Best of Both Worlds: Java & .NET for Fun & Profit
Whitepaper by Ted Neward, Spring 2007, InfoQ.com/j+n

For almost a half-decade now, since the release of Microsoft’s .NET Framework, as one of those few
“experts” fluent in both the Java/J2EE and .NET platforms, I’ve been speaking on the topic of
Java/.NET interoperability. And regardless of the venue or the audience, one question (from friends,
attendees and consulting clients alike) continues to appear at the top of the “Frequently Asked
Questions” list for this topic:

Q: So... be honest, I promise I won’t tell anybody: Which one do you like best? Java
or .NET?

I don’t have a favorite; I love them both the same. To be honest, it’s not an entirely truthful answer,
so it’s time to come clean, and go on the record as to which one I prefer.

A: It depends.

The changing nature of the question

A deep divide has fallen across our industry around the basic question of “Which platform do you
use? Are you a Java developer, or a .NET developer?” By the tone of some of the discussions held on
this topic, one might think this is the major discussion topic of the day, complete with flaring tempers
and heated discourse to match. Forget the classic debates of “eminent domain” vs “imperial
aggression”, or those issues the mainstream media thinks important, like the growing instability in
Iraq or the Horn of Africa—if we measure the emotional energy involved, clearly the world’s first
and most important issue is that of whether you spend the majority of your programming time in
Eclipse or Visual Studio.

The truly ironic thing about these debates, interestingly enough, is that they’re entirely pointless—
Java and .NET, while strikingly similar on several points, are in fact two entirely distinct and
different platforms, each with their corresponding strengths and weaknesses. Each platform
developed (or evolved) in accordance with the community and culture around it, and as such, each
platform looks to solve different problems, in different ways, using different approaches.

What’s more, the platforms themselves have begun to diverge in recent years. At conferences, I used
to be able to say that the choice between Java and .NET was largely a cultural one, that “anything you
could do with one can be done by the other in about the same amount of work”. Not so, anymore.
While it was fair to characterize .NET 1.0/1.1 as a fairly straightforward across-the-board equivalent
to Java, the two have each started to chart differing paths forward, based both on their own unique
innovation as well as the reaction of the users utilizing them. The Java community’s recent interest in
incorporating more dynamism through the language and platform, for example, measured against
Microsoft’s recent release of .NET 3.0, is a largely apples-to-oranges comparison.

As aresult, the question regarding Java and .NET has begun to change subtly; no longer is it “Which
platform do you prefer?”, but the more interesting—and powerful—question “How can I use each of
these two platforms together?”

While a full listing of all the possible integration scenarios between these two incredibly rich
platforms is beyond the scope of this paper, we can examine a few compelling ideas, and explore
them both in concept and in code.

Scenario: WPF to WCF to Java Web Service

Probably the most common example offered of Java/.NET interoperability is the ubiquitous Web
service, typically with a Windows Presentation Foundation or WinForms front-end, using Windows
Communication Foundation to do the actual work of transferring the data to the Java Web Service
waiting on the other end, typically hosted in some kind of Java container, be it WebLogic or
WebSphere or Spring or Tomcat or something similar. The pains and pleasures of building Web
services are well-documented elsewhere, so it serves no purpose to repeat them in detail here; suffice
it to say, however, that treating Web services as an extension of CORBA or .NET Remoting (that is
to say, as a distributed object technology) will generally lead to greater work and effort than is
necessary. Services, when used properly, create looser coupling than the distributed object toolkits
they seek to replace, specifically to make it easier to pass across technology boundaries such as the
one we’re discussing. Both WCF and JAX-WS have been written with the notion of “passing
messages, not objects” at their core, despite the surface-level APIs that would make them seem more
like RMI or .NET Remoting, making each a good choice for building Web services that will
interoperate well.

The obvious advantage of this scenario is that each technology focuses on the parts that it does well:
the front-end is delivered via a technology that is particular to the platform and can thus take full
advantage of its capabilities, and the back-end is written in a platform that has earned a reputation for
performance and scalability.

Scenario: SQL Server Service Broker & JSP

With the release of SQL Server 2005 came a new messaging implementation, SQL Server Service
Broker, to use in building message-based communication applications. Implemented on top of SQL
Server’s database engine (the queues in Service Broker are effectively tables with a thin veneer on
top of them) and taking full advantage of that robustness to provide transactional and ordered
delivery guarantees, Service Broker offers developers a compelling messaging platform, particularly
in those data centers where a database is already present.

