
2

Table of Contents
Introduction to the
CSTE Program . Intro-1
Intro.1. Software Certification Overview . Intro-2

Intro.1.1. Contact Us .Intro-3
Intro.1.2. Program History .Intro-3
Intro.1.3. Why Become Certified? .Intro-3
Intro.1.4. Benefits of Becoming a CSTE .Intro-3

Intro.1.4.1. Value Provided to the Profession . Intro-4
Intro.1.4.2. Value Provided to the Individual . Intro-4
Intro.1.4.3. Value Provided to the Employer . Intro-5
Intro.1.4.4. How to Improve Testing Effectiveness Through
CSTE Certification . Intro-6

Intro.2. Meeting the CSTE Qualifications . Intro-7
Intro.2.1. Prerequisites for Candidacy .Intro-7

Intro.2.1.1. Educational and Professional Prerequisites Intro-7
Intro.2.1.2. Non-U.S. Prerequisites . Intro-7
Intro.2.1.3. Expectations of the CSTE . Intro-8

Intro.2.2. Code of Ethics .Intro-9
Intro.2.2.1. Purpose . Intro-9
Intro.2.2.2. Responsibility . Intro-9
Intro.2.2.3. Professional Code of Conduct . Intro-10
Intro.2.2.4. Grounds for Decertification . Intro-11

Intro.2.3. Submitting the Initial Application .Intro-11
Intro.2.3.1. Correcting Application Errors . Intro-12
Intro.2.3.2. Submitting Application Changes . Intro-13

Intro.2.4. Application-Examination Eligibility Requirements Intro-13
Intro.2.4.1. Filing a Retake Application . Intro-13

Intro.3. Arranging to Sit and Take the Examination Intro-14
Intro.3.1. Scheduling to Take the Examination Intro-14

Intro.3.1.1. Rescheduling the Examination Sitting . Intro-15
Intro.3.2. Receiving the Confirmation Letter Intro-15
Intro.3.3. Checking Examination Arrangements Intro-15
Intro.3.4. Arriving at the Examination Site .Intro-16
i

Guide to the 2006 CSTE CBOK
Intro.3.4.1. No-shows . Intro-16
Intro.4. How to Maintain Competency and Improve ValueIntro-16

Intro.4.1. Continuing Professional Education Intro-16
Intro.4.2. Advanced CSTE Designations . Intro-17

Intro.4.2.1. What is the Certification Competency Emphasis? Intro-17

Preparing for the CSTE ExaminationIntro-19
Intro.5. Assess Your CSTE 2006 CBOK CompetencyIntro-19

Intro.5.1. Complete the CSTE Skill Assessment Worksheet Intro-20
Intro.5.2. Calculate Your CSTE CBOK Competency Rating Intro-21

Intro.6. Understand the Key Principles Incorporated Into
the Examination .Intro-22
Intro.7. Review the List of References .Intro-23
Intro.8. Initiate a Self-Study Program .Intro-24
Intro.9. Take the Sample Examination .Intro-24

CSTE 2006 Skill Assessment Worksheet SAW-1
. Assess Your Skills against the CSTE 2006 CBOKSAW-1

. Skill Category 1 – Software Testing Principles and Concepts SAW-2

. Skill Category 2 – Building the Test Environment . SAW-3

. Skill Category 3 – Managing the Test Project . SAW-4

. Skill Category 4 – Test Planning . SAW-5

. Skill Category 5 – Executing the Test Plan . SAW-6

. Skill Category 6 – Test Reporting Process . SAW-7

. Skill Category 7 – User Acceptance Testing . SAW-8

. Skill Category 8 – Testing Software Developed by Contractors SAW-9

. Skill Category 9 – Testing Internal Control . SAW-10

. Skill Category 10 – Testing New Technologies . SAW-11

. CSTE 2006 CBOK Competency Rating Table . SAW-12
ii

Table of Contents
Skill Category 1
Software Testing Principles and Concepts 1-1
1.1. Vocabulary .1-1

1.1.1. Quality Assurance Versus Quality Control .1-2
1.1.1.1. Quality Assurance . 1-2
1.1.1.2. Quality Control . 1-3

1.1.2. The Cost of Quality .1-4
1.1.3. Software Quality Factors .1-5

1.1.3.1. How to Identify Important Software Quality Factors 1-6
1.1.3.2. Inventory Control System Example . 1-10

1.1.4. How Quality is Defined .1-12
1.1.5. Definitions of Quality .1-13
1.1.6. What is Quality Software? .1-13

1.1.6.1. The Two Software Quality Gaps . 1-13
1.1.6.2. What is Excellence? . 1-14

1.2. What is Life Cycle Testing? .1-15
1.2.1. Why Do We Test Software? .1-15
1.2.2. Developers are not Good Testers .1-16
1.2.3. What is a Defect? .1-16
1.2.4. Software Process Defects .1-17

1.2.4.1. What Does It Mean For a Process To Be In or Out of Control? 1-17
1.2.4.2. Do Testers Need to Know SPC? . 1-22

1.2.5. Software Product Defects .1-23
1.2.5.1. Software Design Defects . 1-23
1.2.5.2. Data Defects . 1-23

1.2.6. Finding Defects .1-24
1.3. Reducing the Frequency of Defects in Software Development1-25

1.3.1. The Five Levels of Maturity .1-25
1.3.1.1. Level 1 – Ad Hoc . 1-26
1.3.1.2. Level 2 – Control . 1-27
1.3.1.3. Level 3 – Core Competency . 1-27
1.3.1.4. Level 4 – Predictable . 1-28
1.3.1.5. Level 5 – Innovative . 1-28

1.3.2. Testers Need to Understand Process Maturity 1-28
1.4. Factors Affecting Software Testing .1-29

1.4.1. People Relationships .1-29
1.4.2. Scope of Testing .1-30
iii

Guide to the 2006 CSTE CBOK
1.4.3. Misunderstanding Life Cycle Testing . 1-31
1.4.3.1. Requirements . 1-33
1.4.3.2. Design . 1-33
1.4.3.3. Program (Build/Construction) . 1-34
1.4.3.4. Test Process . 1-34
1.4.3.5. Installation . 1-34
1.4.3.6. Maintenance . 1-34

1.4.4. Poorly Developed Test Planning . 1-35
1.4.5. Testing Constraints . 1-36

1.4.5.1. Budget and Schedule Constraints . 1-36
1.4.5.2. Lacking or Poorly Written Requirements . 1-38
1.4.5.3. Changes in Technology . 1-39
1.4.5.4. Limited Tester Skills . 1-40

1.5. Life Cycle Testing . 1-40
1.6. Test Matrices . 1-42

1.6.1. Cascading Test Matrices . 1-44
1.7. Independent Testing . 1-45
1.8. Tester’s Workbench . 1-47

1.8.1. What is a Process? . 1-47
1.8.1.1. The PDCA View of a Process . 1-48
1.8.1.2. The Workbench View of a Process . 1-49
1.8.1.3. Workbenches are Incorporated into a Process . 1-50

1.9. Levels of Testing . 1-51
1.9.1. Verification versus Validation . 1-52

1.9.1.1. Computer System Verification and Validation Examples 1-52
1.9.1.2. Functional and Structural Testing . 1-55

1.9.2. Static versus Dynamic Testing . 1-56
1.9.3. The “V” Concept of Testing . 1-57

1.9.3.1. An 11-Step Software Testing Process Example . 1-59
1.10. Testing Techniques . 1-62

1.10.1. Structural versus Functional Technique Categories 1-62
1.10.1.1. Structural System Testing Technique Categories 1-63
1.10.1.2. Functional System Testing Technique Categories 1-71

1.10.2. Examples of Specific Testing Techniques 1-80
1.10.2.1. White-Box Testing . 1-80
1.10.2.2. Black-Box Testing . 1-81
1.10.2.3. Incremental Testing . 1-81
1.10.2.4. Thread Testing . 1-82
1.10.2.5. Requirements Tracing . 1-83
1.10.2.6. Desk Checking and Peer Review . 1-83
1.10.2.7. Walkthroughs, Inspections, and Reviews . 1-84
iv

Table of Contents
1.10.2.8. Proof of Correctness Techniques . 1-86
1.10.2.9. Simulation . 1-87
1.10.2.10. Boundary Value Analysis . 1-88
1.10.2.11. Error Guessing and Special Value Analysis . 1-88
1.10.2.12. Cause-Effect Graphing . 1-88
1.10.2.13. Design-Based Functional Testing . 1-89
1.10.2.14. Coverage-Based Testing . 1-89
1.10.2.15. Complexity-Based Testing . 1-91
1.10.2.16. Statistical Analyses and Error Seeding . 1-91
1.10.2.17. Mutation Analysis . 1-91
1.10.2.18. Flow Analysis . 1-92
1.10.2.19. Symbolic Execution . 1-93

1.10.3. Combining Specific Testing Techniques 1-93
v

Guide to the 2006 CSTE CBOK
Skill Category 2
Building the Test Environment2-1
2.1. Management Support . 2-1

2.1.1. Management Tone . 2-2
2.1.2. Integrity and Ethical Values . 2-3

2.1.2.1. Incentives and Temptations . 2-4
2.1.2.2. Providing and Communicating Moral Guidance . 2-4

2.1.3. Commitment to Competence . 2-5
2.1.4. Management’s Philosophy and Operating Style 2-5
2.1.5. Organizational Structure . 2-6

2.1.5.1. Assignment of Authority and Responsibility . 2-6
2.1.5.2. Human Resource Policies and Practices . 2-7

2.2. Test Work Processes . 2-8
2.2.1. The Importance of Work Processes . 2-8
2.2.2. Developing Work Processes . 2-10

2.2.2.1. Defining the Attributes of a Standard for a Standard 2-10
2.2.2.2. Developing a Test Standard . 2-10

2.2.3. Tester’s Workbench . 2-11
2.2.4. Responsibility for Building Work Processes 2-13

2.2.4.1. Responsibility for Policy . 2-13
2.2.4.2. Responsibility for Standards and Procedures . 2-14
2.2.4.3. Test Process Selection . 2-15
2.2.4.4. Building a Process Engineering Organization . 2-15
2.2.4.5. Professional Test Standards . 2-20

2.2.5. Analysis and Improvement of the Test Process 2-21
2.2.5.1. Test Process Analysis . 2-22
2.2.5.2. Continuous Improvement . 2-26
2.2.5.3. Test Process Improvement Model . 2-28
2.2.5.4. Test Process Alignment . 2-32
2.2.5.5. Adapting the Test Process to Different Software
Development Methodologies . 2-33

2.3. Test Tools . 2-36
2.3.1. Tool Development and Acquisition . 2-36

2.3.1.1. Sequence of Events to Select Testing Tools . 2-39
2.3.2. Classes of Test Tools . 2-47

2.4. Testers Competency . 2-49
vi

Table of Contents
Skill Category 3
Managing the Test Project 3-1
3.1. Test Administration .3-1

3.1.1. Test Planning .3-2
3.1.2. Budgeting .3-2

3.1.2.1. Budgeting Techniques . 3-4
3.1.2.2. Tracking Budgeting Changes . 3-5

3.1.3. Scheduling .3-6
3.1.4. Staffing .3-7

3.1.4.1. Test Team Approaches . 3-8
3.1.5. Customization of the Test Process .3-10

3.2. Test Supervision .3-11
3.2.1. Communication Skills .3-11

3.2.1.1. Written and Oral Communication . 3-12
3.2.1.2. Listening Skills . 3-15
3.2.1.3. The 3-Step Listening Process . 3-16
3.2.1.4. Interviewing Skills . 3-18
3.2.1.5. Analyzing Skills . 3-19

3.2.2. Negotiation and Complaint Resolution Skills3-21
3.2.2.1. Negotiation . 3-21
3.2.2.2. Resolving Complaints . 3-23
3.2.2.3. The 4-Step Complaint-Resolution Process . 3-23

3.2.3. Judgment .3-25
3.2.4. Providing Constructive Criticism .3-25
3.2.5. Project Relationships .3-26
3.2.6. Motivation, Mentoring, and Recognition .3-28

3.2.6.1. Motivation . 3-28
3.2.6.2. Mentoring . 3-28
3.2.6.3. Recognition . 3-29

3.3. Test Leadership .3-29
3.3.1. Chairing Meetings .3-29
3.3.2. Team Building .3-30

3.3.2.1. Team Development . 3-30
3.3.2.2. Team Member Interaction . 3-31
3.3.2.3. Team Ethics . 3-32
3.3.2.4. Team Rewards . 3-33

3.3.3. Quality Management Organizational Structure 3-33
vii

Guide to the 2006 CSTE CBOK
3.3.4. Code of Ethics . 3-35
3.3.4.1. Responsibility . 3-36

3.4. Managing Change . 3-36
3.4.1. Software Configuration Management . 3-36
3.4.2. Software Change Management . 3-37
3.4.3. Software Version Control . 3-38

3.4.3.1. Example . 3-38
viii

Table of Contents
Skill Category 4
Test Planning . 4-1
4.1. Risk Concepts and Vocabulary .4-1
4.2. Risks Associated with Software Development 4-4

4.2.1. Improper Use of Technology .4-4
4.2.2. Repetition of Errors .4-5
4.2.3. Cascading of Errors .4-5
4.2.4. Illogical Processing .4-6
4.2.5. Inability to Translate User Needs into Technical Requirements . . .4-6
4.2.6. Inability to Control Technology .4-7
4.2.7. Incorrect Entry of Data .4-7
4.2.8. Concentration of Data .4-8
4.2.9. Inability to React Quickly .4-8
4.2.10. Inability to Substantiate Processing .4-9
4.2.11. Concentration of Responsibilities .4-9
4.2.12. Erroneous or Falsified Input Data .4-10
4.2.13. Misuse by Authorized End Users .4-11
4.2.14. Uncontrolled System Access .4-11
4.2.15. Ineffective Security and Privacy Practices for the Application . .4-12
4.2.16. Procedural Errors during Operations .4-12

4.2.16.1. Procedures and Controls . 4-12
4.2.16.2. Storage Media Handling . 4-13

4.2.17. Program Errors .4-13
4.2.18. Operating System Flaws .4-14
4.2.19. Communications System Failure .4-15

4.2.19.1. Accidental Failures . 4-15
4.2.19.2. Intentional Acts . 4-15

4.3. Risks Associated with Software Testing .4-16
4.3.1. Premature Release Risk .4-18

4.4. Risk Analysis .4-19
4.4.1. Risk Analysis Process .4-20

4.4.1.1. Form the Risk Analysis Team . 4-20
4.4.1.2. Identify Risks . 4-20
4.4.1.3. Estimate the Magnitude of the Risk . 4-21
ix

Guide to the 2006 CSTE CBOK
4.4.1.4. Select Testing Priorities . 4-24
4.5. Risk Management . 4-24

