9+6 \mathrm{P} \cos \alpha$
$\Rightarrow \quad 40=\mathrm{P}^{2}+6 \mathrm{P} \cos \alpha$
and $(\sqrt{19})^{2}=\mathrm{P}^{2}+(-3)^{2}+2 \mathrm{P} \times-3 \cos \alpha$
$\Rightarrow \quad 19=\mathrm{P}^{2}+9-6 \mathrm{P} \cos \alpha$
$\Rightarrow \quad 10=\mathrm{P}^{2}-6 \mathrm{P} \cos \alpha$
Adding (i) and (ii)
$50=2 \mathrm{P}^{2}$
$\Rightarrow \quad P^{2}=25 \Rightarrow P=5 n$.
82. (d) Given : Probabilities of aeroplane I, i.e., $\mathrm{P}(\mathrm{I})=0.3$ probabilities of scoring a target correctly by aeroplane II, i.e. $\mathrm{P}(\mathrm{II})=0.2$
$\therefore \mathrm{P}(\overline{\mathrm{I}})=1-0.3=0.7$ and $\mathrm{P}(\overline{\mathrm{II}})=1-0.2=0.8$
\therefore The required probability
$=\mathrm{P}(\overline{\mathrm{I}} \cap \mathrm{II})=\mathrm{P}(\overline{\mathrm{I}}) \cdot \mathrm{P}(\mathrm{II})=0.7 \times 0.2=0.14$
83. (d) Given, $\mathrm{D}=\left|\begin{array}{ccc}1 & 1 & 1 \\ 1 & 1+\mathrm{x} & 1 \\ 1 & 1 & 1+\mathrm{y}\end{array}\right|$

Apply $\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{1}$ and $\mathrm{R} \rightarrow \mathrm{R}_{3}-\mathrm{R}_{1}$
$\therefore \quad D=\left|\begin{array}{lll}1 & 1 & 1 \\ 0 & x & 0 \\ 0 & 0 & y\end{array}\right|=x y$
Hence, D is divisible by both x and y
84. (b) Given, equation of hyperbola
$\frac{x^{2}}{\cos ^{2} \alpha}-\frac{y^{2}}{\sin ^{2} \alpha}=1$
We know that the equation of hyperbola is
$\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$
Here, $\mathrm{a}^{2}=\cos ^{2} \alpha$ and $\mathrm{b}^{2}=\sin ^{2} \alpha$
We know that, $b^{2}=a^{2}\left(e^{2}-1\right)$
$\Rightarrow \sin ^{2} \alpha=\cos ^{2} \alpha\left(\mathrm{e}^{2}-1\right)$
$\Rightarrow \sin ^{2} \alpha+\cos ^{2} \alpha=\cos ^{2} \alpha \cdot \mathrm{e}^{2}$
$\Rightarrow \mathrm{e}^{2}=1+\tan ^{2} \alpha=\sec ^{2} \alpha \Rightarrow \mathrm{e}=\sec \alpha$
\therefore ae $=\cos \alpha \cdot \frac{1}{\cos \alpha}=1$
Co-ordinates of foci are (\pm ae, 0) i.e. $(\pm 1,0)$
Hence, abscissae of foci remain constant when α varies.
85. (b) Let the angle of line makes with the positive direction of z-axis is α direction cosines of line with the +ve directions of x -axis, y -axis, and z -axis is $\mathrm{l}, \mathrm{m}, \mathrm{n}$ respectively.
$\therefore \mathrm{l}=\cos \frac{\pi}{4}, \mathrm{~m}=\cos \frac{\pi}{4}, \mathrm{n}=\cos \alpha$
as we know that, $\mathrm{l}^{2}+\mathrm{m}^{2}+\mathrm{n}^{2}=1$

$$
\begin{aligned}
& \therefore \cos ^{2} \frac{\pi}{4}+\cos ^{2} \frac{\pi}{4}+\cos ^{2} \alpha=1 \\
& \Rightarrow \quad \frac{1}{2}+\frac{1}{2}+\cos ^{2} \alpha=1 \\
& \Rightarrow \quad \cos ^{2} \alpha=0 \Rightarrow \alpha=\frac{\pi}{2}
\end{aligned}
$$

Hence, angle with positive direction of the z -axis is $\frac{\pi}{2}$
86. (c) Using Lagrange's Mean Value Theorem Let $f(x)$ be a function defined on $[a, b]$
then, $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$
$\mathrm{c} \in[\mathrm{a}, \mathrm{b}]$
$\therefore \quad$ Given $\mathrm{f}(\mathrm{x})=\log _{\mathrm{e}} \mathrm{x}$
$\therefore \quad \mathrm{f}^{\prime}(\mathrm{x})=\frac{1}{\mathrm{x}}$
$\therefore \quad$ equation (i) become

$$
\begin{aligned}
\frac{1}{\mathrm{c}} & =\frac{\mathrm{f}(3)-\mathrm{f}(1)}{3-1} \\
\Rightarrow \quad \frac{1}{\mathrm{c}} & =\frac{\log _{\mathrm{e}} 3-\log _{\mathrm{e}} 1}{2}=\frac{\log _{\mathrm{e}} 3}{2} \\
\Rightarrow \quad \mathrm{c} & =\frac{2}{\log _{\mathrm{e}} 3} \Rightarrow \mathrm{c}=2 \log _{3} \mathrm{e}
\end{aligned}
$$