Accessing Service Broker from Java, however, is not that much more difficult than any other sort of
JDBC-based access against SQL Server. A Java application—be it a client app or another server-
based processing engine—can access Service Broker through the Microsoft SQL Server 2005 JDBC
driver (available for free download from MSDN) and either send messages to a Service Broker
service, or receive messages from a Service Broker service, as necessary.

In this example, a fictitious apartment complex wants to Web-enable the generation of work orders
for its maintenance personnel, so that renters needn’t call the office to place a ticket (and thereby take
up valuable office personnel time filling out paper forms in triplicate; office personnel have enough
of a hard time ignoring tenants as it is).

As such, the solution provider has built a very simple and lightweight Web-based system with two
JSP pages: one for renters to place tickets into the service, and a second for maintenance personnel to
gather the tickets up and view them. The intent of the system is simple: the first JSP form takes the

ticket information, such as the description of the problem, the apartment itself, the tenant’s name and
phone #, and so on, and queues that information into a ServiceBroker queue, where it resides until
Maintenance staff access the second JSP form to get a list of pending work to be done.

Speaking to the implementation, in many respects, from the Java perspective, working with
ServiceBroker is not much different from working with any other JDBC-fronted database; to put
messages into the queue requires only a JDBC call into the SQL Server instance, much as a
traditional INSERT or UPDATE would be written:

Class.forName("com.microsoft.sqlserver.jdbc.sQLServerDriver");
Connection conn =
DriverMana?er.getConnection(
"jdbc:sqlserver://localhost\\SQLEXPRESS;" +
"databaseName=ServiceBrokerExample",
"sa", "password");

Statement stmt = conn.createStatement();

String sql =
"DECLARE @conversationID UNIQUEIDENTIFIER; " +
"BEGIN DIALOG CONVERSATION @conversationID " +
"FROM SERVICE InspectionService " +
"TO SERVICE 'CentralMaintenanceService';" +
"SEND ON CONVERSATION @conversationID ('" +

workRequestMessage + "');";

stmt.executeupdate(sql);

Fetching a message from the queue is similarly straightforward, using the SQL Server RECEIVE
keyword:

Statement stmt = conn.createStatement();
String sql =
"RECEIVE CAST(message_body AS XML)," +
" conversation_hand?e FROM" +
CentralMaintenanceQueue";
ResultSet rs = stmt.executeQuery(sql);
while (rs.next())

out.write("Message: + rs.getString(l) + "
");

rs.close();
stmt.close();

A reasonable question would center around the use of SQL Server’s Service Broker here, instead of a
more Java-friendly JMS implementation, such as the open-source ActiveMQ or commercial
SonicMQ implementations. While it would be easy to fall back on the usual Java/.NET interop
answer, “We do it because we have to”, there’s a more compelling reason here: conversations.

ServiceBroker provides a new feature as yet unseen in the JMS specification, that of the
“conversation”: similar in some ways to transacted message delivery, a conversation represents a
sequence of messages back and forth, and carries a unique identifier for each conversation. In
essence, it’s a halfway point between a flurry of RPC calls and independent, individually-tracked
messages. It provides for a degree of reliability and robustness not typically found in messaged
communication systems. Although in our fictitious example above, the use of conversation is
somewhat arbitrary, it can be particularly powerful in longer-running business processes. The
conversationld identifier, in the code above, is unique across the ServiceBroker instance, and
identifies this collection of messages (just one, in this case) for this particular user interaction.

Another reasonable question would center around the use of JSP as the web front-end in place of
ASP.NET; again, while it would be tempting to simply cite a “have to” reason such as using non-
Windows platform to host the Web tier, JSP offers a compelling reason in its own right, in that there
is a wealth of tools and prebuilt componentry for producing nice-looking Web applications. If we
extend the discussion to all of the Java/Web space, tools like Struts, Seam, WebWork, JSF, Google
Web Toolkit, and more make the Web development experience distinctive from the traditional drag-
and-drop approach offered up by ASP.NET. (While drag-and-drop may work for inexperienced Web
developers, practiced Web designers have usually found their own approaches they prefer, and find
that ASP.NET’s design practices clash with their own.)