4.5.1. Risk Reduction Methods . 4-25
4.5.2. Contingency Planning . 4-26

4.6. Prerequisites to Test Planning . 4-27
4.6.1. Test Objectives . 4-27
4.6.2. Acceptance Criteria . 4-27
4.6.3. Assumptions . 4-28
4.6.4. People Issues . 4-28
4.6.5. Constraints . 4-29

4.7. Create the Test Plan . 4-29
4.7.1. Understand the Characteristics of the Software being Developed . 4-31
4.7.2. Build the Test Plan . 4-32

4.7.2.1. Set Test Objectives . 4-32
4.7.2.2. Develop the Test Matrix . 4-33
4.7.2.3. Define Test Administration . 4-37
4.7.2.4. State Test Plan General Information . 4-39

4.7.3. Write the Test Plan . 4-40
4.7.3.1. Guidelines to Writing the Test Plan . 4-41
4.7.3.2. Test Plan Standard . 4-41
x

Table of Contents
Skill Category 5
Executing the Test Plan . 5-1
5.1. Test Case Design .5-1

5.1.1. Functional Test Cases .5-2
5.1.1.1. Design Specific Tests for Testing Code . 5-2
5.1.1.2. Functional Testing Independent of the Specification Technique 5-2
5.1.1.3. Functional Testing Based on the Interface . 5-2
5.1.1.4. Functional Testing Based on the Function to be Computed 5-3
5.1.1.5. Functional Testing Dependent on the Specification Technique 5-4

5.1.2. Structural Test Cases .5-5
5.1.2.1. Structural Analysis . 5-5
5.1.2.2. Structural Testing . 5-5

5.1.3. Erroneous Test Cases .5-7
5.1.3.1. Statistical Methods . 5-7
5.1.3.2. Error-Based Testing . 5-8

5.1.4. Stress Test Cases .5-10
5.1.5. Test Scripts .5-11

5.1.5.1. Determine Testing Levels . 5-11
5.1.5.2. Develop the Scripts . 5-12
5.1.5.3. Execute the Script . 5-14
5.1.5.4. Analyze the Results . 5-14
5.1.5.5. Maintain Scripts . 5-15

5.1.6. Use Cases .5-17
5.1.6.1. Build a System Boundary Diagram . 5-18
5.1.6.2. Define Use Cases . 5-19
5.1.6.3. Develop Test Cases . 5-20
5.1.6.4. Test Objective . 5-21

5.1.7. Building Test Cases .5-21
5.1.8. Process for Building Test Cases .5-22
5.1.9. Example of Creating Test Cases for a Payroll Application 5-23

5.2. Test Coverage .5-26
5.3. Performing Tests .5-27

5.3.1. Platforms .5-27
5.3.2. Test Cycle Strategy .5-27
5.3.3. Use of Tools in Testing .5-28

5.3.3.1. Test Documentation . 5-28
5.3.3.2. Test Drivers . 5-28
5.3.3.3. Automatic Test Systems and Test Languages . 5-29
xi

Guide to the 2006 CSTE CBOK
5.3.4. Perform Tests . 5-29
5.3.4.1. Perform Unit Testing . 5-30
5.3.4.2. Perform Integration Test . 5-30
5.3.4.3. Perform System Test . 5-31

5.3.5. When is Testing Complete? . 5-32
5.3.6. General Concerns . 5-32

5.4. Recording Test Results . 5-32
5.4.1. Problem Deviation . 5-33
5.4.2. Problem Effect . 5-35
5.4.3. Problem Cause . 5-36
5.4.4. Use of Test Results . 5-36

5.5. Defect Management . 5-37
5.5.1. Defect Naming Guidelines . 5-38

5.5.1.1. Name of the Defect . 5-38
5.5.1.2. Defect Severity . 5-38
5.5.1.3. Defect Type . 5-38
5.5.1.4. Defect Class . 5-38

5.5.2. The Defect Management Process . 5-39
5.5.2.1. Defect Prevention . 5-39
5.5.2.2. Deliverable Baseline . 5-43
5.5.2.3. Defect Discovery . 5-45
5.5.2.4. Defect Resolution . 5-50
5.5.2.5. Process Improvement . 5-51
xii

Table of Contents
Skill Category 6
Test Reporting Process . 6-1
6.1. Prerequisites to Test Reporting .6-1

6.1.1. Define and Collect Test Status Data .6-2
6.1.1.1. Test Results Data . 6-2
6.1.1.2. Test Case Results and Test Verification Results . 6-2
6.1.1.3. Defects . 6-3
6.1.1.4. Efficiency . 6-3

6.1.2. Define Test Metrics used in Reporting .6-3
6.1.3. Define Effective Test Metrics .6-5

6.1.3.1. Objective versus Subjective Measures . 6-6
6.1.3.2. How Do You Know a Metric is Good? . 6-7
6.1.3.3. Standard Units of Measure . 6-7
6.1.3.4. Productivity versus Quality . 6-8
6.1.3.5. Test Metric Categories . 6-8

6.2. Test Tools used to Build Test Reports .6-11
6.2.1. Pareto Charts .6-11

6.2.1.1. Deployment . 6-11
6.2.1.2. Examples . 6-13
6.2.1.3. Results . 6-13
6.2.1.4. Recommendations . 6-14

6.2.2. Pareto Voting .6-14
6.2.2.1. Deployment . 6-14
6.2.2.2. Example . 6-15

6.2.3. Cause and Effect Diagrams .6-15
6.2.3.1. Deployment . 6-15
6.2.3.2. Results . 6-17
6.2.3.3. Examples . 6-17
6.2.3.4. Recommendation . 6-18

6.2.4. Check Sheets .6-18
6.2.4.1. Deployment . 6-18
6.2.4.2. Results . 6-18
6.2.4.3. Examples . 6-19
6.2.4.4. Recommendations . 6-19
6.2.4.5. Example Check Sheet . 6-20

6.2.5. Histograms .6-20
6.2.5.1. Variation of a Histogram . 6-21
6.2.5.2. Deployment . 6-21
6.2.5.3. Results . 6-22
6.2.5.4. Examples . 6-22
xiii

Guide to the 2006 CSTE CBOK
6.2.5.5. Recommendations . 6-22
6.2.6. Run Charts . 6-22

6.2.6.1. Deployment . 6-23
6.2.6.2. Results . 6-23
6.2.6.3. Examples . 6-24
6.2.6.4. Recommendations . 6-24

6.2.7. Scatter Plot Diagrams . 6-24
6.2.7.1. Deployment . 6-24
6.2.7.2. Results . 6-27
6.2.7.3. Examples . 6-27

6.2.8. Regression Analysis . 6-28
6.2.8.1. Deployment . 6-28
6.2.8.2. Results . 6-29

6.2.9. Multivariate Analysis . 6-29
6.2.9.1. Deployment . 6-30
6.2.9.2. Results . 6-30

6.2.10. Control Charts . 6-30
6.2.10.1. Deployment . 6-31
6.2.10.2. Results . 6-32
6.2.10.3. Examples . 6-32

6.3. Test Tools used to Enhance Test Reporting . 6-32
6.3.1. Benchmarking . 6-32

6.3.1.1. A Ten-Step Process to Collect Benchmark Data 6-33
6.3.2. Quality Function Deployment . 6-36

6.4. Reporting Test Results . 6-37
6.4.1. Current Status Test Reports . 6-38

6.4.1.1. Function Test Matrix . 6-39
6.4.1.2. Defect Status Report . 6-40
6.4.1.3. Functional Testing Status Report . 6-41
6.4.1.4. Functions Working Timeline . 6-42
6.4.1.5. Expected versus Actual Defects Uncovered Timeline 6-43
6.4.1.6. Defects Uncovered versus Corrected Gap Timeline 6-44
6.4.1.7. Average Age of Uncorrected Defects by Type . 6-45
6.4.1.8. Defect Distribution Report . 6-46
6.4.1.9. Relative Defect Distribution Report . 6-47
6.4.1.10. Testing Action Report . 6-48
6.4.1.11. Individual Project Component Test Results . 6-49
6.4.1.12. Summary Project Status Report . 6-51
6.4.1.13. Individual Project Status Report . 6-52

6.4.2. Final Test Reports . 6-55
6.4.2.1. Description of Test Reports . 6-56
6.4.2.2. Integration Test Report . 6-57
xiv

Table of Contents
6.4.2.3. System Test Report . 6-58
6.4.3. Guidelines for Report Writing .6-59
xv

Guide to the 2006 CSTE CBOK
Skill Category 7
User Acceptance Testing .7-1
7.1. Acceptance Testing Concepts . 7-1

7.1.1. Difference between Acceptance Test and System Test 7-4
7.2. Roles and Responsibilities . 7-5

7.2.1. User’s Role . 7-6
7.2.2. Software Tester’s Role . 7-6

7.3. Acceptance Test Planning . 7-7
7.3.1. Acceptance Criteria . 7-7
7.3.2. Acceptance Test Plan . 7-10
7.3.3. Use Case Test Data . 7-11

7.4. Acceptance Test Execution . 7-12
7.4.1. Execute the Acceptance Test Plan . 7-12
7.4.2. Acceptance Decision . 7-13
xvi

Table of Contents
Skill Category 8
Testing Software Developed by Contractors 8-1
8.1. Challenges in Testing Acquired Software .8-2

8.1.1. Purchased COTS software .8-2
8.1.1.1. Evaluation versus Assessment . 8-3

8.1.2. Contracted Software .8-3
8.1.2.1. Additional Differences with Contractors in another Country (Offshore) . . 8-3
8.1.2.2. Software Tester’s Responsibility for Software Developed by a Contractor 8-4

8.2. COTS Software Test Process .8-5
8.2.1. Assure Completeness of Needs Specification8-5

8.2.1.1. Define Critical Success Factor . 8-6
8.2.1.2. Determine Compatibility with Your Computer Environment 8-7
8.2.1.3. Assure the Software can be Integrated into Your Business
System Work Flow . 8-8
8.2.1.4. Demonstrate the Software in Operation . 8-9
8.2.1.5. Evaluate the People Fit . 8-11
8.2.1.6. Acceptance Test the COTS Software . 8-11

8.3. Contracted Software Test Process .8-11
8.3.1. Assure the Process for Contracting Software is Adequate8-12
8.3.2. Review the Adequacy of the Contractor’s Test Plan 8-17
8.3.3. Assure Development is Effective and Efficient 8-18
8.3.4. Perform Acceptance Testing on the Software8-18
8.3.5. Issue a Report on the Adequacy of the Software to Meet
the Needs of the Organization .8-19
8.3.6. Ensure Knowledge Transfer Occurs and Intellectual
Property Rights are Protected .8-19
8.3.7. Incorporate Copyrighted Material into the Contractor’s Manuals .8-20
8.3.8. Assure the Ongoing Operation and Maintenance of the
Contracted Software .8-20
8.3.9. Assure the Effectiveness of Contractual Relations8-22
xvii

Guide to the 2006 CSTE CBOK
Skill Category 9
Testing Software Controls and the
Adequacy of Security Procedures 9-1
9.1. Principles and Concepts of Internal Control . 9-2

9.1.1. Internal Control Responsibilities . 9-3
9.1.2. Software Tester’s Internal Control Responsibilities 9-3
9.1.3. Internal Auditor’s Internal Control Responsibilities 9-3
9.1.4. Risk versus Control . 9-5
9.1.5. Environmental versus Transaction Processing Controls 9-5

9.1.5.1. Environmental or General Controls . 9-5
9.1.6. Transaction Processing Controls . 9-6
9.1.7. Preventive, Detective and Corrective Controls 9-8

9.1.7.1. Preventive Controls . 9-8
9.1.7.2. Detective Controls . 9-13

9.2. Internal Control Models . 9-17
9.2.1. COSO Enterprise Risk Management (ERM) Model 9-17

9.2.1.1. The ERM Process . 9-17
9.2.1.2. Components of ERM . 9-17

9.2.2. COSO Internal Control Framework Model 9-19
9.2.2.1. Example of a Transaction Processing Internal Control System 9-21

9.2.3. CobiT Model . 9-22
9.3. Testing Internal Controls . 9-23

9.3.1. Perform Risk Assessment . 9-24
9.3.2. Test Transaction Processing Controls . 9-25

9.3.2.1. Transaction Origination . 9-26
9.3.2.2. Transaction Entry . 9-26
9.3.2.3. Transaction Communications . 9-27
9.3.2.4. Transaction Processing . 9-27
9.3.2.5. Database Storage and Retrieval . 9-27
9.3.2.6. Transaction Output . 9-27

9.4. Testing Security Controls . 9-27
9.4.1. Task 1 –Where Security is Vulnerable to Penetration 9-28

9.4.1.1. Accidental versus Intentional Losses . 9-29
9.4.2. Task 2 – Building a Penetration Point Matrix 9-30

9.4.2.1. Controlling People by Controlling Activities . 9-30
9.4.2.2. Selecting Computer Security Activities . 9-31
xviii

Table of Contents
9.4.2.3. Controlling Business Transactions . 9-35
9.4.2.4. Characteristics of Security Penetration . 9-37

9.4.3. Task 3 – Assess Security Awareness Training9-43
9.4.3.1. Step 1 – Create a Security Awareness Policy . 9-44
9.4.3.2. Step 2 – Develop a Security Awareness Strategy 9-45
9.4.3.3. Step 3 – Assign the Roles for Security Awareness 9-48

9.4.4. Task 4 – Understand the Attributes of an Effective
Security Control .9-50
9.4.5. Task 5 – Selecting Techniques to Test Security9-51

9.4.5.1. Step 1 – Understand Security Testing Techniques 9-52
9.4.5.2. Step 2 – Select Security Testing Techniques Based on the
Strengths and Weaknesses of Those Techniques . 9-52
9.4.5.3. Step 3 – Determine the Frequency of Use of Security Testing
Techniques Based on the System Category . 9-54
xix

Guide to the 2006 CSTE CBOK
Skill Category 10
Testing New Technologies 10-1
10.1. Risks Associated with New Technology . 10-1
10.2. Newer IT Technologies that Impact Software Testing 10-3

10.2.1. Web-Based Applications . 10-3
10.2.2. Distributed Application Architecture . 10-4

10.2.2.1. Traditional Client-Server Systems . 10-4
10.2.2.2. Thin- versus Thick-Client Systems . 10-5

10.2.3. Wireless Technologies . 10-5
10.2.3.1. Important Issues for Wireless . 10-6

10.2.4. New Application Business Models . 10-7
10.2.4.1. e-Commerce . 10-7
10.2.4.2. e-Business . 10-7

10.2.5. New Communication Methods . 10-8
10.2.5.1. Wireless Applications . 10-8

10.2.6. New Testing Tools . 10-11
10.2.6.1. Test Automation . 10-11

10.3. Testing the Effectiveness of Integrating New Technology 10-12
10.3.1. Determine the Process Maturity Level of the Technology 10-13

10.3.1.1. Level 1 – People-Dependent Technology . 10-14
10.3.1.2. Level 2 – Use Description-Dependent Technology Processes 10-14
10.3.1.3. Level 3 – Use of Technology . 10-14
10.3.1.4. Level 4 – Quantitatively Measured Technology 10-14
10.3.1.5. Level 5 – Optimized Use of Technology . 10-14

10.3.2. Test the Controls over Implementing the New Technology . . . 10-15
10.3.2.1. Test Actual Performance versus Stated Performance 10-15
10.3.2.2. Test the Adequacy of the Current Processes to
Control the Technology . 10-16

10.3.3. Test the Adequacy of Staff Skills to Use the Technology 10-17

Appendix A
Vocabulary . A-1

Appendix B
References . B-1
xx

Table of Contents
How to Take the CSTE Examination C-1
C.1. CSTE Examination Overview . C-1

C.1.1. Software Testing Theory . C-2
C.1.2. Software Testing Practice . C-2

C.2. Guidelines to Answer Questions . C-2
C.3. Sample CSTE Examination . C-5

C.3.1. Part 1 and Part 3 Multiple-Choice Questions C-5
C.3.2. Part 1 and Part 3 Multiple-Choice Answers C-11
C.3.3. Part 2 and Part 4 Essay Questions and Answers C-12

C.3.3.1. Part 2 – Software Testing Theory Essay Questions C-12
C.3.3.2. Part 2 – Software Testing Theory Essay Answers C-15
C.3.3.3. Part 4 – Software Testing Practice Essay Questions C-19
C.3.3.4. Part 4 – Quality Assurance Practice Essay Answers C-22
xxi

Guide to the 2006 CSTE CBOK
This page intentionally left blank.
xxii

Introduction to the
CSTE Program

he Certified Software Tester (CSTE) program was developed by leading software
testing professionals as a means of recognizing software testers who demonstrate a
predefined level of testing competency. The CSTE program is directed by an
independent Certification Board and administered by the Quality Assurance Institute

(QAI). The program was developed to provide value to the profession, the individual, the
employer, and co-workers.