87. (d) Given $f(x)=\tan ^{-1}(\sin x+\cos x)$
$f^{\prime}(x)=\frac{1}{1+(\sin x+\cos x)^{2}} .(\cos x-\sin x)$
$=\frac{\sqrt{2} \cdot\left(\frac{1}{\sqrt{2}} \cos x-\frac{1}{\sqrt{2}} \sin x\right)}{1+(\sin x+\cos x)^{2}}$
$=\frac{\left(\cos \frac{\pi}{4} \cdot \cos x-\sin \frac{\pi}{4} \cdot \sin x\right)}{1+(\sin x+\cos x)^{2}}$
$\therefore \quad f^{\prime}(x)=\frac{\sqrt{2} \cos \left(x+\frac{\pi}{4}\right)}{1+(\sin x+\cos x)^{2}}$
if $f^{\prime}(x)>O$ then $f(x)$ is increasing function.
Hence $f(x)$ is increasing, if $-\frac{\pi}{2}<x+\frac{\pi}{4}<\frac{\pi}{2}$
$\Rightarrow-\frac{3 \pi}{4}<x<\frac{\pi}{4}$
Hence, $f(x)$ is increasing when $\mathrm{n} \in\left(-\frac{\pi}{2}, \frac{\pi}{4}\right)$
88. (a) Given $\mathrm{A}=\left[\begin{array}{ccc}5 & 5 \alpha & \alpha \\ 0 & \alpha & 5 \alpha \\ 0 & 0 & 5\end{array}\right]$ and $\left|\mathrm{A}^{2}\right|=25$
$\therefore \quad A^{2}=\left[\begin{array}{ccc}5 & 5 \alpha & \alpha \\ 0 & \alpha & 5 \alpha \\ 0 & 0 & 5\end{array}\right]\left[\begin{array}{ccc}5 & 5 \alpha & \alpha \\ 0 & \alpha & 5 \alpha \\ 0 & 0 & 5\end{array}\right]$
$=\left[\begin{array}{ccc}25 & 25 \alpha+5 \alpha^{2} & 5 \alpha+25 \alpha^{2}+5 \alpha \\ 0 & \alpha^{2} & 5 \alpha^{2}+25 \alpha \\ 0 & 0 & 25\end{array}\right]$
$\therefore\left|\mathrm{A}^{2}\right|=25\left(25 \alpha^{2}\right)$
$\therefore 25=25\left(25 \alpha^{2}\right) \Rightarrow|\alpha|=\frac{1}{5}$
89. (d) We know that $\mathrm{e}^{\mathrm{x}}=1+\mathrm{x}+\frac{\mathrm{x}^{2}}{2!}+\frac{\mathrm{x}^{3}}{3!}+$.. \qquad
Put $x=-1$
$\therefore \quad \mathrm{e}^{-1}=1-1+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{4!} \ldots \ldots \ldots$
$\therefore \quad \mathrm{e}^{-1}=\frac{1}{2!}-\frac{1}{3!}+\frac{1}{4!}-\frac{1}{5!} \ldots \ldots \ldots$
90. (b) Given $|2 \hat{\mathrm{u}} \times 3 \hat{\mathrm{v}}|=1$ and θ is acute angle between \hat{u} and $\hat{v},|\hat{u}|=1,|\hat{v}|=1$

$$
\begin{aligned}
& \Rightarrow \quad 6|\hat{u}||\hat{\mathrm{v}}||\sin \theta|=1 \\
& \Rightarrow \quad 6|\sin \theta|=1 \Rightarrow \sin \theta=\frac{1}{6}
\end{aligned}
$$

Hence, there is exactly one value of θ for which $2 \hat{\mathrm{u}} \times 3 \hat{\mathrm{v}}$ is a unit vector.
91. (a) Let B be the top of the wall whose coordinates will be (a, b). Range (R) $=\mathrm{c}$

$$
\begin{aligned}
& y=x \tan \alpha-\frac{1}{2} g \frac{x^{2}}{u^{2} \cos ^{2} \alpha} \\
& \Rightarrow \quad b=a \tan \alpha-\frac{1}{2} g \frac{a^{2}}{u^{2} \cos ^{2} \alpha} \\
& \Rightarrow \quad b=a \tan \alpha\left[1-\frac{\mathrm{ga}}{2 \mathrm{u}^{2} \cos ^{2} \alpha \tan \alpha}\right]
\end{aligned}
$$

$$
=a \tan \alpha\left[1-\frac{a}{\frac{2 u^{2}}{\mathrm{~g}} \cos ^{2} \alpha \cdot \frac{\sin \alpha}{\cos \alpha}}\right]
$$

$$
=\mathrm{a} \tan \alpha\left[1-\frac{\mathrm{a}}{\frac{\mathrm{u}^{2} \cdot 2 \sin \alpha \cos \alpha}{\mathrm{~g}}}\right]
$$

$=a \tan \alpha\left[1-\frac{\mathrm{a}}{\frac{\mathrm{u}^{2} \sin 2 \alpha}{\mathrm{~g}}}\right]$
$=\mathrm{a} \tan \alpha\left[1-\frac{\mathrm{a}}{\mathrm{R}}\right] \quad\left(\because \mathrm{R}=\frac{\mathrm{u}^{2} \sin ^{2} \alpha}{\mathrm{~g}}\right)$
$\Rightarrow \mathrm{b}=\mathrm{a} \tan \alpha\left[1-\frac{\mathrm{a}}{\mathrm{c}}\right]$
$\Rightarrow \mathrm{b}=\mathrm{a} \tan \alpha \cdot\left(\frac{\mathrm{c}-\mathrm{a}}{\mathrm{c}}\right)$
$\Rightarrow \tan \alpha=\frac{b c}{a(c-a)}$
The angle of projection, $\alpha=\tan ^{-1} \frac{\mathrm{bc}}{\mathrm{a}(\mathrm{c}-\mathrm{a})}$
92. (a) Let the number of boys be x and that of girls be y.
$\Rightarrow \quad 52 \mathrm{x}+42 \mathrm{y}=50(\mathrm{x}+\mathrm{y})$
$\Rightarrow \quad 52 \mathrm{x}-50 \mathrm{x}=50 \mathrm{y}-42 \mathrm{y}$
$\Rightarrow \quad 2 x=8 y \Rightarrow \frac{x}{y}=\frac{4}{1}$ and $\frac{x}{x+y}=\frac{4}{5}$
Required $\%$ of boys $=\frac{x}{x+y} \times 100$
$=\frac{4}{5} \times 100=80 \%$
93. (b) Parabola $y^{2}=8 x$