For a more detailed discussion of SQL Server Service Broker, please see “A Developer’s Guide to
SQL Server 2005 by Beauchemin and Sullivan. For a more detailed discussion of Servlets and JSP,
see “Java Servlets and Java Server Pages” by Jayson Faulkner and Kevin Jones. For a more detailed
discussion of JDBC, see “The JDBC Tutorial and API Reference, Third Edition”, by Fisher, Ellis and
Bruce.

Scenario: Office & Spring

Though it may pain some of the more zealous open-source advocates to hear this, Microsoft Office
represents, without a doubt, the world’s most popular office productivity suite over the last decade. In
many respects, it is the most-installed piece of software in the world, second perhaps only to
Windows itself.

For a few years now, the Java community has discussed “richer” client applications, moving away
from the click-wait-read cycle of systems built around the Web and towards a more interactive style
of user interface. AJAX certainly enables some of this, at the (sometimes prohibitive) cost of having
to write potentially complex scripting code to deal with different browsers and browser versions.
Some in the Java community have posited the Eclipse Rich Client Platform as a solution, others push
JavaWebStart, or Adobe Flex, and so on.

The best rich client is the one based on the software already pre-installed on the end-user’s machine.
Given that Office is almost always preinstalled, particularly on machines within a corporate
environment, why not use the incredible extensibility interfaces in Office, and use Office as the rich
client, with Java as the back end?

Whole forests have been clear-cut in order to produce the myriad books, papers, tutorials and
reference documentation on the Office object model and how to use it, both from .NET and
unmanaged COM, so duplicating that information here would be counterproductive. Instead, this
paper will focus on a single part of Office’s extensibility model, that of the Smart Tag, and in
particular, the Smart Tag List, a predefined Smart Tag that uses an XML definition file to recognize
text in an Office document (typically Excel or Word, though PowerPoint and Access are also able to
use Smart Tag Lists) and offer a small drop-down menu that will lead users off to a Web site.

In this case, the fictitious scenario is simple: an online e-tailer has found their online pet shop to be
wildly successful (having finally solved the problem of shipping pets through surface mail by
negotiating deals with local pet shops around the world), and their portal, based on the Spring
JPetStore example, now needs to handle all sorts of complex calculations and business rules as
defined by the accountants and marketers within the company. The simple orders are easily left to the
portal, but more complex orders will be handled by salespeople, either in person or over the phone.

Complex calculation rules demand a complex processing language to handle them, and this is exactly
the kind of scenario that Excel was created for—in fact, both the accountants and marketers can write
the rules in Excel’s formula language themselves—and so we want to take the next step of enabling
the Excel spreadsheet to act as the front-end to the Spring portal. In this case, the first step is simply
to recognize the order and product numbers in the Excel document, and display a Smart Tag that
takes the salesperson over to the appropriate page on the Spring-powered Website. (Future
enhancements could automatically place the order when the spreadsheet is saved, or pop warning
messages when trying to sell pets that the store is currently out of, and so on.)

JPetStore Productks; FL-DSH-01

Wieww Produck

4 Remove this Smark Tag

0 00|~ | o0 = D D —

Skop Recognizing "FL-DSH-01" »

Smart tag

Smark Tag Options. ..

|
—= |0

Doing this is actually more an exercise in writing a simple XML file than it is in writing Java or .NET
code; thanks to the flexible nature of URLs, the smart tag list can remain blissfully unaware of the
fact that the website behind the URL is implemented in Spring. The Smart Tag List document, shown
below, even refreshes itself every day, on the grounds that new product IDs may come available
(“Look, kids, we now stock ferrets!”).