The CSTE certification entails an aggressive educational program that tests the level of
competence in the principles and practices of testing and control in the Information
Technology (IT) profession. These principles and practices are defined by the Certification
Board as the Common Body of Knowledge (CBOK). The Certification Board will
periodically update the CBOK to reflect changing software testing and control, as well as
changes in computer technology. These updates should occur approximately every three
years.

Be sure to check the Software Certifications Web site for up-to-date information
on the CSTE program, examination sites and schedules, and What’s New at:

www.softwarecertifications.org

Using this product does not constitute, nor imply, the successful passing of the
CSTE certification examination.

Software Certification Overview Intro-2
Meeting the CSTE Qualifications Intro-7
Arranging to Sit and Take the Examination Intro-14
How to Maintain Competency and Improve Value Intro-16

T

October 25, 2006 Intro-1

Guide to the 2006 CSTE CBOK
Intro.1 Software Certification Overview
Software Certifications is recognized worldwide as the standard for IT testing professionals.
Certification is a big step; a big decision. Certification identifies an individual as a test leader
and earns the candidate the respect of colleagues and managers. It is formal acknowledgement
that the IT recipient has an overall understanding of the disciplines and skills represented in a
comprehensive Common Body of Knowledge (CBOK) for a respective software discipline.

The CSTE program demonstrates the following objectives to establish standards for initial
qualification and continuing improvement of professional competence. This certification
program helps to:

1. Define the tasks (skill categories) associated with software testing duties in order to evalu-
ate skill mastery.

2. Demonstrate an individual’s willingness to improve professionally.

3. Acknowledge attainment of an acceptable standard of professional competency.

4. Aid organizations in selecting and promoting qualified individuals.

5. Motivate personnel having software testing responsibilities to maintain their professional
competency.

6. Assist individuals in improving and enhancing their organization’s software testing pro-
grams (i.e., provide a mechanism to lead a professional).

In addition to CSTE, Software Certifications also offer the following software certifications.
See “How to Maintain Competency and Improve Value” on page 16 for more information on
the certifications for advanced and master levels.

• Software Testers
• Advanced Software Tester (ASTE)
• Master Software Tester (MSTE)

• Software Quality Analysts
• Certified Software Quality Analyst (CSQA)
• Advanced Software Quality Analyst (ASQA)
• Master Software Quality Analyst (MSQA)

• Software Project Manager
• Certified Software Project Manager (CSPM)

One or more of these certifications is frequently a prerequisite for promotion or acquiring a
new position. See www.qaiworldwide.org and www.softwarecertifications.org for detailed
information on all software certifications available including:

• Preparation Courses
• Examination Schedules
• Conferences and Seminars
• In-house Training Courses
Intro-2 October 25, 2006

http://www.qaiusa.com

Introduction to the CSTE Program
Intro.1.1 Contact Us

Software Certifications
Phone: (407)-472-8100

Fax: (407)-398-6817

CSTE questions? E-mail: certify@softwarecertifications.org

Intro.1.2 Program History
QAI was established in 1980 as a professional association formed to represent the software
testing industry. The first certification began development in 1985 and the first formal
examination process was launched in 1990. Today, Software Certifications, administered by
QAI, is global. Since its inception, Software Certifications has certified over 27,000 IT
professionals in Australia, Barbados, Belgium, Bermuda, Brazil, Canada, China, Egypt, Hong
Kong, India, Israel, Korea, Mexico, New Zealand, Puerto Rico, Saudi Arabia, Singapore,
South Africa, United Kingdom, United Arab Emirates, and the United States.

Intro.1.3 Why Become Certified?
As the IT industry becomes more competitive, management must be able to distinguish
professional and skilled individuals in the field when hiring. Certification demonstrates a level
of understanding in carrying out software testing principles and practices that management
can depend upon.

Acquiring the designation of CSTE indicates a professional level of competence in software
testing. CSTEs become members of a recognized professional group and receive recognition
for their competence by businesses and professional associates, potentially more rapid career
advancement, and greater acceptance in the role as advisor to management.

Intro.1.4 Benefits of Becoming a CSTE
As stated above, the CSTE program was developed to provide value to the profession, the
individual, the employer, and co-workers. The following information is data collected from
CSTEs in the IT industry – a real testimonial to the benefits and reasons to make the effort to
become a CSTE.
October 25, 2006 Intro-3

Guide to the 2006 CSTE CBOK
Intro.1.4.1 Value Provided to the Profession

Software testing is often viewed as a software project task, even though many individuals are
full-time testing professionals. The CSTE program was designed to recognize software testing
professionals by providing:

• Common Body of Knowledge (CBOK)
The Certification Board defines the skills upon which the software testing certification is
based. The current CBOK includes 10 skill categories fully described in this preparation
guide – see Skill Category 1 through Skill Category 10.

• Examination Process to Evaluate Competency
The successful candidate must pass a four-part examination that is based on the CBOK.
You must receive a grade of 75%, averaged over all four parts of the examination, to
become certified. See “How to Take the CSTE Examination” for a sample examination
and answers to help you prepare for the actual examination.

• Code of Ethics
The successful candidate must agree to abide by a professional Code of Ethics as specified
by the Certification Board. See “Code of Ethics” on page 9 for an explanation of the
ethical behaviors expected of all certified professionals.

Intro.1.4.2 Value Provided to the Individual

The individual obtaining the CSTE certification receives the following values:
• Recognition by Peers of Personal Desire to Improve
Approximately eighty percent (80%) of all CSTEs stated that a personal desire for self-
improvement and peer recognition was the main reason for obtaining the CSTE
certification. Fifteen percent (15%) were required by their employer to sit for the
examination, and 10% were preparing themselves for an improved testing-related
position.
Many CSTEs indicated that while their employer did not require CSTE certification, it
was strongly encouraged.
• Increased Confidence in Personal Capabilities
Eighty-five percent (85%) of the CSTEs stated that passing the examination increased
their confidence to perform their job more effectively. Much of that confidence came from
studying for the examination.
• Recognition by IT Management for Professional Achievement
Most CSTEs stated that their management greatly respects those who put forth the
personal effort needed for self-improvement. IT organizations recognized and rewarded
individuals in the following ways:
Intro-4 October 25, 2006

Introduction to the CSTE Program
• Thirteen percent (13%) received an immediate average one-time bonus of $610, with a
range of $250 to $2,500.

• Twelve percent (12%) received an immediate average salary increase of 10%, with a
range of 2% to 50%.

Non-monetary recognitions were:
• Thirty-six percent (36%) were recognized in staff meetings.
• Twenty percent (20%) in newsletters or e-mail.
• Many received rewards, management visits or calls, and lunch with the boss.

Within the first 18 months after receipt of the CSTE certification, of the successful candidates:
• Twenty-seven percent (27%) received an average salary increase of 23%, with a range

of 2% to 100%.
• Twenty-three percent (23%) were promoted, 25% received a better assignment and

13% a new assignment.

Intro.1.4.3 Value Provided to the Employer

With the need for increased software testing and reliability, employing CSTEs provides value
in these ways:

Intro.1.4.3.1 Increased Confidence by IT Users and Customers

IT users and customers expressed confidence in IT to effectively build or acquire software
when certified testing practitioners were involved.

Intro.1.4.3.2 Improved Processes to Build/Acquire/Maintain, Operate and Measure
Software

CSTEs use their knowledge and skills to continuously improve the IT work processes. CSTEs
know what to measure, how to measure it, and then prepare an analysis to aid in the decision-
making process.

Intro.1.4.3.3 Independent Assessment of Testing Competencies

The CSTE program is directed by a Certification Board of independent testing experts.
Through examination and recertification, they provide an independent assessment of the
CSTE’s testing competencies, based on a continuously strengthening Common Body of
Knowledge for testing practitioners.

Intro.1.4.3.4 Testing Competencies Maintained Through Recertification

Yesterday’s testing competencies are inadequate for today’s challenges. CSTE recertification
is a process that helps assure the CSTE’s skills remain current. The recertification process
requires CSTEs to obtain 40 hours of testing-related training per year in topics specified by
the Certification Board.
October 25, 2006 Intro-5

Guide to the 2006 CSTE CBOK
From an IT director’s perspective, this is employee-initiated testing training. Most, if not all
CSTEs, do this training during their personal time. IT organizations gain three benefits from
CSTE recertification: 1) employees initiate improvement; 2) testing practitioners obtain
competencies in testing methods and techniques; and 3) employees train during personal time.

Intro.1.4.3.5 Value Provided to Co-Workers

The drive for self-improvement is a special trait that manifests itself in providing these values
to co-workers:

Intro.1.4.3.6 Mentoring the Testing Staff

Forty-five percent (45%) of the CSTEs mentor their testing colleagues by conducting training
classes; encouraging staff to become certified; and acting as a resource to the staff on sources
of IT testing-related information.

Intro.1.4.3.7 Testing Resource to “IT” Staff

CSTEs are recognized as experts in testing and are used heavily for advice, counseling, and
for recommendations on software construction and testing.

Intro.1.4.3.8 Role Model for Testing Practitioners

CSTEs are the IT role models for individuals with testing responsibilities to become more
effective in performing their job responsibilities.

Intro.1.4.4 How to Improve Testing Effectiveness Through CSTE Certification

A “driver” for improved IT effectiveness is the integration of the CSTE certification program
in your “IT” career development plan. This can be accomplished by:

• Creating an awareness of the CSTE Program and its benefits to your testing
practitioners.

• Requiring or encouraging your testing practitioners to become certified.
• Recognizing and rewarding successful candidates.
• Supporting recertification as a means of maintaining testing competency.

QAI, as CSTE program administrators, will assist you in this effort.

See www.qaiworldwide.org for detailed information.
Intro-6 October 25, 2006

Introduction to the CSTE Program
Intro.2 Meeting the CSTE Qualifications
To become certified as a Certified Software Tester, every candidate must first meet these
qualifications:

1. Satisfy all of the prerequisites required prior to applying for candidacy – educational and
professional prerequisites including non-U.S. prerequisites, recommendations for prepar-
ing for the examination, and understanding what will be expected once you are a CSTE.

2. Subscribe to the Code of Ethics as described on page Intro-9.

3. Submit a completed Certification Candidacy Application. See “Submitting the Initial
Application” on page Intro-11 for information on all the materials needed to submit your
application.

Intro.2.1 Prerequisites for Candidacy
Before you submit your application, first check that you satisfy the educational and
professional prerequisites described below and understand what is expected of the CSTE after
certification.

Intro.2.1.1 Educational and Professional Prerequisites

To qualify for candidacy, each applicant must meet one of three credentials:

1. A bachelor's degree from an accredited college-level institution.

2. An associate’s degree and two years of experience in the information services field.

OR

3. Six years of experience in the information services field.

Intro.2.1.2 Non-U.S. Prerequisites

Educational requirements for Software Certifications are stated following the terms, customs,
and requirements typically encountered in the United States. However, authority has been
given to specific organizations sponsoring the examination process outside the United States
to examine and modify educational and experience criteria within their countries. Each
country's criteria will be based on the following framework:

• Candidates should possess qualifications equal to other professionals of similar status.
• Candidates should possess the superior knowledge and skills needed to carry out all

designated responsibilities in a preeminent manner.
• Candidates’ education and experience must be broadly based to meet a wide range of

responsibilities and expectations.
October 25, 2006 Intro-7

Guide to the 2006 CSTE CBOK
• Successful candidates must be able to execute suitable testing principles and practices
in an array of diverse assignments and clearly communicate appropriate conclusions
and recommendations.

Note: When submitting academic qualifications, the candidate must ensure that the materials
are in sufficient detail so that the Software Certifications Board can determine equivalency.
The Board is the final judge of acceptability of any alternative educational or experience-
based criteria submitted by any applicant.

Intro.2.1.3 Expectations of the CSTE

Knowledge within a profession doesn't stand still. Having passed the CSTE examination, a
certificant has demonstrated knowledge of the designation's CBOK at the point in time of the
examination. In order to stay current in the field, as knowledge and techniques mature, the
certificant must be actively engaged in professional practice, and seek opportunities to stay
aware of, and learn, emerging practices.

The CSTE is required to submit 120 credit hours of Continuing Professional Education (CPE)
every three years to maintain certification or take an examination for recertification. Any
special exceptions to the CPE requirements are to be directed to Software Certifications.
Certified professionals are generally expected to:

• Attend professional conferences to stay aware of activities and trends in the
profession.

• Take education and training courses to continually update skills and competencies.
• Develop and offer training to share knowledge and skills with other professionals and

the public.
• Publish information in order to disseminate personal, project, and research

experiences.
• Participate in the profession through active committee memberships and formal

special interest groups.

The CSTE is expected not only to possess the skills required to pass the CSTE examination
but also to be a change agent: someone who can change the culture and work habits of
individuals (or someone who can act in an advisory position to upper management) to make
quality in software testing happen.