Point must be on the directrix of parabola
\because equation of directrix $x+2=0 \Rightarrow x=-2$
Hence the point is $(-2,0)$
94. (c) We know that equation of sphere is
$x^{2}+y^{2}+z^{2}+2 u x+2 v y+2 w z+d=0$
where centre is $(-u,-v,-w)$
given $x^{2}+y^{2}+z^{2}-6 x-12 y-2 z+20=0$
\therefore centre $\equiv(3,6,1)$
Coordinates of one end of diameter of the sphere are $(2,3,5)$. Let the coordinates of the other end of diameter are (α, β, γ)
$\therefore \frac{\alpha+2}{2}=3, \frac{\beta+3}{2}=6, \frac{\gamma+5}{2}=1$
$\Rightarrow \alpha=4, \beta=9$ and $\gamma=-3$
\therefore Coordinate of other end of diameter are $(4,9,-3)$
95. (b) Given $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=\hat{i}-\hat{j}+2 \hat{k}$ and $\vec{c}=x \hat{i}+(x-2) \hat{j}-\hat{k}$
If \vec{c} lies in the plane of \vec{a} and \vec{b}, then $[\vec{a} \vec{b} \vec{c}]=0$
i.e. $\left|\begin{array}{ccc}1 & 1 & 1 \\ 1 & -1 & 2 \\ x & (x-2) & -1\end{array}\right|=0$
$\Rightarrow 1[1-2(x-2)]-1[-1-2 x]+1[x-2+x]=0$
$\Rightarrow 1-2 \mathrm{x}+4+1+2 \mathrm{x}+2 \mathrm{x}-2=0$
96. (a) Given: The vertices of a right angled triangle $\mathrm{A}(1, \mathrm{k}), \mathrm{B}(1,1)$ and $\mathrm{C}(2,1)$ and Area of $\triangle \mathrm{ABC}$ $=1$ square unit

We know that, area of right angled triangle
$=\frac{1}{2} \times \mathrm{BC} \times \mathrm{AB}=1=\frac{1}{2}(1)|(\mathrm{k}-1)|$

$$
\Rightarrow \pm(\mathrm{k}-1)=2 \Rightarrow \mathrm{k}=-1,3
$$

97. (c) Given : The coordinates of points $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ are $(-1,0),(0,0),(3,3 \sqrt{3})$ respectively.

Slope of $\mathrm{QR}=\frac{\mathrm{y}_{2}-\mathrm{y}_{1}}{\mathrm{x}_{2}-\mathrm{x}_{1}}=\frac{3 \sqrt{3}}{3}$

$$
\Rightarrow \quad \tan \theta=\sqrt{3}
$$

$\Rightarrow \quad \theta=\frac{\pi}{3} \Rightarrow \angle \mathrm{RQX}=\frac{\pi}{3}$
$\therefore \quad \angle \mathrm{RQC}=\pi-\frac{\pi}{3}=\frac{2 \pi}{3}$
\therefore Slope of the line $\mathrm{QM}=\tan \frac{2 \pi}{3}=-\sqrt{3}$
\therefore Equation of line QM is $(\mathrm{y}-0)=-\sqrt{3}(\mathrm{x}-0)$
$\Rightarrow \quad y=-\sqrt{3} x \Rightarrow \sqrt{3} x+y=0$
98. (a) Equation of bisectors of lines, $x y=0$ are $y= \pm x$