<FL:smarttaglist
xmlns:FL="http://schemas.microsoft.com/office/smarttags/2003/most1">
<FL:name>JPetStore</FL:name>

<FL:1cid>1033,0</FL:1cid>

<FL:description>A Tist of JPetstore symbols for recognition, as well as a
set of actions that work with them.</FL:description>
<FLimoreinfour1>http://1oca1host:8080/jpetstore/shop/1ndex.do</FL:moreinf
ourl>

<FL:updateable>false</FL:updateable>

<FL:autoUpdate>false</FL:autoUpdate>
<FL:TastCheckpoint>400</FL:lastCheckpoint>
<FL:updateURL>http://localhost:8080/jpetstore/jpetstore-smarttag-
update.jsp</FL:updateURL>

<FL:updateFrequency>5</FL:updateFrequency>

<FL:smarttag type="urn:schemas-tedneward-com:office:smarttags#jpetstore-
products'>

<FL:caption>JPetStore Products</FL:caption>

<FL:terms>

<FL:termlist>

FL-DSH-01, FL-DLH-02, FI-Fw-01, FI-Fw-02, RP-LI-02, RP-SN-01
</FL:termlist>

</FL:terms>

<FL:actions>

<FL:action 1id="urn:schemas-tedneward-com:office:smarttags#jpetstore-
products:view">

<FL:caption>View Product</FL:caption>
<FL:url>http://localhost:8080/jpetstore/shop/viewProduct.do?productIid={TE
XT}</FL:url>

</FL:action>

</FL:actions>

</FL:smarttag>

<FL:smarttag type="urn:schemas-tedneward-com:office:smarttags#jpetstore-
items'">

<FL:caption>JPetStore Items</FL:caption>

<FL:terms>

<FL:termlist>

EST-16, EST-17, EST-6, EST-7

</FL:termlist>

</FL:terms>

<FL:actions>

<FL:action 1id="urn:schemas-tedneward-com:office:smarttags#jpetstore-
items:View">

<FL:caption>View Item</FL:caption>
<FL:#r1>http://1oca1host:8080/jpetstore/shop/viewItem.do?itemId={TEXT}</F
L:url>

</FL:action>

</FL:actions>

</FL:smarttag>

</FL:smarttaglist>

Picking this apart briefly, we’re essentially setting up two smart tags, one to recognize the Product
IDs (FL-DSH-01, and so forth), and a second to recognize Item IDs (EST-16, EST-17, etc). In each
case, we simply surf over to the website, passing the ID in place of the { TEXT} placeholder in the
URL. Here, the IDs are hardcoded, but notice how the <updateURL> tag lists a .jsp page—the JSP
code there queries the underlying database for all Product and Item IDs and lists them out when it
sends back a new copy of this Smart Tag List document (which Office will silently copy over the
original, located in the C:\Program Files\Common Files\Microsoft Shared\Smart Tag\Lists directory).
Office knows to update this Smart Tag List every 5 minutes, because the Smart Tag List defines itself
to be updateable (as given by both the <updateable> and <autoupdate> tags above), and that it should
query for an update every 5 minutes (as given by the <updateFrequency> tag). This means that,
silently, the smart tag will update itself as new products and items are introduced into the database,
without any manual user intervention required.

Smart tags are far more powerful than this simple example leads us to believe; the Visual Studio
Tools for Office API allows the .NET developer to write any sort of code behind a smart tag desired,
so it’s not infeasible to imagine issuing a remote call (whether a Web Service call or through a
commercial toolkit, such as INBridge or ZeroC’s ICE) to the JPetStore engine to obtain current
inventory counts at the time of the smart tag’s activation, and so on.

Additionally, smart tags are hardly the end of Office’s integration capabilities; the document pane can
be customized to provide another user interface into any Java system, Excel’s formula language can
be extended by custom formulae (which, of course, could either host the JVM locally to make use of
Java APis or else call out to Java systems to do the same), and so on. And this need not all go one
way—if desired, Word or Excel itself can be hosted inside of the Eclipse RCP, as can any COM
Automation object, where all of the features of Word and Excel will still remain available.

Other Scenarios

Certainly, these aren’t the only scenarios possible, just the few that came to mind during recent
discussions and client meetings. Other scenarios include:

v PowerShell using Cmdlets that speak to Java. PowerShell is poised to become the most important
administration tool for Windows for the near future, and it would be a relatively trivial exercise to
build a set of Cmdlets that interrogated Java servers using JMX. This would make it possible—
simple, even—to build scripts that checked both the status and performance of IIS- and Java-
based servers with a single script, commingling the results into a nice graph (such as those
produced by the cmdlets from PowerGadgets), or to be able to turn on and off various parts of the
system via method calls.