Intro.2.1.3.1 Professional Skill Proficiency Responsibilities

In preparing yourself for the profession of IT software testing and to become more effective in
your current job, you need to become aware of the three C’s of today's workplace:

• Change – The speed of change in technology and in the way work is performed is
accelerating. Without continuous skill improvement, you will become obsolete in the
marketplace.

• Complexity – Information technology is becoming more complex, not less complex.
Thus, achieving quality, with regard to software testing in the information technology
Intro-8 October 25, 2006

Introduction to the CSTE Program
environment, will become more complex. You must update your skill proficiency in
order to deal with this increased complexity.

• Competition – The ability to demonstrate mastery of multiple skills makes you a more
desirable candidate for any professional position. While hard work does not guarantee
you success, few, if any, achieve success without hard work. CSTE certification is one
form of achievement. CSTE certification is proof that you’ve mastered a basic skill set
recognized worldwide in the information technology arena.

Intro.2.1.3.2 Develop a Lifetime Learning Habit

Become a lifelong learner in order to perform your current job effectively and remain
marketable in an era of the three C’s. You cannot rely on your current knowledge to meet
tomorrow's job demands. The responsibility for success lies within your own control.

Perhaps the most important single thing you can do to improve yourself
professionally and personally is to develop a lifetime learning habit.

REMEMBER: “If it is going to be—it’s up to me.”

Intro.2.2 Code of Ethics
An applicant for certification must subscribe to the following Code of Ethics that outlines the
ethical behaviors expected of all certified professionals. Software Certifications includes
processes and procedures for monitoring certificant’s adherence to these policies. Failure to
adhere to the requirements of the Code is grounds for decertification of the individual by the
Software Certifications Board.

Intro.2.2.1 Purpose

A distinguishing mark of a profession is acceptance by its members of responsibility to the
interests of those it serves. Those certified must maintain high standards of conduct in order to
effectively discharge their responsibility.

Intro.2.2.2 Responsibility

This Code of Ethics is applicable to all certified by Software Certifications. Acceptance of any
certification designation is a voluntary action. By acceptance, those certified assume an
obligation of self-discipline beyond the requirements of laws and regulations.
October 25, 2006 Intro-9

Guide to the 2006 CSTE CBOK
The standards of conduct set forth in this Code of Ethics provide basic principles in the
practice of information services testing. Those certified should realize that their individual
judgment is required in the application of these principles.

Those certified shall use their respective designations with discretion and in a dignified
manner, fully aware of what the designation denotes. The designation shall also be used in a
manner consistent with all statutory requirements.

Those certified who are judged by the Software Certifications Board to be in violation of the
standards of conduct of the Code of Ethics shall be subject to forfeiture of their designation.

Intro.2.2.3 Professional Code of Conduct

Software Certifications certificate holders shall:

1. Exercise honesty, objectivity, and diligence in the performance of their duties and respon-
sibilities.

2. Exhibit loyalty in all matters pertaining to the affairs of their organization or to whomever
they may be rendering a service. However, they shall not knowingly be party to any illegal
or improper activity.

3. Not engage in acts or activities that are discreditable to the profession of information ser-
vices testing or their organization.

4. Refrain from entering any activity that may be in conflict with the interest of their organi-
zation or would prejudice their ability to carry out objectively their duties and responsibil-
ities.

5. Not accept anything of value from an employee, client, customer, supplier, or business
associate of their organization that would impair, or be presumed to impair, their profes-
sional judgment and integrity.

6. Undertake only those services that they can reasonably expect to complete with profes-
sional competence.

7. Be prudent in the use of information acquired in the course of their duties. They shall not
use confidential information for any personal gain nor in any manner that would be con-
trary to law or detrimental to the welfare of their organization.

8. Reveal all material facts known to them that, if not revealed, could either distort reports of
operation under review or conceal unlawful practices.

9. Continually strive for improvement in their proficiency, and in the effectiveness and qual-
ity of their service.

10. In the practice of their profession, shall be ever mindful of their obligation to maintain the
high standards of competence, morality, and dignity promulgated by this Code of Ethics.

11. Maintain and improve their professional competency through continuing education.

12. Cooperate in the development and interchange of knowledge for mutual professional ben-
efit.
Intro-10 October 25, 2006

Introduction to the CSTE Program
13. Maintain high personal standards of moral responsibility, character, and business integrity.

Intro.2.2.4 Grounds for Decertification

Revocation of a certification, or decertification, results from a certificant failing to reasonably
adhere to the policies and procedures of Software Certifications as defined by the Software
Certifications Board. The Board may revoke certification for the following reasons:

• Falsifying information on the initial application and/or a CPE reporting form,
• Failure to abide by and support the Software Certifications Code of Ethics,
• Failure to submit the required continuing education credits toward recertification as

required, or
• Failure to submit the required recertification fees as required.

Upon revocation, the certificant is requested to return their current certification credentials. A
certificant may appeal a revocation at any time by communicating, in writing, directly with
the Board.

Intro.2.3 Submitting the Initial Application
A completed Certification Candidacy Application must be submitted for entrance to Software
Certifications as a candidate for any particular certification. Software Certifications strongly
recommends that you submit your application only if you are prepared to sit and pass the
CSTE examination. Submit the application only if you have:

• Satisfied all of the prerequisites for candidacy as stated on page 7.
• Subscribed to the Code of Ethics as described on page 9.
• Reviewed the CBOK and identified those areas that require additional studying.

The entire CBOK is provided in Skill Category 1 through Skill Category 10. A comprehensive
list of related references is listed in Appendix B.

• Current experience in the field covered by the certification designation.
• Significant experience and breadth to have mastered the basics of the entire CBOK.
• Prepared to take the required examination and therefore ready to schedule and take the

examination.

It should not be submitted by individuals who:
• Have not met all of the requirements stated above.
• Are not yet working in the field but who have an interest in obtaining employment in

the field.
• Are working in limited areas of the field but would like to expand their work roles to

include broader responsibilities.
• Are working in IT but have only marginal involvement or duties related to the

certification.
October 25, 2006 Intro-11

Guide to the 2006 CSTE CBOK
• Are interested in determining if this certification program will be of interest to them.

Candidates for certification who rely on only limited experience, or upon too few or specific
study materials, typically do not successfully obtain certification. Many drop out without ever
taking the examination. Fees in this program are nonrefundable.

Do not apply unless you feel confident that your work activities and past
experience have prepared you for the examination process.

Applicants already holding a certification from Software Certifications must still submit a
new application when deciding to pursue an additional certification. For example, an
applicant already holding a CSQA or CSPM certification must still complete the application
process if pursuing the CSTE certification.

All supporting application forms and required fees must be filed with Software Certifications
at least 60 calendar days prior to any examination date selected. The candidate must sign the
application form agreeing to support and abide by the Software Certifications Code of Ethics.
Applications will not be processed if they are incomplete, incorrectly completed, or fees have
not been paid. See www.softwarecertifications.org for application fee information. The
candidate has sole responsibility to ensure that materials are submitted in a timely and orderly
manner.

When sending an application, please allow two weeks for processing. There is no need to
contact the administrative office during this period to check on the status of the application. In
fact, to protect the integrity of the examination and certification processes, all correspondence
related to certification policies and procedures must be in writing, using e-mail, fax, or first-
class postal service. Information and status obtained through telephone conversations with the
administering body shall be considered unofficial and off-the-record.

Intro.2.3.1 Correcting Application Errors

The accuracy and correctness of applications, documentation, or payments are the
responsibility of the applicant. Incomplete or erroneous paperwork is returned to the applicant
for correction and resubmission. Common defects requiring paperwork to be returned to the
applicant include:

• Required information is missing
• Incorrect form was used
• Payment is missing or invalid
• Unable to read required portions of application
• Required signature is not present
• Application received too late to be processed for selected examination
Intro-12 October 25, 2006

Introduction to the CSTE Program
Once corrected, materials can be resubmitted. This correction cycle does not waive the
requirement that all processing be completed at Software Certifications at least 60 days before
any scheduled examination. Applicants are strongly advised to not delay submission of
materials until close to that deadline.

Intro.2.3.2 Submitting Application Changes

It is critical that candidates submit changes to their candidacy application and keep their
program records up-to-date. Many candidates change their residence or job situations during
their certification candidacy. Others change their name as a result of marriage or divorce. If
any such changes occur, it is the candidate's responsibility to notify the certification
administrator using the Change of Records Form.

Intro.2.4 Application-Examination Eligibility Requirements
The candidate must take the initial exam within 12 months after acceptance. After the
12-month period, the candidate must resubmit the application, supporting documents, and any
additional fees that may have been incurred. A second or third sitting, if required, must be
completed within 24 months of acceptance of the original application. After the 24-month
period, the candidate must reapply for candidacy to begin the process again.

The candidate may withdraw from the CSTE program at any time by submitting a Candidate
Withdrawal Form to the certification administrator.

Candidates for certification must pass a four-part written examination in order to obtain
certification. The examination tests the candidate's knowledge and practice of the competency
areas defined in the CBOK. Candidates who do not successfully pass the examination may re-
sit for the examination up to two times by submitting an Examination Retake Application (see
Filing a Retake Application Filing a Retake Application) and paying all required fees.
Subsequent additional examination efforts require reinitiating the entire application process.

The Software Certifications Board requires unsuccessful candidates to wait six months or
more between examination sittings. Candidates who rapidly resit for examination parts are
rarely successful. Adequate study and learning time needs to be spent in order to resit for
missed examination parts successfully.

Technical knowledge becomes obsolete quickly; therefore the board has established these
eligibility guidelines. The goal is to test on a consistent and comparable knowledge base
worldwide. The eligibility requirements have been developed to encourage candidates to
prepare and pass all portions of the examination in the shortest time possible.

Intro.2.4.1 Filing a Retake Application

A written Examination Retake Application must be submitted for each desired retake. As with
the initial application, the application to reschedule and associated fees must be filed with
October 25, 2006 Intro-13

Guide to the 2006 CSTE CBOK
Software Certifications at least 60 calendar days before any examination date is selected. See
www.softwarecertifications.org for application fee information.

Intro.3 Arranging to Sit and Take the Examination
When you have met all of the prerequisites as described above, you are ready to arrange to sit
(or schedule) and take the CSTE examination. See “Preparing for the CSTE Examination” for
information on what you need to do once you have scheduled the examination. This section
also includes a sample examination with answers.

To schedule the CSTE examination, every candidate must:
• Satisfy all of the qualifications as described in “Meeting the CSTE Qualifications”

starting on page Intro-7. Be certain that you are prepared and have studied the CBOK,
the vocabulary in Appendix A, and the references in Appendix B.

• Schedule to take the examination. If you've studied enough that you feel you can
commit to a specific examination date, visit www.softwarecertifications.org for dates
or call Software Certifications. CSTE examinations are administered in various cities
in the United States and all over the world. Submit a complete Examination Selection
Form.

• Follow up on your examination schedule. After scheduling your examination you
should receive a Confirmation Letter for the specific examination you indicated on
your Examination Selection Form. See “Receiving the Confirmation Letter” on page
Intro-15. Check www.softwarecertifications.org for your specific scheduled
examination during the days leading up to the examination sitting for any changes to
the schedule.

• Be sure to arrive at the examination early. See “Arriving at the Examination Site” on
page 16 for a few tips, and what happens if you do not show up as scheduled.

Intro.3.1 Scheduling to Take the Examination
When you believe you are close to being prepared to take the examination, schedule to take
the examination. To select an examination date and location that meets your needs submit an
Examination Selection Form. Public certification examinations are scheduled periodically
throughout the United States. A complete up-to-date schedule is on the Software
Certifications Web site: see Current Examination Schedule at www.softwarecertifications.org.

Examination seating is limited, and seats are assigned on a first-come, first-served basis. An
Examination Selection Form must be submitted at least 60 days before the selected
examination date in order to reserve a seat in the selected examination. The earlier you apply
the better chances of reserving a seat. The examination schedule can change on a weekly
basis, so check www.softwarecertifications.org for any changes.
Intro-14 October 25, 2006

Introduction to the CSTE Program
Examinations are held primarily by QAI Federation chapters, at major QAI conference
programs, and by local QAI affiliates around the world. It is recommended that you contact
Software Certification for site requirements, fees, and other details.

The certification examinations are typically available in Australia, Canada, Hong Kong, India,
New Zealand, Saudi Arabia, Singapore, South Africa, United Arab Emirates, and the United
States. As the worldwide acceptance of Software Certifications designations continues to
grow, more locations will be hosting the exam. Please contact www.softwarecertification.org
to inquire about examination locations.

Intro.3.1.1 Rescheduling the Examination Sitting

From time to time, candidates need to reschedule their intended examination date. This is
known as a deferral, and is accomplished using the Examination Deferral Form that must be
submitted to the certification administrator at least 30 days before the originally scheduled
examination. If done in this manner, the Examination Selection Form can be used to schedule
the new examination as long as it is received at least 60 days before the new requested date.

Deferrals received within 30 days of an examination date cannot be processed because
examination materials have already been sent to the field. These candidates are considered
“no shows” on the day of the examination and must use the Examination Retake Application
in order to schedule a new examination date. As with the initial application, the Examination
Retake Application and associated fees must be filed with Software Certifications at least 60
days before any examination date is selected.

Intro.3.2 Receiving the Confirmation Letter
Each candidate should receive an Confirmation Letter. You should bring this letter to the
examination site along with photo identification to gain entry. When the letter is received,
verify the examination information to assure that you have been scheduled for the
examination selected, and that your contact information is all correct. If not received three
weeks before a scheduled sitting, check the Current Examination Schedule for possible
changes, or contact Software Certifications via e-mail for confirmation or correction.

Intro.3.3 Checking Examination Arrangements
Candidates are strongly encouraged to check www.softwarecertifications.org for your specific
scheduled examination during the days leading up to the examination sitting. While Software
Certifications makes every possible effort to provide examinations as scheduled, last minute
changes have been sometimes unavoidable in the past. Previous disruptions have included
inclement weather and building closures. The Current Examination Schedule is kept as up-to-
date as possible when such situations occur.
October 25, 2006 Intro-15

Guide to the 2006 CSTE CBOK
Intro.3.4 Arriving at the Examination Site
Candidates should arrive at the examination location at least 30 minutes before the scheduled
start time of the examination. Candidates must have their confirmation letter and photo
identification with them in order to register and gain admission to the examination.

Intro.3.4.1 No-shows

Candidates who fail to appear for a scheduled examination – initial or retake – automatically
fail the examination and must submit the Examination Retake Application to apply for a new
examination date. Candidates who have filed a deferral after the 30-day advance deadline are
considered to be no-shows as well.

Intro.4 How to Maintain Competency and Improve
Value
Maintaining your personal competency is too important to leave to the soul discretion of your
employer. In today’s business environment you can expect to work for several different
organizations, and to move to different jobs within your own organization. In order to be
adequately prepared for these changes you must maintain your personal competency in your
field of expertise.