$\therefore \quad$ Put $\mathrm{y}= \pm \mathrm{x}$ in the given equation
$\quad \mathrm{my}^{2}+\left(1-\mathrm{m}^{2}\right) \mathrm{xy}-\mathrm{mx}^{2}=0$
$. \quad \mathrm{mx}^{2}+\left(1-\mathrm{m}^{2} \mathrm{x}^{2}-\mathrm{mx}^{2}=0\right.$
$\Rightarrow \quad 1-\mathrm{m}^{2}=0 \Rightarrow \mathrm{~m}= \pm 1$
99. (c) $\operatorname{Given} \mathrm{f}(\mathrm{x})=\mathrm{f}(\mathrm{x})+\mathrm{f}\left(\frac{1}{\mathrm{x}}\right)$, wheref $(\mathrm{x})=\int_{1}^{\mathrm{x}} \frac{\log \mathrm{t}}{1+\mathrm{t}} \mathrm{dt}$
$\therefore \mathrm{F}(\mathrm{e})=\mathrm{f}(\mathrm{e})+\mathrm{f}\left(\frac{1}{\mathrm{e}}\right)$
$\Rightarrow \mathrm{F}(\mathrm{e})=\int_{1}^{\mathrm{e}} \frac{\log \mathrm{t}}{1+\mathrm{t}} \mathrm{dt}+\int_{1}^{1 / \mathrm{e}} \frac{\log \mathrm{t}}{1+\mathrm{t}} \mathrm{dt}$
Now for solving, $I=\int_{1}^{1 / \mathrm{e}} \frac{\log \mathrm{t}}{1+\mathrm{t}} \mathrm{dt}$
\therefore Put $\frac{1}{\mathrm{t}}=\mathrm{z} \Rightarrow-\frac{1}{\mathrm{t}^{2}} \mathrm{dt}=\mathrm{dz} \Rightarrow \mathrm{dt}=-\frac{\mathrm{dz}}{\mathrm{z}^{2}}$
and limit for $\mathrm{t}=1 \Rightarrow \mathrm{z}=1$ and for $\mathrm{t}=1 / \mathrm{e} \Rightarrow$ $\mathrm{z}=\mathrm{e}$
$\therefore \mathrm{I}=\int_{1}^{\mathrm{e}} \frac{\log \left(\frac{1}{\mathrm{z}}\right)}{1+\frac{1}{\mathrm{z}}}\left(-\frac{\mathrm{dz}}{\mathrm{z}^{2}}\right)$
$=\int_{1}^{\mathrm{e}} \frac{(\log 1-\log \mathrm{z}) \cdot \mathrm{z}}{\mathrm{z}+1}\left(-\frac{\mathrm{dz}}{\mathrm{z}^{2}}\right)$
$=\int_{1}^{\mathrm{e}}-\frac{\log \mathrm{z}}{(\mathrm{z}+1)}\left(-\frac{\mathrm{dz}}{\mathrm{z}}\right) \quad[\therefore \log 1=0]$
$=\int_{1}^{\mathrm{e}} \frac{\log \mathrm{z}}{\mathrm{z}(\mathrm{z}+1)} \mathrm{dz}$
$\therefore \mathrm{I}=\int_{1}^{\mathrm{e}} \frac{\log \mathrm{t}}{\mathrm{t}(\mathrm{t}+1)} \mathrm{dt}$
[By property $\int_{a}^{b} f(t) d t=\int_{a}^{b} f(x) d x$]
Equation (A) be
$F(e)=\int_{1}^{\mathrm{e}} \frac{\log \mathrm{t}}{1+\mathrm{t}} \mathrm{dt}+\int_{1}^{\mathrm{e}} \frac{\log \mathrm{t}}{\mathrm{t}(1+\mathrm{t})} \mathrm{dt}$
$=\int_{1}^{\mathrm{e}} \frac{\mathrm{t} \cdot \log \mathrm{t}+\log \mathrm{t}}{\mathrm{t}(1+\mathrm{t})} \mathrm{dt}=\int_{1}^{\mathrm{e}} \frac{(\log \mathrm{t})(\mathrm{t}+1)}{\mathrm{t}(1+\mathrm{t})} \mathrm{dt}$
$\Rightarrow \mathrm{F}(\mathrm{e})=\int_{1}^{\mathrm{e}} \frac{\log \mathrm{t}}{\mathrm{t}} \mathrm{dt}$
Let $\log \mathrm{t}=\mathrm{x}$
$\therefore \frac{1}{\mathrm{t}} \mathrm{dt}=\mathrm{dx}$
[for limit $\mathrm{t}=1, \mathrm{x}=0$ and $\mathrm{t}=\mathrm{e}, \mathrm{x}=\log \mathrm{e}=1$]
$\therefore \mathrm{F}(\mathrm{e})=\int_{0}^{1} \mathrm{x} \mathrm{dx}$
$F(e)=\left[\frac{x^{2}}{2}\right]_{0}^{1}$
$\Rightarrow \mathrm{F}(\mathrm{e})=\frac{1}{2}$
100. (a) $f(x)=\min \{x+1,|x|+1\}$
$\Rightarrow \mathrm{f}(\mathrm{x})=\mathrm{x}+1 \forall \mathrm{x} \in \mathrm{R}$