* Java using Speech Server. Vista has some new speech synthesis capabilities, and Microsoft’s

Speech Server offers some powerful speech-analysis capabilities that currently don’t exist in the

Java platform. As we become more aware of physical disabilities in our users, speech and

interacting with users through voice (whether over a phone or through a microphone in front of

the computer) becomes more and more attractive.

Workflow activities calling Java. Windows Workflow has a prebuilt activity that calls out to a

Web service already, but, as mentioned earlier, Web services are useful under certain

circumstances, but are hardly a panacea for all interoperability tasks. Custom activities could

make use of other Java/.NET interoperability approaches to talk to Java components.

* Java hosting Workflow. One of the most powerful facets of the Workflow engine is its ability to
be hosted in a variety of environments, such as ASP.NET. Certainly, there’s no reason why the
Workflow engine couldn’t be hosted inside of a Java process, such as Tomcat or Jetty, thus
enabling Workflow’s “information worker” accessibility to reach out to both Java and .NET-
based web applications.

* Windows Mobile devices interoperating with Java. As the mobile device world heats up,
Microsoft’s Windows Mobile platform stands as a viable platform for writing software to run on
mobile devices, such as the Smartphone. As these devices become more ubiquitous, it’s natural
that IT departments will want to integrate them into their already-heterogeneous environments,
which means Java will likely be involved. Sometimes this communication will be over Web
services, but in some situations a more focused communication method will be necessary, such as
using a proprietary toolkit like JNBridge Pro or ZeroC’s ICE.

As more and more developers come to realize the power of using both .NET and Java together, more
scenarios will likely come to light. And as both the Java and .NET communities come out with more
innovative ideas, these will create even more reasons for each side to openly and honestly consider

how to use the other to best solve our clients’ problems. Because, after all, in the end, regardless of
which technology you love more, that’s what we’re about: providing solutions to our clients.

About the Author

Ted Neward is the principal of Neward & Associates, a consulting group that focuses on enterprise
systems using Java, .NET, XML, and other tools as necessary. He has been using C++ since 1991,
Java since 1997, and .NET since 2000. He is a .NET instructor with PluralSight, teaches Java
independently, speaks at conferences worldwide in both the Java and .NET communities, writes for
MSDN, InfoQ and TheServerSide, authored the books C# In a Nutshell, SSCLI Essentials and
Effective Enterprise Java, among others, and can be found on the Web at http://www.tedneward.com.

About InfoQ.com’s Java + .NET Integration Portal

Java and .NET represent the extensive share of enterprise development. At http://infog.com/j+n we
are hosting and continually posting that will help you learn how you can leverage the strengths of
each together, such as using Microsoft Office to act as a "rich client" to a Java middle-tier service, or
building a Windows Presentation Foundation GUI on top of Java POJOs, or even how to execute
Java Enterprise/J2EE functionality from within a Windows Workflow host. This whitepaper was
produced for the InfoQ Java + .NET portal.

Appendix: Dramatis Personae

It’s important to acknowledge that readers of this paper will generally have experience and
knowledge of one of the two sides, not both. For that reason, a laundry list of the major components
of both platforms appears below. This isn’t intended as any sort of overview of explanation of those
components, nor is it an exhaustive list; readers are encouraged to consult the Bibliography at the end
of this paper for more on each topic.

Java:

* Java 5 Enterprise Edition. Recently renamed from its former moniker “Java2 Enterprise Edition”
and still commonly referred to as “J2EE”, this specification is an umbrella specification, bringing
together dozens of other “enterprise-scope’ specifications. Although incorrect, many use the term
“J2EE” as synonymous to “EJB”.

* Enterprise JavaBeans (3.0). EJB is a specification describing a container into which software
components seeking lifecycle, connection and distributed transaction management are deployed.
It is fair to characterize EJB as the logical Java successor to transaction-processing mainframe
systems.

* JDBC (4.0). The Java standard call-level interface API to relational database implementations.
Different vendors provide different “providers” (drivers) which implement the JDBC API, thus
allowing the programmer to remain ignorant (and, theoretically, loosely-coupled) to the actual
database implementation.

*» Servlets (2.5). The Servlet specification describes a container into which software components
designed to build dynamic HTTP/web pages are deployed. A Servlet is essentially a Java class
extending a particular interface.