Intro.4.1 Continuing Professional Education
Most professions recognize that a minimum of 40 hours of continuing professional education
is required to maintain competency of your skills. There are many ways to get this training,
including attending professional seminars and conferences, on-the-job training, attending
professional meetings, taking e-learning courses, and attending professional association
meetings.

You should develop an annual plan to improve your personal competencies. Getting 40 hours
of continuing professional education will enable you to recertify your CSTE designation, but
it will not necessarily improve your competencies. For example, you may get 24 hours CPE
credit for attending a 3-day seminar, but if you’re already competent in the seminar topic, it
will not add to your personal capabilities.

The Common Body of Knowledge (CBOK) for the CSTE should be your guide for improving
your personal competencies. A self-assessment of your competencies in the CBOK is
provided in “CSTE 2006 Skill Assessment Worksheet.” This assessment is designed to help
you identify areas in which additional training would be beneficial to both you and your
employer. After taking this competency assessment, you can use the results to create a
Intro-16 October 25, 2006

Introduction to the CSTE Program
personal plan of action for you to ensure that you maintain the necessary professional
competency to prepare you for change and/or promotion.

Intro.4.2 Advanced CSTE Designations
You can use your continuing professional education plan to improve and demonstrate your
value to your employer. You can obtain your professional education credits while applying for
an advanced certification. Your employer may have difficulty assessing improved
competencies attributable to the continuing professional education you are acquiring.
However, if you can use that continuing education effort to obtain an advanced certification,
you can demonstrate to your employer your increased value to the organization by acquiring
an advanced certification

There are two levels of advanced certifications you will be eligible for once you obtain your
CSTE designation:

• Advanced Software Tester (ASTE)
This advanced designation is designed to demonstrate your knowledge of how to do the
testing tasks you may be assigned. The CSTE designation is focused much more on
“what” you must know in order to practice testing. The ASTE designation is designed for
those who can demonstrate they know “how” to perform testing tasks.
• Master Software Tester (MSTE)
This is the highest designation attainable in the IT testing field. It is reserved for those who
can demonstrate testing qualities and professional responsibilities.

The drivers for improving performance in IT are the quality assurance and quality control
(testing) professionals. Dr. W. Edward Deming recognized this “do-check” partnership of
quality professionals in his “14 points” as the primary means for implementing the change
needed to mature. Quality control identifies the impediments to quality and quality assurance
facilitates the fix. Listed below is the certification level, emphasis of each certification, and
how you can demonstrate that competency.

Intro.4.2.1 What is the Certification Competency Emphasis?
• CSTE
Demonstrate competency in knowing what to do.
Study for, and pass, a four-part examination developed by peers to evaluate the candidate’s
knowledge of the principles and concepts incorporated into the CBOK, plus the ability to
relate those principles and concepts to the challenges faced by IT organizations.
• ASTE
Demonstrate competency in knowing how to do it.
Candidates must demonstrate their ability to develop real solutions to challenges in their
IT organizations, by proposing a solution to a real-world problem. This must be done for
five CBOK categories, where each proposed solution must be accepted by the
October 25, 2006 Intro-17

Guide to the 2006 CSTE CBOK
This page intentionally left blank.

Certification Board. Each accepted solution will be awarded a certificate of competency
for that CBOK category.
• MSTE
Demonstrate competency in knowing how to break through testing and productivity
barriers.
Candidates must demonstrate the ability to innovate beyond current practice in solving IT
challenges, as well as, demonstrate public service in the IT testing profession. (Note: this
certification available starting in 2006.)

Figure Intro-1 illustrates how you can improve your personal competencies.

Figure Intro-1 Maturing Your Professional Competencies

For more information on the type of training that is applicable toward your continuing
professional education requirements, and information on the advanced testing certifications
and how to apply for them, visit www.softwarecertifications.org.
Intro-18 October 25, 2006

Preparing for the CSTE
Examination

he CSTE examination is designed to evaluate your knowledge of the principles and
practices of software testing. The principles primarily will involve vocabulary. This is
to ensure that you understand what quality in an IT function is attempting to

accomplish. The second half of the examination is on the application of those principles. This
is to ensure that you can recognize good software testing practices when they occur.

Preparing for any standardized examination should be considered a serious undertaking.
Begin preparing and studying well in advance. Remember that the minimum requirement for
submitting your application is 60 calendar days prior to the exam date. When you know you
will be applying for the examination, submit your application and fees and begin studying.
Avoid “cramming,” as it is rarely beneficial in the long term. See the “Introduction” for
detailed information on submitting your application.

Intro.5 Assess Your CSTE 2006 CBOK Competency
The Common Body of Knowledge (CBOK) for the CSTE is in effect a job description for a
world-class IT software tester. The CSTE Certification Board has defined the skills within the
CBOK as those skills that would enable an IT software tester to perform the tasks needed to
meet today’s IT testing challenges.

Many human resource organizations use the CSTE CBOK as the basis for writing job
descriptions for IT software testers. To properly prepare yourself to be proficient in the
practice of IT testing, you should develop a personal plan of action that would enable you to
assess your competency in the 2006 CSTE CBOK. It is recognized that many software testers
do not need to be competent in all of the skill categories to fulfill their current job
responsibilities.

Assess Your CSTE 2006 CBOK Competency Intro-19
Understand the Key Principles Incorporated
Into the Examination Intro-22

Review the List of References Intro-23
Initiate a Self-Study Program Intro-24
Take the Sample Examination Intro-24

T

October 25, 2006 Intro-19

Guide to the 2006 CSTE CBOK
The current CSTE CBOK includes ten skill categories that are fully described in this guide:

Skill Category 1- Software Testing Principles and Concepts

Skill Category 2- Building the Test Environment

Skill Category 3- Managing the Test Project

Skill Category 4- Test Planning

Skill Category 5- Executing the Test Plan

Skill Category 6- Test Reporting Process

Skill Category 7- User Acceptance Testing

Skill Category 8- Testing Software Developed by Contractors

Skill Category 9- Testing Software Controls and the Adequacy of Security Procedures

Skill Category 10- Testing New Technologies

Skill Categories 1-10 are common to all testing-related assignments and therefore, the
certification examination focuses on all categories equally.

Intro.5.1 Complete the CSTE Skill Assessment Worksheet
To assess your competency of the CSTE CBOK, complete the worksheet, “CSTE 2006 Skill
Assessment Worksheet” starting on page +21) 29 Follow these guidelines on how to use
the worksheet to rate your competency and identify those areas that you need to better
understand to successfully pass the CSTE examination:

1. Assess your competency of each skill listed on the worksheet. Carefully read each skill
within the skill category. Based on your reading of the skill, assess your competency in
one of the following three categories and place a checkmark (“ ”) in the appropriate col-
umn on the CSTE 2006 CBOK Competency Rating Table:
Not Competent – “None”
Either you do not understand this skill, or if you do understand it you do not know “what”
is required to perform this skill. For example, you may know that an IT test plan is needed,
but you do not know what is included in an IT test plan.
Some Competency – “Some”
This assessment means that you know “what” is needed to accomplish a specific skill. For
example, you may know what is to be included within an IT test plan, but you have never
actually prepared an IT test plan. In other words, you have book knowledge, but not how-
to knowledge.
Intro-20 October 25, 2006

Preparing for the CSTE Examination
Fully Competent – “Full”
This assessment means that you not only know what is required to perform a specific skill,
but you have actually used that skill in performing day-to-day work tasks. For example,
you have written an IT test plan.
Note that Skill Category 1 focuses on the vocabulary of IT software testing and the basic
concepts on which the software testing profession is built. In assessing this category for a
testing term such as reliability a “not competent” response means you could not define the
term; a “some competency” response means you could define the term; and a “fully
competent” response means that you use the term in the performance of your day-to-day
work.

2. Study those skills you rated “None.” After you complete the assessment worksheet, you
will have designated some of the skills included in the CBOK as: None, Some, and Full.
The objective in preparing for the CSTE examination should be to have “some compe-
tency” in all of the skills within the CBOK. You need not be fully competent in any skill to
qualify you to pass the CSTE examination.
Note that the CSTE designation focuses on individuals knowing “what to do” in order to
effectively perform IT software testing. To provide maximum value to your employer, and
to enable you to obtain either an Advanced Software Tester (ASTE) or Master Software
Tester (MSTE) designation you need to be “fully competent” in most of the CBOK skills
areas.

3. Reassess those skills you studied after a rating of “None.” If you now believe your rating
changes to “Some,” then change your checkmark for the related skill on that category
assessment table. Continue reassessing as you study.

Proceed only when you believe you are ready to submit your application for the
CSTE certification examination.

Intro.5.2 Calculate Your CSTE CBOK Competency Rating
Follow these steps to calculate your competency rating for the CSTE 2006 CBOK. This rating
will help you determine if you are ready to submit your application for the CSTE examination
or if, and in what areas, you need further study in order to pass the examination. Use the
CBOK Skill Category Competency Rating Table on page 40 to perform each step below.

1. Total the number of skills you have checked in each of the three columns for each skill
category. Write your numbers in the space provided for each skill category on the work-
sheet. These are your competency rating totals for that skill category.

2. Transfer the three competency rating totals for each skill category to the corresponding
column (“Full,” “Some,” and “None”) in the CSTE Skill Category Competency Ratings
table provided.
October 25, 2006 Intro-21

Guide to the 2006 CSTE CBOK
3. Tally each column in the table to determine each Ratings Total.

4. Multiply each column by the indicated number to determine the Column Total.

5. Add the Column Totals together to determine the Sum of the Rows Total.

6. Divide the Sum of the Rows Total by 160 (the number of total skills in the CSTE 2006
CBOK) to determine your CSTE CBOK Competency Rating. This number will be
between 1 and 3.

Now you are able to determine if you are ready to submit your application and take the
certification examination or if you need further study. Use your CSTE 2006 CBOK
Competency Rating from step 6 above and the following key to interpret your competency
rating:

• The closer your score is to “3,” the more competent you are in software testing.
• If your score is a “3,” you are a world-class software tester and ready to submit your

application.
• If your score is between “2” and “3”, you are a competent tester and ready to submit

your application.
• See the “Introduction” for information on submitting your application for the CSTE

2006 certification examination.
• If your score is between “1” and “2”, you do not have the basic skills necessary to

perform software testing. Study those skills that you rated “None” and then reassess
your skills.

• If your score is a “1”, you are not competent in the CBOK. Study those skills that you
rated “None” and then reassess your skills.

Using this product does not constitute, nor imply, the successful passing of the
CSTE certification examination.

Intro.6 Understand the Key Principles Incorporated
Into the Examination

This step is to provide you some insight into what will be emphasized on the examination.
This should not be used in place of the CBOK. It is intended to emphasize some of the key
concepts included within the CBOK.

In studying these key principles, two guidelines should be followed:
• Learn the vocabulary.
Intro-22 October 25, 2006

Preparing for the CSTE Examination
A major part of the CSTE examination and a major part of being an effective software
tester is to understand and use the testing vocabulary. If you do not know the testing
vocabulary, study Appendix A, “Vocabulary,” before beginning any other CSTE
examination preparatory activity. Note that understanding the vocabulary is essential to
pass the examination.
• Learn how to apply the testing principles to everyday practice.
As you study the testing principles, think carefully how you would apply those principles
to your day-to-day work challenges.

Intro.7 Review the List of References
Use the following lists of references to help you prepare for the CSTE examination:

• Appendix B of this preparation guide lists numerous books recommended in the
software testing field.

• Software Certifications Web site – www.softwarecertifications.org (click on Index and
then click on Body of Knowledge, CSTE) lists references compiled by the
Certification Board and used in preparing the examination.

It is each candidate's responsibility to stay current in the field and to be aware of
published works and materials available for professional study and
development. Software Certifications recommends that candidates for
certification continually research and stay aware of current literature and
trends in the field. The lists referenced above are suggestions; they are not
intended to be all-inclusive.

Use these lists of references in the following ways:
• Search your library for availability.
If you have these books in your reference library, company library, or ready access, set
them aside for exam preparation.
• Use your assessment results (e.g., skills marked “Not Competent”) from the previous

step to determine which books would help you build your skills in those areas. Note
that while studying, look for principles as opposed to learning detailed how-to skills.

• Review the list of references from the perspective of the types of materials that might
be included on the examination. The references give you insight into the topics that
will be included on the examination.
October 25, 2006 Intro-23

Guide to the 2006 CSTE CBOK
Intro.8 Initiate a Self-Study Program
This guide contains a variety of skill areas designed to be representative of the types of skills
needed by software testers, and representative of the skill categories addressed in the CSTE
examination. You may decide to start or join a self-study group in your area.

In developing a self-study program, you should:
• Assess your skills against the CSTE 2006 CBOK and complete the assessment

worksheet.
• Study the key reference documents from the previous step. Use a representative

sample of the reference books for study; if you do not have the specific reference
book, use a similar book on the same topic.

• Attend formal courses, seminars, local testing-oriented chapter meetings, and testing
conferences to gain a comprehension of the practice of testing. Be sure to visit
www.qaiworldwide.org for up-to-date information on courses, seminars, and
conferences. QAI offers a preparation course for the CSTE.

Self-study becomes more effective if you can work with one or more other
candidates for the examination. If no other candidates are available to form a
study group, locate a CSTE to become your mentor during your self-study
period.

Intro.9 Take the Sample Examination
We have provided a sample CSTE examination for you to use in your preparations. See
Appendix C “Preparing For the CSTE Examination” for the following useful information:

• CSTE Examination Overview, including how the test is structured and the number of
questions, plus general information on how the test is administered at the test site.

• Guidelines to Answer Questions, including useful steps to answer all questions, tips on
responses to essay questions, and what to do if you do not know the answer to a
question.

• Sample CSTE Examination, including multiple-choice questions and essay questions.
These give you examples of the types of questions on the examination. Also provided
is an answer key to help you study and show you the types of essay responses
expected.
Intro-24 October 25, 2006

Preparing for the CSTE Examination
October 25, 2006 Intro-25

Guide to the 2006 CSTE CBOK
This page intentionally left blank.
Intro-26 October 25, 2006

CSTE 2006 Skill
Assessment Worksheet
Assess Your Skills against the CSTE 2006 CBOK

he 10 Skill Categories in the CSTE CBOK are common to all test-related assignments
and therefore, the certification examination focuses equally on all of them.

The 2006 Common Body of Knowledge for the software tester certificate includes these ten
skill categories:

Skill Category 1 – Software Testing Principles and Concepts

Skill Category 2 – Building the Test Environment

Skill Category 3 – Managing the Test Project

Skill Category 4 – Test Planning

Skill Category 5 – Executing the Test Plan

Skill Category 6 – Test Reporting Process

Skill Category 7 – User Acceptance Testing

Skill Category 8 – Testing Software Developed by Contractors

Skill Category 9 – Testing Internal Control

Skill Category 10 – Testing New Technologies

See Intro.5, Assess Your CSTE 2006 CBOK Competency on page Intro-19 for
detailed instructions on how to use the worksheet and competency rating table.