Hence, $f(x)$ is differentiable everywhere for all $x \in R$.
101.(b) Given, $\mathrm{f}(\mathrm{x})=\frac{1}{\mathrm{x}}-\frac{2}{\mathrm{e}^{2 \mathrm{x}}-1}$
$\Rightarrow \mathrm{f}(0)=\lim _{\mathrm{x} \rightarrow 0} \frac{1}{\mathrm{x}}-\frac{2}{\mathrm{e}^{2 \mathrm{x}}-1}$
$=\lim _{x \rightarrow 0} \frac{\left(e^{2 x}-1\right)-2 x}{x\left(e^{2 x}-1\right)} \quad\left[\frac{0}{0}\right.$ form $]$
\therefore using, L'Hospital rule
$f(0)=\lim _{x \rightarrow 0} \frac{4 e^{2 x}}{2\left(x e^{2 x} 2+e^{2 x} \cdot 1\right)+e^{2 x} \cdot 2}$
$=\lim _{x \rightarrow 0} \frac{4 e^{2 x}}{4 \mathrm{xe}^{2 x}+2 e^{2 x}+2 e^{2 x}}\left[\frac{0}{0}\right.$ form $]$
$=\lim _{x \rightarrow 0} \frac{4 e^{2 x}}{4\left(x^{2 x}+e^{2 x}\right)}=\frac{4 \cdot e^{0}}{4\left(0+e^{0}\right)}=1$
102. (c) $\int_{\sqrt{2}}^{\mathrm{x}} \frac{\mathrm{dt}}{\mathrm{t} \sqrt{\mathrm{t}^{2}-1}}=\frac{\pi}{2}$
$\because \int \frac{\mathrm{dx}}{\mathrm{x} \sqrt{\mathrm{x}^{2}-1}}=\sec ^{-1} \mathrm{x}$
$\therefore\left[\sec ^{-1} \mathrm{t}\right]_{\sqrt{2}}^{\mathrm{x}}=\frac{\pi}{2}$
$\Rightarrow \sec ^{-1} \mathrm{x}-\sec ^{-1} \sqrt{2}=\frac{\pi}{2}$
$\Rightarrow \sec ^{-1} \mathrm{x}-\frac{\pi}{4}=\frac{\pi}{2} \Rightarrow \sec ^{-1} \mathrm{x}=\frac{\pi}{2}+\frac{\pi}{4}$
$\Rightarrow \sec ^{-1} \mathrm{x}=\frac{3 \pi}{4} \Rightarrow \mathrm{x}=\sec \frac{3 \pi}{4}$
$\Rightarrow \mathrm{x}=-\sqrt{2}$
103. (c) $I=\int \frac{d x}{\cos x+\sqrt{3} \sin x}$
$I=\int \frac{d x}{2\left[\frac{1}{2} \cos x+\frac{\sqrt{3}}{2} \sin x\right]}$
$=\frac{1}{2} \int \frac{d x}{\left[\sin \frac{\pi}{6} \cos x+\cos \frac{\pi}{6} \sin x\right]}$
$=\frac{1}{2} \cdot \int \frac{\mathrm{dx}}{\sin \left(\mathrm{x}+\frac{\pi}{6}\right)}$
$\Rightarrow \quad \mathrm{I}=\frac{1}{2} \cdot \int \operatorname{cosec}\left(\mathrm{x}+\frac{\pi}{6}\right) \mathrm{dx}$
But we know that
$\int \operatorname{cosec} x d x=\log |(\tan x / 2)|+C$
$\therefore \mathrm{I}=\frac{1}{2} \cdot \log \tan \left(\frac{\mathrm{x}}{2}+\frac{\pi}{2}\right)+\mathrm{C}$
104. (a) The area enclosed between the curves $y^{2}=x$ and $y=|x|$
From the figure, area lies between $y^{2}=x$ and $y=x$

\therefore Required area $=\int_{0}^{1}\left(y_{2}-y_{1}\right) d x$
$=\int_{0}^{1}(\sqrt{x}-x) d x=\left[\frac{x^{3 / 2}}{3 / 2}-\frac{x^{2}}{2}\right]_{0}^{1}$
\therefore Required area $=\frac{2}{3}\left[\mathrm{x}^{3 / 2}\right]_{0}^{1}-\frac{1}{2}\left[\mathrm{x}^{2}\right]_{0}^{1}$

$$
=\frac{2}{3}-\frac{1}{2}=\frac{1}{6}
$$

105.(c) Let α and β are roots of the equation $x^{2}+a x+1=0$
$\alpha+\beta=-\mathrm{a}$ and $\alpha \beta=1$
given $|\alpha-\beta|<\sqrt{5}$

$$
\begin{gathered}
\Rightarrow \quad \sqrt{(\alpha+\beta)^{2}-4 \alpha \beta}<\sqrt{5} \\
\qquad\left(\because(\alpha-\beta)^{2}=(\alpha+\beta)^{2}-4 \alpha \beta\right) \\
\Rightarrow \sqrt{a^{2}-4}<\sqrt{5} \Rightarrow a^{2}-4<5 \\
\Rightarrow a^{2}-9<0 \Rightarrow a^{2}<9 \Rightarrow-3<a<3 \\
\Rightarrow a \in(-3,3)
\end{gathered}
$$

106.(b) Let the series $\mathrm{a}, \mathrm{ar}, \mathrm{ar}^{2}, \ldots$. are in geometric progression.
given, $\mathrm{a}=\mathrm{ar}+\mathrm{ar}^{2}$
$\Rightarrow \quad 1=\mathrm{r}+\mathrm{r}^{2}$
$\Rightarrow \quad \mathrm{r}^{2}+\mathrm{r}-1=0$
$\Rightarrow \quad r=\frac{-1 \pm \sqrt{1-4 \times-1}}{2}$
$\Rightarrow \quad \mathrm{r}=\frac{-1 \pm \sqrt{5}}{2}$ (taking +ve value)
$\Rightarrow \quad r=\frac{\sqrt{5}-1}{2}$
107. (d) $\sin ^{-1}\left(\frac{x}{5}\right)+\operatorname{cosec}^{-1}\left(\frac{5}{4}\right)=\frac{\pi}{2}$
$\Rightarrow \quad \sin ^{-1}\left(\frac{x}{5}\right)=\frac{\pi}{2}-\operatorname{cosec}^{-1}\left(\frac{5}{4}\right)$
$\Rightarrow \quad \sin ^{-1}\left(\frac{x}{5}\right)=\frac{\pi}{2}-\sin ^{-1}\left(\frac{4}{5}\right)$

$$
\begin{equation*}
\left[\because \sin ^{-1} x+\cos ^{-1} x=\pi / 2\right] \tag{1}
\end{equation*}
$$

$\Rightarrow \quad \sin ^{-1}\left(\frac{x}{5}\right)=\cos ^{-1}\left(\frac{4}{5}\right)$
Let $\cos ^{-1} \frac{4}{5}=\mathrm{A} \Rightarrow \cos \mathrm{A}=\frac{4}{5}$
$\Rightarrow \mathrm{A}=\cos ^{-1}(4 / 5)$
$\Rightarrow \sin \mathrm{A}=\frac{3}{5}$
$\Rightarrow \mathrm{A}=\sin ^{-1} \frac{3}{5}$