* Java Server Pages (2.2). JSP pages are an output-oriented way to create servlets, similar in the
way that ASP or ColdFusion pages look. JSP files are then translated into Java source (servlets)
and compiled.

* Remote Method Invocation. RMI is Java’s object remote-procedure-call (ORPC) stack. RMI has
two flavors, one using a native Java wire format, called “RMI/JRMP”, and the other using

NET:

OMG’s CORBA wire format, called “RMI/IIOP”. Officially, J2EE systems are encouraged to use
RMI/TIOP, but in practice RMI/JRMP use is more widespread.

Java Message Service (1.1). IMS is an API for standard access to any messaging service (not to
be confused with email service) for the Java platform.

JavaMail. JavaMail is an API for standard access to any email (SMTP, POP3, IMAP, and so on)
service.

Java Naming and Directory Interface. The standard Java API for any service that provides
naming and/or directory services, such as LDAP.

Java WebStart. A deployment technology where applications can be launched locally from an
HTTP URL, and stored on the client machine for future (offline if desired) execution.

Java API for XML Binding (2.0). JAXB is the standard API for automated Java-to-XML/XML-to-
Java transformation.

Java API for Web Services (2.0). JAXWS is the standard API for Java XML-based services.
Originally, JAXWS was called the “Java API for XML RPC (JAX-RPC)”, but that name was
deprecated in the 2.0 release as JAXWS incorporates a more message-oriented approach.

Spring (2.0). A de facto standard open-source container providing lighter-weight services to Java
components (also known as “POJOs”, short for “Plain Old Java Objects”). Widely considered the
replacement for J2EE.

Swing. Officially known as “Java Foundation Classes”, Swing is a cross-platform user interface
toolkit for building rich-client Uls. Because it seeks to create visual consistency across platforms,
Swing implements most of its own painting and display logic.

Standard Widget Toolkit. The Ul technology at the heart of the open-source Eclipse IDE, SWT is
another UI toolkit, different from Swing in that it relies on native OS-level Ul facilities to do its
painting and display logic.

Windows Communication Foundation. Once code-named “Indigo”, WCF represents Microsoft’s
next-generation API for doing any sort of program-to-program communication, from message
queuing to secure/reliable/transacted services to WS-* web services.

Windows Presentation Foundation. Once code-named “Avalon”, WPF represents Microsoft’s
next-generation presentation layer, looking to take advantage of the huge hardware investments
the industry has made in graphics cards over the years. WPF code can be used in two forms,
either called-and-compiled as per normal .NET development, or written declaratively using an
XML dialect called “XML Application Markup Language” (XAML) that can either be compiled
into the application or sent over HTTP requests to IE 7 browsers for dynamic display. A subset of
WPF, called WPF/E, has been released for use by non-IE browsers.

Windows Workflow Foundation. Workflow, as it’s commonly called, provides

Windows Forms. The .NET wrapper around the traditional Windows UI facilities (User32.dll and
GDI32.dll).

Active Directory. AD is a directory service intended for enterprise-wide deployment of “named
resources”, such as users and servers. AD also comes in a lighter-weight version for per-
application use called “ADAM”

ASP.NET. The .NET implementation for creating dynamic Web/HTTP facilities. The ASP.NET
pipeline provides both programmatic (ASHX) and output-oriented (ASPX) forms for producing
end-user visual content, as well as programmatic Web services (ASMX).

ADO.NET. The call-level interface API to relational database implementations. Different vendors
provide different “providers” (drivers) which implement the ADO.NET API, thus allowing the
programmer to remain ignorant (and, theoretically, loosely-coupled) to the actual database
implementation.

.NET Remoting. .NET’s object remote-procedure call (ORPC) technology.

Microsoft Message Queue (4.0). MSMQ is Microsoft’s messaging service, available for all recent
versions of Windows (4.0 ships with Vista).

COM +/Enterprise Services. COM+ is the container providing transaction and lifecycle services
into which “managed applications” (as they were originally known) are deployed. .NET
components use COM+ through the System.EnterpriseServices namespace.

Microsoft Office. The world’s most widely-installed office-productivity suite, its principal parts
consist primarily of Microsoft Word, Microsoft Excel, Microsoft PowerPoint and Microsoft
Outlook.