T

October 25, 2006 SAW-1

Guide to the 2006 CSTE CBOK

1
1
1

1
1
1
1
1

1
1
1
1
1
1

1
1

1

1

1
1
1
1
1

Skill Category 1 – Software Testing Principles and Concepts

The “basics” of software testing are represented by the vocabulary of testing, testing
approaches, methods and techniques as well as the materials used by testers in performing
their test activities.

Competency Rating Totals (total each “ ” in each column): ______ ______ _____

Skill Category 1 – Software Testing Principles and
Concepts Competency Rating

Skill # Skill Description Full Some None

1.1
Vocabulary

Quality Assurance versus Quality Control
.2 The Cost of Quality
.3 Software Quality Factors
.4 How Quality is Defined

.5
Why Do We Test Software?

Developers are not Good Testers
.6 What is a Defect?
.7 What is Quality Software?
.8 Why Does a Development Process Produce Defects?
.9 Reducing the Frequency of Defects in Software

Development

.10
The Multiple Roles of the Software Tester

People Relationships
.11 Scope of Testing
.12 When Should Testing Occur?
.13 How the Test Plan Should be Developed
.14 Testing Constraints
.15 Life Cycle Testing

.16
Test Matrices

Cascading Test Matrices
.17 Independent Testing

.18
Tester’s Workbench

What is a Process?

.19
Levels of Testing

The “V” Concept of Testing

.20
Testing Techniques

Structural versus Functional Technique Categories
.21 Verification versus Validation
.22 Status versus Dynamic Testing
.23 Examples of Specific Testing Techniques
.24 Combining Specific Testing Techniques
SAW-2 October 25, 2006

CSTE 2006 Skill Assessment Worksheet

2
2
2
2

2
2
2
2
2

2
2
2

Skill Category 2 – Building the Test Environment

The test environment is comprised of all the conditions, circumstances, and influences
surrounding and affecting the testing of software. The environment includes the organization’s
policies, procedures, culture, attitudes, rewards, test processes, test tools, methods for
developing and improving test processes, management’s support of software testing, as well
as any test labs developed for the purpose of testing software and multiple operating
environments. This category also includes assuring the test environment fairly represents the
production environment to enable realistic testing to occur.

Competency Rating Totals (total each “ ” in each column): ______ ______ _____

Skill Category 2 – Building the Test Environment Competency Rating
Skill # Skill Description Full Some None

2.25
Management Support

Management Tone
.26 Integrity and Ethical Values
.27 Commitment to Competence
.28 Management’s Philosophy and Operating Style
.29 Organizational Structure

.30
Test Work Processes

The Importance of Work Processes
.31 Responsibility for Building Work Processes
.32 Developing Work Processes
.33 Tester’s Workbench
.34 Analysis and Improvement of the Test Process

.35
Test Tools

Tool Development and Acquisition
.36 Tool Usage
.37 Testers Competency
October 25, 2006 SAW-3

Guide to the 2006 CSTE CBOK

3
3
3
3

3
3
3
3
3
3

3
3
3
3

3
3

Skill Category 3 – Managing the Test Project

Software testing is a project with almost all the same attributes as a software development
project. Software testing involves project planning, project staffing, scheduling and
budgeting, communicating, assigning and monitoring work and ensuring that changes to the
project plan are incorporated into the test plan.

Competency Rating Totals (total each “ ” in each column): ______ ______ _____

Skill Category 3 – Building the Test Environment Competency Rating
Skill # Skill Description Full Some None

3.38
Test Administration

Test Planning
.39 Customization of the Test Process
.40 Budgeting
.41 Scheduling
.42 Staffing

.43
Test Supervision

Communication Skills
.44 Negotiation and Complaint Resolution Skills
.45 Judgment
.46 Providing Constructive Criticism
.47 Project Relationships
.48 Motivation, Mentoring and Recognition

.49
Test Leadership

Chairing Meetings
.50 Team Building
.51 Quality Management Organizational Structure
.52 Code of Ethics

.53
Managing Change

Software Configuration Management
.54 Change Management
SAW-4 October 25, 2006

CSTE 2006 Skill Assessment Worksheet

4

4

4
4

4
4
4
4
4

4

4
4

Skill Category 4 – Test Planning

Testers need the skills to plan tests, including the selection of techniques and methods to be
used to validate the product against its approved requirements and design. Test planning
assesses the software application risks, and then develops a plan to determine if the software
minimizes those risks. Testers must understand the development methods and environment to
effectively plan for testing.

Competency Rating Totals (total each “ ” in each column): ______ ______ _____

Skill Category 4 – Building the Test Environment Competency Rating
Skill # Skill Description Full Some None
4.55 Risk Concepts and Vocabulary
4.56 Risks Associated with Software Development

.57
Risks Associated with Software Testing

Premature Release Risk

.58
Risk Analysis

Risk Analysis Process

.59
Risk Management

Risk Reduction Methods
.60 Contingency Planning

.61
Prerequisites to Test Planning

Test Objectives
.62 Acceptance Criteria
.63 Assumptions
.64 People Issues
.65 Constraints

.66
Create the Test Plan

Understand the Characteristics of the Software Being
Developed

.67 Build the Test Plan

.68 Write the Test Plan
October 25, 2006 SAW-5

Guide to the 2006 CSTE CBOK

5
5
5
5
5

5
5

5

5
5
5
5
5
5

5
5
5
5

5
5

Skill Category 5 – Executing the Test Plan

The test plan should be executed as designed. If the plan cannot be executed as designed it
should be changed, or notations made as to what aspects of the plan were not performed.
Testing according to the test plan should commence when the project commences and
conclude when the software is no longer in operation. Portions of the test plan can be
performed while the test plan is being written. Testers require many skills to carry out the test
plan, like design test cases and test scripts, use test tools, execute tests, record test results, and
manage defects.

Competency Rating Totals (total each “ ” in each column): ______ ______ _____

Skill Category 5 – Executing the Test Plan Competency Rating
Skill # Skill Description Full Some None

5.69
Test Case Design

Function Test Cases
.70 Structural Test Cases
.71 Erroneous Test Cases
.72 Stress Test Cases
.73 Test Scripts
.74 Use Cases

.75
Building Test Cases

Process for Building Test Cases
.76 Example of Creating Test Cases for a Payroll

Application
.77 Test Coverage

.78
Performing Tests
Platforms

.79 Test Cycle Strategy

.80 Use of Tools in Testing

.81 Perform Tests

.82 When is Testing Complete?

.83 General Concerns

.84
Recording Test Results

Problem Deviation
.85 Problem Effect
.86 Problem Cause
.87 Use of Test Results

.88
Defect Management

Defect Naming
.89 The Defect Management Process
SAW-6 October 25, 2006

CSTE 2006 Skill Assessment Worksheet

6
6

6
6
6
6
6
6
6
6
6
6

6
6

6
6
6

Skill Category 6 – Test Reporting Process

Testers need to demonstrate the ability to develop testing status reports. These reports should
show the status of the testing based on the test plan. Reporting should document what tests
have been performed and the status of those tests. The test reporting process is a process to
collect data, analyze the data, supplement the data with metrics, graphs and charts and other
pictorial representations which help the developers and users interpret that data. The lessons
learned from the test effort should be used to improve the next iteration of the test process.

Competency Rating Totals (total each “ ” in each column): ______ ______ _____

Skill Category 6 – Test Reporting Process Competency Rating
Skill # Skill Description Full Some None

6.90
Prerequisites to Test Reporting

Define and Collect Test Status Data
.91 Define Test Metrics used in Reporting
.92 Define Effective Test Metrics

.93
Test Tools used to Build Test Reports

Pareto Charts
.94 Pareto Voting
.95 Cause and Effect Diagrams
.96 Checksheets
.97 Histograms
.98 Run Charts
.99 Scatter Plot Diagrams
.100 Regression Analysis
.101 Multivariate Analysis
.102 Control Charts

.103
Test Tools used to Enhance Test Reporting

Benchmarking
.104 Quality Function Deployment

.105
Reporting Test Results

Current Status Test Reports
.106 Final Test Reports
.107 Guidelines for Report Writing
October 25, 2006 SAW-7

Guide to the 2006 CSTE CBOK

7
7

7
7
7

7
7

Skill Category 7 – User Acceptance Testing

The objective of software development is to develop the software that meets the true needs of
the user, not just the system specifications. To accomplish this, testers should work with the
users early in a project to clearly define the criteria that would make the software acceptable
in meeting the users’ needs. As much as possible, once the acceptance criterion has been
established, they should integrate those criteria into all aspects of development. This same
process can be used by software testers when users are unavailable for test; when diverse
users use the same software; and for beta testing software. Although acceptance testing is a
customer and user responsibility, testers normally help develop an acceptance test plan,
include that plan in the system test plan to avoid test duplication; and, in many cases, perform
or assist in performing the acceptance test.

Competency Rating Totals (total each “ ” in each column): ______ ______ _____

Skill Category 7 – User Acceptance Testing Competency Rating
Skill # Skill Description Full Some None

7.108
Acceptance Test Concepts

Difference between Acceptance Test and System Test

.109
Roles and Responsibilities

User’s Role
.110 Software Tester’s Role

.111
Acceptance Test Planning

Acceptance Criteria
.112 Acceptance Test Plan
.113 Use Case Test Data

.114
Acceptance Test Execution

Execute the Acceptance Test Plan
.115 Acceptance Decision
SAW-8 October 25, 2006

CSTE 2006 Skill Assessment Worksheet

8

8
8
8

8

8
8
8

8

8
8
8
8

8

8

8

8

Skill Category 8 – Testing Software Developed by Contractors

There are many challenges when testing software developed by a contractor, or an external
organization. It is management’s responsibility that acquired software meets the needs of their
organization. Contractors will test the software they build, but that does not relieve
management from their quality responsibilities. Management must put into place those test
processes within their organization that provide the assurance that acquired software will
perform as expected. Two test processes that are representative of best practices for testing
acquired software are for COTS software and software developed under contract by an
outside organization. Executing those defined test processes should be performed by software
testers.

Competency Rating Totals (total each “ ” in each column): ______ ______ _____

Skill Category 8 – Testing Software Developed by
Contractors Competency Rating

Skill # Skill Description Full Some None

8.116
Challenges in Testing Acquired Software

Purchased COTS Software
.117 Contracted Software

.118
COTS Software Test Process

Assure Completeness of Needs Specification
.119 Define Critical Success Factor
.120 Determine Compatibility with Your Computer

Environment
.121 Assure the Software can be Integrated into Your

Business System Work Flow
.122 Demonstrate the Software in Operation
.123 Evaluate the People Fit
.124 Acceptance Test the COTS Software

.125
Contracted Software Test Process

Assure the Process for Contracting Software is
Adequate

.126 Review the Adequacy of the Contractor’s Test Plan

.127 Assure Development is Effective and Efficient

.128 Perform Acceptance Testing on the Software

.129 Issue a Report on the Adequacy of the Software to Meet
the Needs of the Organization

.130 Ensure Knowledge Transfer Occurs and Intellectual
Property Rights are Protected

.131 Incorporate Copyrighted Material into the Contractor’s
Manuals

.132 Assure the Ongoing Operation and Maintenance of the
Contracted Software

.133 Assure the Effectiveness of Contractual Relations
October 25, 2006 SAW-9

Guide to the 2006 CSTE CBOK
Skill Category 9 – Testing Internal Control

A key issue for software testing is testing internal control. Security is a component of internal
control that warrants special attention of testers. Interest in internal control has been
highlighted by publicized penetrations of security and the increased importance of
information systems and the data contained by those systems. The passage of the Sarbanes-
Oxley Act in particular, highlighted interest in internal control. The Sarbanes-Oxley Act,
sometimes referred to as SOX, was passed in response to the numerous accounting scandals
such as Enron and WorldCom. While much of the act relates to financial controls, there is a
major section relating to internal controls. For Securities and Exchange Commission (SEC)-
regulated corporations, both the CEO and the CFO must personally attest to the adequacy of
their organization’s system of internal control. Because misleading attestation statements is a
criminal offense, top corporate executives take internal control as a very important topic.
Many of those controls are incorporated into information systems, and thus the need for
testing those controls.

Competency Rating Totals (total each “ ” in each column): ______ ______ _____

Skill Category 9 – Testing Internal Control Competency Rating
Skill # Skill Description Full Some None

9.134
Principles and Concepts of Internal Control

Internal control responsibilities
9.135 Software Tester’s Internal Controls Responsibilities
9.136 Internal Auditor’s Internal Control Responsibilities
9.137 Risk versus Control
9.138 Environmental versus Transaction Processing Controls
9.139 Preventive, Detective and Corrective Controls

9.140
Internal Control Models

COSO Enterprise Risk Management (ERM) Model
9.141 COSO Internal Control Framework Model
9.142 CobiT Model

9.143
Testing Internal Controls

Perform Risk Assessment
9.144 Test Transaction Processing Controls

9.145
Testing Security Controls

Task 1 – Where Security is Vulnerable to Penetration
9.146 Task 2 – Building a Penetration Point Matrix
9.147 Task 3 – Assess Security Awareness Training
9.148 Task 4 – Understand the Attributes of an Effective

Security Control
9.149 Task 5 – Selecting Techniques to Test Security
SAW-10 October 25, 2006

CSTE 2006 Skill Assessment Worksheet
Skill Category 10 – Testing New Technologies

Testers require skills in their organization’s current technology, as well as a general
understanding of the new information technology that might be acquired by their
organization. The new technology skills are required because the test plan needs to be based
on the types of technology used. Also technologies new to the organization and the testers
pose technological risks which must be addressed in test planning and test execution. This
section only addresses the newer IT technology, but any technology new to the testers or the
organization must be addressed in the test plan.

Competency Rating Totals (total the “ ” in each column): ______ ______ _____

Skill Category 10 – Testing New Technologies Competency Rating
Skill # Skill Description Full Some None
10.150 Risks Associated with New Technology

10.151
Newer IT Technology that Impact Software Testing

Web-Based Applications
10.152 Distributed Application Architecture
10.153 Wireless Technologies
10.154 New Application Business Models
10.155 New Communication Methods
10.156 Wireless Local Area Networks
10.157 New Testing Tools

10.158
Testing the Effectiveness of Integrating New Technologies

Determine the Process Maturity Level of the New
Technology

10.159 Test the Controls over Implementing the New
Technology

10.160 Test the Adequacy of Staff Skills to Use the Technology
October 25, 2006 SAW-11

Guide to the 2006 CSTE CBOK
CSTE 2006 CBOK Competency Rating Table

See Intro.5, Assess Your CSTE 2006 CBOK Competency on page Intro-19 for
detailed instructions on how to use the worksheet and competency rating table.