$\therefore \quad \cos ^{-1}(4 / 5)=\sin ^{-1}(3 / 5)$
$\therefore \quad$ equation (i) become,

$$
\sin ^{-1} \frac{x}{5}=\sin ^{-1} \frac{3}{5}
$$

$\Rightarrow \frac{\mathrm{x}}{5}=\frac{3}{5} \Rightarrow \mathrm{x}=3$
108. (c) $\begin{aligned} & \mathrm{T}_{\mathrm{r}+1}=(-1)^{\mathrm{r} .}{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}(\mathrm{a})^{\mathrm{n}-\mathrm{r}} \text {. (b) }{ }^{\mathrm{r}} \text { is an expansion of } \\ & (\mathrm{a}-\mathrm{b}) \mathrm{n}\end{aligned}$
$\therefore \quad$ 5th term $=\mathrm{t}_{5}=\mathrm{t}_{4+1}$
$=(-1) 4 \cdot{ }^{\mathrm{n}} \mathrm{C}_{4}(\mathrm{a})^{\mathrm{n}^{-4}} \cdot(\mathrm{~b}) 4={ }^{\mathrm{n}} \mathrm{C}_{4} \cdot \mathrm{a}^{\mathrm{n}-4} \cdot \mathrm{~b}^{4}$
6th term $=\mathrm{t}_{6}=\mathrm{t}_{5+1}=(-1)^{5 \mathrm{n}} \mathrm{C}_{5}(\mathrm{a})^{\mathrm{n}-5}(\mathrm{~b})^{5}$
Given $\mathrm{t}_{5}+\mathrm{t}_{6}=0$
$\therefore \quad{ }^{\mathrm{n}} \mathrm{C}_{4} \cdot \mathrm{a}^{\mathrm{n}-4} \cdot \mathrm{~b}^{4}+\left(-{ }^{\mathrm{n}} \mathrm{C}_{5} \cdot \mathrm{a}^{\mathrm{n}-5} \cdot \mathrm{~b}^{5}\right)=0$
$\Rightarrow \frac{n!}{4!(n-4)!} \cdot \frac{a^{n}}{a^{4}} \cdot b^{4}-\frac{n!}{5!(n-5)!} \cdot \frac{a^{n} b^{5}}{a^{5}}=0$
$\Rightarrow \quad \frac{\mathrm{n}!\cdot \mathrm{a}^{\mathrm{n}} \mathrm{b}^{4}}{4!(\mathrm{n}-5)!\cdot \mathrm{a}^{4}}\left[\frac{1}{(\mathrm{n}-4)}-\frac{6}{5 \cdot \mathrm{a}}\right]=0$
or, $\frac{1}{\mathrm{n}-4}-\frac{6}{5 \mathrm{a}}=0 \Rightarrow \frac{\mathrm{a}}{\mathrm{b}}=\frac{\mathrm{x}-4}{5}$
109. (a) $\operatorname{Set} S=\{1,2,3, \ldots \ldots .12\}$
$\mathrm{A} \cup \mathrm{B} \cup \mathrm{C}=\mathrm{S}, \mathrm{A} \cap \mathrm{B}=\mathrm{B} \cap \mathrm{C}=\mathrm{A} \cap \mathrm{C}=\phi$
\therefore The number of ways to partition
$={ }^{12} \mathrm{C}_{4} \times{ }^{8} \mathrm{C}_{4} \times{ }^{4} \mathrm{C}_{4}=\frac{12!}{4!8!} \times \frac{8!}{4!4!} \times \frac{4!}{4!0!}$
$=\frac{12!}{(4!)^{3}}$
110.(b) $f(x)=4^{-x^{2}}+\cos ^{-1}\left(\frac{x}{2}-1\right)+\log (\cos x)$
$\mathrm{f}(\mathrm{x})$ is defined if $-1 \leq\left(\frac{\mathrm{x}}{2}-1\right) \leq 1$ and $\cos \mathrm{x}>0$
or $0 \leq \frac{\mathrm{x}}{2} \leq 2$ and $-\frac{\pi}{2}<\mathrm{x}<\frac{\pi}{2}$
or $0 \leq \mathrm{x} \leq 4$ and $-\frac{\pi}{2}<\mathrm{x}<\frac{\pi}{2}$
$\therefore \quad \mathrm{x} \in\left[0, \frac{\pi}{2}\right)$
111. (a) Given: A body weighing 13 kg is suspended by two strings $\mathrm{OB}=5 \mathrm{~m}$ and $\mathrm{OA}=12 \mathrm{~m}$. Length of $\operatorname{rod} A B=13 \mathrm{M}$.
Let T_{1} is tension in string $O B$ and T_{2} is tension in string OA.
$\therefore \quad \mathrm{T}_{2} \sin \theta=\mathrm{T}_{1} \cos \theta$
and $\mathrm{T}_{1} \sin \theta+\mathrm{T}_{2} \cos \theta=13$