CBOK Skill Category Competency Ratings
Full Some None

Skill Category 1
Skill Category 2
Skill Category 3
Skill Category 4
Skill Category 5
Skill Category 6
Skill Category 7
Skill Category 8
Skill Category 9
Skill Category 10
Ratings Total
Factor for Multiplication x 3 x 2 x 1
Columns Total
Sum of the Rows Total
Number of CSTE Skills ÷ 160
Your CSTE 2006 CBOK Competency Rating
SAW-12 October 25, 2006

Category

Software Testing
Principles and Concepts

he “basics” of software testing are represented by the vocabulary of testing, testing
approaches, methods and techniques, as well as, the materials used by testers in
performing their test activities.

1.1 Vocabulary
A unique characteristic of a profession is its vocabulary. The profession’s vocabulary
represents the knowledge of the profession and its ability to communicate with others about
the professions knowledge. For example, in the medical profession one hundred years ago
doctors referred to “evil spirits” as a diagnosis. Today the medical profession has added words
such as cancer, AIDS, and stroke which communicate knowledge.

Vocabulary 1-1
Why Do We Test Software? 1-15
Factors Affecting Software Testing 1-29
Life Cycle Testing 1-40
Test Matrices 1-42
Independent Testing 1-45
Tester’s Workbench 1-47
Levels of Testing 1-51
Testing Techniques 1-62

Skill
Category

1

T

October 25, 2006 1-1

Guide to the 2006 CSTE CBOK
Appendix A in this study guide is a glossary of software testing terms. It is very
important that testers know this vocabulary.

Three important vocabulary concepts are discussed in detail below:
• The difference between quality assurance and quality control
• The cost of quality
• Software quality factors

1.1.1 Quality Assurance Versus Quality Control

Testing is a Quality Control Activity.

There is often confusion in the IT industry regarding the difference between quality control
and quality assurance. Many “quality assurance” groups, in fact, practice quality control.
Quality methods can be segmented into two categories: preventive methods and detective
methods. This distinction serves as the mechanism to distinguish quality assurance activities
from quality control activities. This discussion explains the critical difference between control
and assurance, and how to recognize a control practice from an assurance practice.

Quality has two working definitions:
• Producer’s Viewpoint – The quality of the product meets the requirements.
• Customer’s Viewpoint – The quality of the product is “fit for use” or meets the

customer’s needs.

There are many “products” produced from the software development process in addition to
the software itself, including requirements, design documents, data models, GUI screens,
programs, and so on. To ensure that these products meet both requirements and user needs,
both quality assurance and quality control are necessary.

1.1.1.1 Quality Assurance

Quality assurance is a planned and systematic set of activities necessary to provide adequate
confidence that products and services will conform to specified requirements and meet user
needs. Quality assurance is a staff function, responsible for implementing the quality policy
defined through the development and continuous improvement of software development
processes.
1-2 October 25, 2006

Software Testing Principles and Concepts
Quality assurance is an activity that establishes and evaluates the processes that produce
products. If there is no need for process, there is no role for quality assurance. For example,
quality assurance activities in an IT environment would determine the need for, acquire, or
help install:

• System development methodologies
• Estimation processes
• System maintenance processes
• Requirements definition processes
• Testing processes and standards

Once installed, quality assurance would measure these processes to identify weaknesses, and
then correct those weaknesses to continually improve the process.

1.1.1.2 Quality Control

Quality control is the process by which product quality is compared with applicable standards,
and the action taken when nonconformance is detected. Quality control is a line function, and
the work is done within a process to ensure that the work product conforms to standards and
requirements.

Quality control activities focus on identifying defects in the actual products produced. These
activities begin at the start of the software development process with reviews of requirements,
and continue until all application testing is complete.

It is possible to have quality control without quality assurance. For example, a test team may
be in place to conduct system testing at the end of development, regardless of whether that
system is produced using a software development methodology.

Both quality assurance and quality control are separate and distinct from the
internal audit function. Internal Auditing is an independent appraisal activity
within an organization for the review of operations, and is a service to
management. It is a managerial control that functions by measuring and
evaluating the effectiveness of other controls.

The following statements help differentiate quality control from quality assurance:
• Quality control relates to a specific product or service.
• Quality control verifies whether specific attribute(s) are in, or are not in, a specific

product or service.
• Quality control identifies defects for the primary purpose of correcting defects.
• Quality control is the responsibility of the team/worker.
• Quality control is concerned with a specific product.
October 25, 2006 1-3

Guide to the 2006 CSTE CBOK
• Quality assurance helps establish processes.
• Quality assurance sets up measurement programs to evaluate processes.
• Quality assurance identifies weaknesses in processes and improves them.
• Quality assurance is a management responsibility, frequently performed by a staff

function.
• Quality assurance is concerned with all of the products that will ever be produced by a

process.
• Quality assurance is sometimes called quality control over quality control because it

evaluates whether quality control is working.
• Quality assurance personnel should never perform quality control unless it is to

validate quality control.

1.1.2 The Cost of Quality
When calculating the total costs associated with the development of a new application or
system, three cost components must be considered. The Cost of Quality, as seen in Figure 1-1,
is all the costs that occur beyond the cost of producing the product “right the first time.” Cost
of Quality is a term used to quantify the total cost of prevention and appraisal, and costs
associated with the production of software.

The Cost of Quality includes the additional costs associated with assuring that the product
delivered meets the quality goals established for the product. This cost component is called
the Cost of Quality, and includes all costs associated with the prevention, identification, and
correction of product defects.

Figure 1-1 Cost of Quality
1-4 October 25, 2006

Software Testing Principles and Concepts
The three categories of costs associated with producing quality products are:
• Prevention Costs

Money required to prevent errors and to do the job right the first time. These normally
require up-front costs for benefits that will be derived months or even years later. This
category includes money spent on establishing methods and procedures, training
workers, acquiring tools, and planning for quality. Prevention money is all spent
before the product is actually built.

• Appraisal Costs
Money spent to review completed products against requirements. Appraisal includes
the cost of inspections, testing, and reviews. This money is spent after the product is
built but before it is shipped to the user or moved into production.

• Failure Costs
All costs associated with defective products that have been delivered to the user or
moved into production. Some failure costs involve repairing products to make them
meet requirements. Others are costs generated by failures such as the cost of operating
faulty products, damage incurred by using them, and the costs associated with
operating a Help Desk.

The Cost of Quality will vary from one organization to the next. The majority of costs
associated with the Cost of Quality are associated with the identification and correction of
defects. To minimize production costs, the project team must focus on defect prevention. The
goal is to optimize the production process to the extent that rework is eliminated and
inspection is built into the production process. The IT quality assurance group must identify
the costs within these three categories, quantify them, and then develop programs to minimize
the totality of these three costs. Applying the concepts of continuous testing to the systems
development process can reduce the cost of quality.

1.1.3 Software Quality Factors
In defining the scope of testing, the risk factors become the basis or objective of testing. The
objectives for many tests are associated with testing software quality factors. The software
quality factors are attributes of the software that, if they are wanted and not present, pose a
risk to the success of the software, and thus constitute a business risk. For example, if the
software is not easy to use, the resulting processing may be incorrect. The definition of the
software quality factors and determining their priority enables the test process to be logically
constructed.

When software quality factors are considered in the development of the test strategy, results
from testing successfully meet your objectives.

The primary purpose of applying software quality factors in a software development program
is to improve the quality of the software product. Rather than simply measuring, the concepts
are based on achieving a positive influence on the product, to improve its development.
October 25, 2006 1-5

Guide to the 2006 CSTE CBOK
This section addresses the problem of identifying software quality factors that are in addition
to the functional, performance, cost, and schedule requirements normally specified for
software development. The fact that the goals established are related to the quality of the end
product should, in itself, provide some positive influence.

Once the software quality factors have been determined by following the procedures
described in the subsequent paragraphs, they must be transmitted to the development team.
The software quality factors should be documented in the same form as the other system
requirements and relayed to the development team. Additionally, a briefing emphasizing the
intent of the inclusion of the software quality factors is recommended.

1.1.3.1 How to Identify Important Software Quality Factors

Figure 1-2 illustrates the Diagram of Software Quality Factors as describe by McCall in 1977.
The basic tool used to identify the important software quality factors is the Software Quality
Factor Survey form shown in Figure 1-3. The formal definitions of each of the eleven
software quality factors are provided on that form.

Figure 1-2 McCall’s Diagram of Software Quality Factors
1-6 October 25, 2006

Software Testing Principles and Concepts
Figure 1-3 Software Quality Factors Survey Form

It is recommended that you brief the decision makers using the tables and figures that follow
in this section to solicit their responses to the survey. The decision makers may include the
acquisition manager, the user or customer, the development manager, and the QA manager.

To complete the survey, follow these procedures:

1. Consider basic characteristics of the application.

The software quality factors for each system are unique and influenced by system or
application-dependent characteristics. There are basic characteristics that affect the
software quality factors, and each software system must be evaluated for its basic
characteristics. Figure 1-4 provides a list of some of these basic characteristics.

For your current system design goals, please rate each Software Quality Factor as:
Very Important (VI), Important (I), Somewhat Important (SI), or Not Important (NI).

Design Goal
Rating Factors Definition

Correctness Extent to which a program satisfies its specifications and fulfills
the user's mission objectives.

Reliability Extent to which a program can be expected to perform its
intended function with required precision

Efficiency The amount of computing resources and code required by a
program to perform a function.

Integrity Extent to which access to software or data by unauthorized
persons can be controlled.

Usability Effort required learning, operating, preparing input, and
interpreting output of a program

Maintainability Effort required locating and fixing an error in an operational
program.

Testability Effort required testing a program to ensure that it performs its
intended function.

Flexibility Effort required modifying an operational program.

Portability Effort required to transfer software from one configuration to
another.

Reusability Extent to which a program can be used in other applications -
related to the packaging and scope of the functions that
programs perform.

Interoperability Effort required to couple one system with another.
October 25, 2006 1-7

Guide to the 2006 CSTE CBOK
Figure 1-4 System Characteristics and Related Software Quality Factors

For example, if the system is being developed in an environment in which there is a
high rate of technical breakthroughs in hardware design, portability should take on an
added significance. If the expected life cycle of the system is long, maintainability
becomes a cost-critical consideration. If the application is an experimental system
where the software specifications will have a high rate of change, flexibility in the
software product is highly desirable. If the functions of the system are expected to be
required for a long time, while the system itself may change considerably, reusability
is of prime importance in those modules that implement the major functions of the
system.

With the advent of more computer networks and communication capabilities, more
systems are being required to interface with other systems; hence, the concept of
interoperability is extremely important. These and other system characteristics should
be considered when identifying the important software quality factors.

2. Consider life cycle implications.
The eleven software quality factors identified on the survey can be grouped according
to three life cycle activities associated with a delivered software product, or post
development. These three activities are product operation, product revision, and
product transition. The relationship of the software quality factors to these activities is
shown in Table 1-1. This table also illustrates where quality indications can be
achieved through measurement and where the impact is felt if poor quality is realized.
The size of this impact determines the cost savings that can be expected if a higher
quality system is achieved through the application of the metrics.

System Characteristic Software Quality Factor

Human lives are affected
Reliability

Correctness
Testability

Long life cycle
Maintainability

Flexibility
Portability

Real-time application
Efficiency
Reliability

Correctness

On-board computer application
Efficiency
Reliability

Correctness

Processes classified information Integrity

Interrelated systems Interoperability
1-8 October 25, 2006

Software Testing Principles and Concepts
A cost-to-implement versus life-cycle-cost reduction relationship exists for each
software quality factor. The benefit versus cost-to-provide ratio for each factor is rated
as high, medium, or low in the right-hand column of Table 1-1. This relationship and
the life cycle implications of the software quality factors should be considered when
selecting the important factors for a specific system.

Table 1-1: The Impact of Not Specifying or Measuring Software Quality Factors

3. Perform trade-offs among the tentative list of software quality factors.
As a result of the previous two steps, a tentative list of software quality factors should
be produced. The next step is to consider the interrelationships among the factors
selected. Figure 1-5 can be used as a guide for determining the relationships between
the software quality factors. Some factors are synergistic while others conflict. The
impact of conflicting factors is that the cost to implement will increase. This will lower
the benefit-to-cost ratio described in the preceding paragraphs.
October 25, 2006 1-9

Guide to the 2006 CSTE CBOK
Figure 1-5 Relationship between Software Quality Factors

4. Identify most important software quality factors.
The list of software quality factors considered to be important for the particular system
compiled in the preceding three steps should be organized in order of importance. A
single decision maker may choose the factors or the choice may be made by averaging
several survey responses. The definitions of the factors chosen should be included
with this list.

5. Provide explanations for choices.
Document rationale for the decisions made during the first three steps.

1.1.3.2 Inventory Control System Example

To illustrate the application of these steps, consider an inventory control system. The
inventory control system maintains inventory status and facilitates requisitioning, reordering,
and issuing of supplies. The planned life of the system is ten years. Each step described
previously will be performed with respect to the tactical inventory control system.

1. Consider Basic Characteristics of the Application.
Utilizing Figure 1-4 and considering the unique characteristics of the tactical inventory
control system, results in the following:
1-10 October 25, 2006

Software Testing Principles and Concepts
Table 1-2: System Characteristics and the Related Software Quality Factors

2. Consider life cycle implications.
Of the five related software quality factors identified above, all provide high or medium
life cycle cost benefits according to Table 1-1.

3. Perform trade-offs among factors.
Using Figure 1-5, there are no conflicts that need to be considered.

4. Identify most important software quality factors.
Using the survey form and the guidance provided in the preceding procedures, the
following factors are identified in order of importance along with the definitions.

• Correctness – Extent to which a program satisfies its specifications and fulfills the
user’s mission objectives.

• Reliability – Extent to which a program can be expected to perform its intended
function with required precision.

• Usability – Effort required learning, operating, preparing input, and interpreting
output of a program.

• Maintainability – Effort required locating and fixing an error in an operational
program.

• Interoperability – Effort required to couple one system to another.

5. Provide explanation of selected software quality factors.
• Correctness – The system performs critical supply function.
• Reliability – The system performs critical supply functions in remote environment.
• Usability – The system will be used by personnel with minimum computer

training.
• Maintainability – The system life cycle is projected to be ten years and it will

operate in the field where field personnel will maintain it.
• Interoperability – The system will interface with other supply systems.