But given
$\mathrm{OC}=\mathrm{CA}=\mathrm{CB}$
$\therefore \quad \angle \mathrm{AOC}=\angle \mathrm{OAC}=\theta$ (let)
and $\angle \mathrm{COB}=\angle \mathrm{OBC}$
Now in $\triangle \mathrm{AOB}$
$\sin \theta=\sin A=\frac{5}{13}$ and $\cos \theta=\frac{12}{13}$
Now putting the value of $\sin \theta$ and $\cos \theta$ in equation (i) and (ii) we get
$\mathrm{T}_{2} \frac{5}{13}=\mathrm{T}_{1} \frac{12}{13}$ and $\mathrm{T}_{1} \cdot \frac{5}{13}+\mathrm{T}_{2} \cdot \frac{12}{13}=13$
$\Rightarrow \quad 12 \mathrm{~T}_{1}-5 \mathrm{~T}_{2}=0$
$\Rightarrow \quad 5 \mathrm{~T}_{1}+12 \mathrm{~T}_{2}^{2}=169$
Solving equation (iii) and (iv)
$60 \mathrm{~T}_{1}-25 \mathrm{~T}_{2}=0$
$-60 \mathrm{~T}_{1} \pm 144 \mathrm{~T}_{2}={ }_{-} 169 \times 12$
$-169 \mathrm{~T}_{2}=-169 \times 12$
$\Rightarrow \quad \mathrm{T}_{2}=12$ and $\mathrm{T}_{1}=5$
$\therefore \quad$ Tensions in strings are 5 kg and 12 kg
112. (b) A pair of fair dice is thrown, the sample space $\mathrm{S}=(1,1),(1,2)(1,3) \ldots=36$
Possibility of getting 9 are $(5,4),(4,5),(6,3),(3,6)$
\therefore Possibility of getting score 9 in a single throw
$=\frac{4}{36}=\frac{1}{9}$
\therefore Probability of getting score 9 exactly twice
$={ }^{3} \mathrm{C}_{2} \times\left(\frac{1}{9}\right)^{2} \cdot\left(1-\frac{1}{9}\right)=\frac{3!}{2!} \times \frac{1}{9} \times \frac{1}{9} \times \frac{8}{9}$
$=\frac{3.2!}{2!} \times \frac{1}{9} \times \frac{1}{9} \times \frac{8}{9}=\frac{8}{243}$
113. (d) Equation of circle whose centre is (h, k)
i.e $(x-h)^{2}+(y-k)^{2}=k^{2}$

(radius of circle $=\mathrm{k}$ because circle is tangent to x -axis)
Equation of circle passing through $(-1,+1)$
$\therefore(-1-h)^{2}+(1-\mathrm{k})^{2}=\mathrm{k}^{2}$
$\Rightarrow 1+\mathrm{h}^{2}+2 \mathrm{~h}+1+\mathrm{k}^{2}-2 \mathrm{k}=\mathrm{k}^{2}$
$\Rightarrow \mathrm{h}^{2}+2 \mathrm{~h}-2 \mathrm{k}+2=0$

$$
\mathrm{D} \geq 0
$$

$\therefore(2)^{2}-4 \times 1 .(-2 \mathrm{k}+2) \geq 0$
$\Rightarrow 4-4(-2 \mathrm{k}+2) \geq 0 \Rightarrow 1+2 \mathrm{k}-2 \geq 0$
$\Rightarrow \mathrm{k} \geq \frac{1}{2}$
114. (c) Let the direction cosines of line L be l, m, n, then
$2 l+3 \mathrm{~m}+\mathrm{n}=0$
and $l+3 \mathrm{~m}+2 \mathrm{n}=0$
on solving equation (i) and (ii), we get
$\frac{l}{6-3}=\frac{\mathrm{m}}{1-4}=\frac{\mathrm{n}}{6-3} \Rightarrow \frac{l}{3}=\frac{\mathrm{m}}{-3}=\frac{\mathrm{n}}{3}$
Now $\frac{l}{3}=\frac{\mathrm{m}}{-3}=\frac{\mathrm{n}}{3}=\frac{\sqrt{l^{2}+\mathrm{m}^{2}+\mathrm{n}^{2}}}{\sqrt{3^{2}+(-3)^{2}+3^{2}}}$
$\because l^{2}+\mathrm{m}^{2}+\mathrm{n}^{2}=1$
$\therefore \frac{l}{3}=\frac{\mathrm{m}}{-3}=\frac{\mathrm{n}}{3}=\frac{1}{\sqrt{27}}$
$\Rightarrow l=\frac{3}{\sqrt{27}}=\frac{1}{\sqrt{3}}, \mathrm{~m}=-\frac{1}{\sqrt{3}}, \mathrm{n}=\frac{1}{\sqrt{3}}$
Line L, makes an angle α with + ve x -axis
$\therefore l=\cos \alpha$
$\Rightarrow \cos \alpha=\frac{1}{\sqrt{3}}$
115. (a) General equation of circles passing through origin and having their centres on the x -axis is $x^{2}+y^{2}+2 g x=0$
On differentiating w.r.t x, we get
$2 x+2 y \cdot \frac{d y}{d x}+2 g=0 \Rightarrow g=-\left(x+y \frac{d y}{d x}\right)$
\therefore equation (i) be
$x^{2}+y^{2}+2\left\{-\left(x+y \frac{d y}{d x}\right)\right\} \cdot x=0$
$\Rightarrow x^{2}+y^{2}-2 x^{2}-2 x \frac{d y}{d x} \cdot y=0$
$\Rightarrow y^{2}=x^{2}+2 x y \frac{d y}{d x}$
116. (c) Since, p and q are positive real numbers $\mathrm{p}^{2}+\mathrm{q}^{2}=1$ (Given)
Using AM \geq GM
$\therefore\left(\frac{\mathrm{p}+\mathrm{q}}{2}\right)^{2} \geq \sqrt{(\mathrm{pq})^{2}}=\frac{\mathrm{p}^{2}+\mathrm{q}^{2}+2 \mathrm{pq}}{4} \geq \mathrm{pq}$
$\frac{1+2 \mathrm{pq}}{4} \geq \mathrm{pq}$
$1+2 \mathrm{pq} \geq 4 \mathrm{pq}$
$1 \geq 2 \mathrm{pq}$
or, $\quad 2 \mathrm{pq} \leq 1$
$\mathrm{pq} \leq \frac{1}{2}$
or, $\quad \mathrm{pq} \leq \frac{1}{2}$
Now, $(p+q)^{2}=p^{2}+q^{2}+2 p q$
$\Rightarrow(\mathrm{p}+\mathrm{q})^{2} \leq 1+2 \times \frac{1}{2} \Rightarrow \mathrm{p}+\mathrm{q} \leq \sqrt{2}$
117.(a) In the $\Delta \mathrm{AOB}$, $\angle \mathrm{AOB}=60^{\circ}$, and $\angle \mathrm{OBA}=$
$\angle \mathrm{OAB}$ (since $\mathrm{OA}=$ $\mathrm{OB}=\mathrm{AB}$ radius of same circle). $\therefore \Delta$ AOB is a equilateral triangle. Let the height of tower is h m . Given distance between two points
A \& B lie on
 boundary of circular park, subtends an angle of 60° at the foot of the tower AB i.e. $\mathrm{AB}=\mathrm{a}$. A tower OC stands at the centre of a circular park. Angle of elevation of the top of the tower from A and B is 30°. In $\triangle \mathrm{OAX}$

$$
\begin{aligned}
& \tan 30^{\circ}=\frac{\mathrm{h}}{\mathrm{a}} \\
& \therefore \quad \angle \mathrm{OBA}=\angle \mathrm{AOB}=\angle \mathrm{OAB}=60^{\circ} \\
& \Rightarrow \quad \frac{1}{\sqrt{3}}=\frac{\mathrm{h}}{\mathrm{a}} \Rightarrow \mathrm{~h}=\frac{\mathrm{a}}{\sqrt{3}}
\end{aligned}
$$

118. (d) We know that, $(1+\mathrm{x})^{20}={ }^{20} \mathrm{C}_{0}+{ }^{20} \mathrm{C}_{1} \mathrm{x}+{ }^{20} \mathrm{C}_{2}$ $\mathrm{x}^{2}+\ldots . . .{ }^{20} \mathrm{C}_{10} \mathrm{x}^{10}+\ldots . .{ }^{20} \mathrm{C}_{2} \mathrm{x}^{20}$
Put $\mathrm{x}=-1,(0)={ }^{20} \mathrm{C}_{0}-{ }^{20} \mathrm{C}_{1}+{ }^{20} \mathrm{C}_{2}-{ }^{20} \mathrm{C}_{3}+$ $\ldots \ldots .+{ }^{20} \mathrm{C}_{10}-{ }^{20} \mathrm{C}_{11} \ldots .+{ }^{20} \mathrm{C}_{20}$
$\Rightarrow 0=2\left[{ }^{20} \mathrm{C}_{0}-{ }^{20} \mathrm{C}_{1}+{ }^{20} \mathrm{C}_{2}-{ }^{20} \mathrm{C}_{3}\right.$

$\Rightarrow{ }^{20} \mathrm{C}_{10}=2\left[{ }^{20} \mathrm{C}_{0}-{ }^{20} \mathrm{C}_{1}+{ }^{20} \mathrm{C}_{2}-{ }^{20} \mathrm{C}_{3}\right.$ $\left.+\ldots . . .-{ }^{20} \mathrm{C}_{9}+{ }^{20} \mathrm{C}_{10}\right]$
$\Rightarrow{ }^{20} \mathrm{C}_{0}-{ }^{20} \mathrm{C}_{1}+{ }^{20} \mathrm{C}_{2}-{ }^{20} \mathrm{C}_{3}+\ldots .+{ }^{20} \mathrm{C}_{10}$
$=\frac{1}{2}{ }^{20} \mathrm{C}_{10}$
119. (b,c) Equation of normal at $\mathrm{p}(\mathrm{x}, \mathrm{y})$ is
$Y-y=-\frac{d x}{d y}(X-x)$
Coordinate of G at X axis is $(\mathrm{X}, 0)$ (let)
$\therefore 0-\mathrm{y}=-\frac{\mathrm{dx}}{\mathrm{dy}}(\mathrm{X}-\mathrm{x})$
$\Rightarrow y \frac{d y}{d x}=x-x \Rightarrow X=x+y \frac{d y}{d x}$
\therefore Co-ordinate of $\mathrm{G}\left(\mathrm{x}+\mathrm{y} \frac{\mathrm{dy}}{\mathrm{dx}}, 0\right)$
Given distance of G from origin $=$ twice of the abscissa of p .
$\therefore\left|\mathrm{x}+\mathrm{y} \frac{\mathrm{dy}}{\mathrm{dx}}\right|=|2 \mathrm{x}|$
$\Rightarrow x+y \frac{d y}{d x}=2 x \quad$ or $x+y \frac{d y}{d x}=-2 x$
$\Rightarrow y \frac{d y}{d x}=x \quad$ or $y \frac{d y}{d x}=-3 x$
$\Rightarrow y d y=x d x$
or $y d y=-3 x d x$
On Integrating
$\Rightarrow \frac{y^{2}}{2}=\frac{x^{2}}{2}+c_{1} \quad$ or $\quad \frac{y^{2}}{2}=-\frac{3 x^{2}}{2}+c_{2}$
$\Rightarrow x^{2}-y^{2}=-2 c_{1} \quad$ or $3 x^{2}+y^{2}=2 c_{2}$
\therefore the curve is a hyperbola and ellipse both
120. (a) z lies on or inside the circle with centre $(-4,0)$ and radius 3 units.

From the Argand diagram maximum value of $|z+1|=6$
Second method: $|z+1|=|z+4-3|$
$\Rightarrow|z+1|=6 \leq|z+4|+|-3| \leq|3|+|-3|$