System Characteristic Related Software Quality
Factor

Critical Supplies Correctness
Reliability

Utilized by Supply Personnel Usability

Long Life Cycle with Stable
Hardware and Software
Requirements

Maintainability

Interfaces with Inventory
Systems at Other Sites

Interoperability
October 25, 2006 1-11

Guide to the 2006 CSTE CBOK
1.1.4 How Quality is Defined
The definition of “quality” is a factor in determining the scope of software testing. Although
there are multiple quality philosophies documented, it is important to note that most contain
the same core components:

• Quality is based upon customer satisfaction
• Your organization must define quality before it can be achieved
• Management must lead the organization through any improvement efforts

There are five perspectives of quality – each of which must be considered as important to the
customer:

1. Transcendent – I know it when I see it

2. Product-Based – Possesses desired features

3. User-Based – Fitness for use

4. Development- and Manufacturing-Based – Conforms to requirements

5. Value-Based – At an acceptable cost

Peter R. Scholtes introduces the contrast between effectiveness (doing the right things) and
efficiency (doing things right). Quality organizations must be both effective and efficient.

Patrick Townsend examines quality in fact and quality in perception as shown in Table 1-3.
Quality in fact is usually the supplier's point of view, while quality in perception is the
customer's. Any difference between the former and the latter can cause problems between the
two.

Table 1-3: Townsend’s Quality View

An organization’s quality policy must define and view quality from their customer's
perspectives. If there are conflicts, they must be resolved.

QUALITY IN FACT QUALITY IN PERCEPTION
Doing the right thing. Delivering the right product.

Doing it the right way. Satisfying our customer’s needs.

Doing it right the first time. Meeting the customer’s expectations.

Doing it on time. Treating every customer with integrity, courtesy,
and respect.
1-12 October 25, 2006

Software Testing Principles and Concepts
1.1.5 Definitions of Quality
Quality is frequently defined as meeting the customer's requirements the first time and every
time. Quality is also defined as conformance to a set of customer requirements that, if met,
result in a product that is fit for its intended use.

Quality is much more than the absence of defects, which allows us to meet customer
expectations. Quality requires controlled process improvement, allowing loyalty in
organizations. Quality can only be achieved by the continuous improvement of all systems
and processes in the organization, not only the production of products and services but also
the design, development, service, purchasing, administration, and, indeed, all aspects of the
transaction with the customer. All must work together toward the same end.

Quality can only be seen through the eyes of the customers. An understanding of the
customer's expectations (effectiveness) is the first step; then exceeding those expectations
(efficiency) is required. Communications will be the key. Exceeding customer expectations
assures meeting all the definitions of quality.

1.1.6 What is Quality Software?
There are two important definitions of quality software:

The producer’s view of quality software means meeting requirements.

Customer’s/User’s of software view of quality software means fit for use.

These two definitions are not inconsistent. Meeting requirements is the producer’s definition
of quality; it means that the person building the software builds it in accordance with
requirements. The fit for use definition is a user’s definition of software quality; it means that
the software developed by the producer meets the user’s need regardless of the software
requirements.

1.1.6.1 The Two Software Quality Gaps

In most IT groups, there are two gaps as illustrated in Figure 1-6, the different views of
software quality between the customer and the producer.
October 25, 2006 1-13

Guide to the 2006 CSTE CBOK
Figure 1-6 The Two Software Quality Gaps

The first gap is the producer gap. It is the gap between what is specified to be delivered,
meaning the documented requirements and internal IT standards, and what is actually
delivered. The second gap is between what the producer actually delivers compared to what
the customer expects.

A potential role of software testing becomes helping to close the two gaps. The IT quality
function must first improve the processes to the point where IT can produce the software
according to requirements received and its own internal standards. The objective of the quality
function closing the producer’s gap is to enable an IT function to provide its user consistency
in what it can produce. At QAI, we call this the “McDonald’s effect.” This means that when
you go into any McDonald’s in the world, a Big Mac should taste the same. It doesn’t mean
that you as a customer like the Big Mac or that it meets your needs, but rather, that
McDonald’s has now produced consistency in its delivered product.

To close the customer’s gap, the IT quality function must understand the true needs of the
user. This can be done by the following:

• Customer surveys
• JAD (joint application development) sessions – the producer and user come together

and negotiate and agree upon requirements
• More user involvement while building information products

It is accomplished through changing the processes to close the user gap so that there is
consistency, and producing software and services that the user needs. Software testing
professionals can participate in closing these “quality” gaps.

1.1.6.2 What is Excellence?

The Random House College Dictionary defines excellence as "superiority; eminence.”
Excellence, then, is a measure or degree of quality. These definitions of quality and excellence
1-14 October 25, 2006

Software Testing Principles and Concepts
are important because it is a starting point for any management team contemplating the
implementation of a quality policy. They must agree on a definition of quality and the degree
of excellence they want to achieve.

The common thread that runs through today's quality improvement efforts is the focus on the
customer and, more importantly, customer satisfaction. The customer is the most important
person in any process. Customers may be either internal or external. The question of customer
satisfaction (whether that customer is located in the next workstation, building, or country) is
the essence of a quality product. Identifying customers' needs in the areas of what, when, why,
and how are an essential part of process evaluation and may be accomplished only through
communication.

The internal customer is the person or group that receives the results (outputs) of any
individual's work. The outputs may include a product, a report, a directive, a communication,
or a service. In fact, anything that is passed between people or groups. Customers include
peers, subordinates, supervisors, and other units within the organization. Their expectations
must also be known and exceeded to achieve quality.

External customers are those using the products or services provided by the organization.
Organizations need to identify and understand their customers. The challenge is to understand
and exceed their expectations.

An organization must focus on both internal and external customers and be dedicated to
exceeding customer expectations.

1.2 What is Life Cycle Testing?
Testing is the process of evaluating a deliverable with the intent of finding errors.

Testing is NOT:

• A stage/phase of the project
• Just finding broken code
• A final exam
• “Debugging”

1.2.1 Why Do We Test Software?
The simple answer as to why we test software is that developers are unable to build defect-
free software. If the development processes were perfect, meaning no defects were produced,
testing would not be necessary.
October 25, 2006 1-15

Guide to the 2006 CSTE CBOK
Let’s compare the manufacturing process of producing boxes of cereal to the process of
making software. We find that, as is the case for most food manufacturing companies, testing
each box of cereal produced is unnecessary. Making software is a significantly different
process than making a box of cereal however. Cereal manufacturers may produce 50,000
identical boxes of cereal a day, while each software process is unique. This uniqueness
introduces defects, and thus making testing software necessary.

As we introduce the skill categories of the CBOK for software testers, it is helpful to
understand these six concepts, which explain why we test software:

• Developers are not good testers
• What is a defect?
• Why does a development process produce defects?
• Reducing the frequency of defects in software development
• An effective development process that minimizes defects
• How is quality defined?

1.2.2 Developers are not Good Testers
Testing by the individual who developed the work has not proven to be a substitute to building
and following a detailed test plan. The disadvantages of a person checking their own work
using their own documentation are as follows:

• Misunderstandings will not be detected, because the checker will assume that what the
other individual heard from him was correct.

• Improper use of the development process may not be detected because the individual
may not understand the process.

• The individual may be “blinded” into accepting erroneous system specifications and
coding because he falls into the same trap during testing that led to the introduction of
the defect in the first place.

• Information services people are optimistic in their ability to do defect-free work and
thus sometimes underestimate the need for extensive testing.

Without a formal division between development and test, an individual may be tempted to
improve the system structure and documentation, rather than allocate that time and effort to
the test.

1.2.3 What is a Defect?
A defect is an undesirable state. There are two types of defects: process and procedure. For
example, if a Test Plan Standard is not followed, it would be a process defect. However, if the
Test Plan did not contain a Statement of Usability as specified in the Requirements
documentation it would be a product defect.
1-16 October 25, 2006

Software Testing Principles and Concepts
The term quality is used to define a desirable state. A defect is defined as the lack of that
desirable state. In order to fully understand what a defect is we must understand quality.

1.2.4 Software Process Defects
Ideally, the software development process should produce the same results each time the
process is executed. For example, if we follow a process that produced one function-point-of-
logic in 100 person hours, we would expect that the next time we followed that process, we
would again produce one function-point-of-logic in 100 hours. However, if we follow the
process the second time and it took 110 hours to produce one function-point-of-logic, we
would state that there is “variability” in the software development process. Variability is the
“enemy” of quality – the concepts behind maturing a software development process is to
reduce variability.

The concept of measuring and reducing variability is commonly called statistical process
control (SPC). To understand SPC we need to first understand the following:

• What constitutes an in control process
• What constitutes an out of control process
• What are some of the steps necessary to reduce variability within a process

Testers need to understand process variability, because the more variance in the process the
greater the need for software testing. Following is a brief tutorial on processes and process
variability.

1.2.4.1 What Does It Mean For a Process To Be In or Out of Control?

The amount of variation in a process is quantified with summary statistics; typically, the
standard deviation is used. A process is defined as stable if its parameters (i.e., mean and
standard deviation) remain constant over time; it is then said to be in a state of statistical
control. Figure 1-7 illustrates a stable process. Such a process is predictable, i.e., we can
predict, within known limits and with a stated degree of belief, future process values.
Accepted practice uses a prediction interval three standard deviation distances in width
around the population mean (µ ± 3) in establishing the control limits.
October 25, 2006 1-17

Guide to the 2006 CSTE CBOK
Figure 1-7 An In-Control (Stable) Process

Continuous process improvement through the use of quantitative methods and employee
involvement sets quality management apart from other attempts to improve productivity.
Continuous process improvement is accomplished by activating teams and providing them
with quantitative methods such as SPC techniques and supporting them as they apply these
tools. We will further discuss the concept of variation, common and special causes of
variation, and QAI’s Continuous Improvement Strategy.

The natural change occurring in organizational life moves systems and processes towards
increasing variation. Statistical methods help us collect and present data in ways that facilitate
the evaluation of current theories and the formation of new theories. These tools are the only
methods available for quantifying variation. Since the key to quality is process consistency,
variation (the lack of consistency) must be understood before any process can be improved.
Statistical methods are the only way to objectively measure variability. There is no other way!

Variation is present in all processes. Table 1-4 lists some sources of variation for
administrative processes.
1-18 October 25, 2006

Software Testing Principles and Concepts
Table 1-4: Typical Sources of Variation

The cumulative effect of sources of variation in a production process is shown in the table.
One of the challenges in implementing quality management is to get those working in the
process thinking in terms of sources of variation. How much of the observed variation can be
attributed to measurements, material, machines, methods, people and the environment?

Consistency in all the processes from conception through delivery of a product or service is
the cornerstone of quality. Paradoxically, the route to quality is not just the application of SPC
and the resulting control charts. Managers must change the way they manage. They must use
statistical methods in making improvements to management processes as well as all other
processes in the organization.

Special causes of variation are not typically present in the process. They occur because of
special or unique circumstances. If special causes of variation exist, the process is unstable or
unpredictable. Special causes must be eliminated to bring a process into a state of statistical
control. A state of statistical control is established when all special causes of variation have
been eliminated.

Brian Joiner1 has summarized special causes of variation as follows:
• Process inputs and conditions that sporadically contribute to the variability of process

outputs.
• Special causes contribute to output variability because they themselves vary.
• Each special cause may contribute a “small” or “large” amount to the total variation in

process outputs.
• The variability due to one or more special causes can be identified by the use of

control charts.
• Because special causes are “sporadic contributors,” due to some specific

circumstances, the “process” or “system” variability is defined without them.

Joiner then presents this strategy for eliminating special causes of variation:

Measurement Components
Counting
Sampling

Material Components
Forms
Suppliers

Machine Components
Office equipment
Computers
Software

Method Components
Procedures
Policies
Accounting practices

People Components
Training
Experience
Attitude
Aptitude

Environment Components
Temperature
Humidity
Noise Level
Lighting

1. Joiner, Brian, “Stable and Unstable Processes, Appropriate and Inappropriate Managerial Action.”
From an address given at a Deming User’s Group Conference in Cincinnati, OH.
October 25, 2006 1-19

Guide to the 2006 CSTE CBOK
• Work to get very timely data so that special causes are signaled quickly – use early
warning indicators throughout your operation.

• Immediately search for the cause when the control chart gives a signal that a special
cause has occurred. Find out what was different on that occasion from other occasions.

• Do not make fundamental changes in that process.
• Instead, seek ways to change some higher-level systems to prevent that special cause

from recurring. Or, if results are good, retain that lesson.

Common causes of variation are typically due to a large number of small random sources of
variation. The sum of these sources of variation determines the magnitude of the process’s
inherent variation due to common causes; the process’s control limits and current process
capability can then be determined. Figure 1-8 illustrates an out of control process.

Figure 1-8 An Out-of-Control (Unstable) Process

Joiner also provides thoughts on common causes of variation:
• Process inputs and conditions that regularly contribute to the variability of process

outputs.
• Common causes contribute to output variability because they themselves vary.
• Each common cause typically contributes a small portion to the total variation in

process outputs.
• The aggregate variability due to common causes has a “nonsystematic,” random-

looking appearance.
• Because common causes are “regular contributors,” the “process” or “system”

variability is defined in terms of them.

Joiner also outlined a strategy for reducing common causes of variation:
• Talk to lots of people including local employees, other managers, and staff from

various functions.
• Improve measurement processes if measuring contributes too much to the observed

variation.
1-20 October 25, 2006

Software Testing Principles and Concepts
• Identify and rank categories of problems by Pareto analysis (a ranking from high to
low of any occurrences by frequency).

• Stratify and desegregate your observations to compare performance of sub-processes.
• Investigate cause-and-effect relations. Run experiments (one factor and multifactor).

Those working in the process (employees) have the lead responsibility for the reduction of
special causes of variation. Those working on the process (management) are responsible for
leading the effort to reduce common cause variation. These higher-level improvements to the
process usually require process or system changes. It is now widely recognized that as much
as 94% of problems in any organization are system problems and the responsibility of
management to solve. The concept of statistical control allows us to determine which
problems are in the process (due to common causes of variation) and which are external to the
process (due to special causes of variation).

Bringing a process into a state of statistical control is not really improving the process; it is
just bringing it back to its typical operation. Reducing variation due to common causes is
process improvement and the real essence of continuous process improvement.

As previously mentioned, variation due to special causes must be identified and removed to
create a stable process. However, a stable process may not be an acceptable process. If its
variation, due to common causes results in operation of the process beyond specifications, the
process is called “incapable.” The process must be improved, i.e., variation due to common
cause must be reduced or the process retargeted or both. Figure 1-9 illustrates the transition of
a process from incapable to capable.
October 25, 2006 1-21

Guide to the 2006 CSTE CBOK
Figure 1-9 Making a Process Capable

Deming defines tampering as “action taken on a stable system in response to variation within
statistical control, in an effort to compensate for this variation – the results of which will
inevitably increase the variation and will increase cost from here on out.” Tampering is any
adjustment to a process (typically by operator or machine) in response to variation due to
common causes (i.e., that variation between the control limits). By definition, process
variation (due to common causes) is expected and is not a reason for adjusting or changing the
process (tampering). Management that does not understand variation, time and time again
asks for an explanation or corrective action when confronted with variation due to common
causes.

1.2.4.2 Do Testers Need to Know SPC?

Testing is a measurement process. It attempts to measure the implemented software against
either or both specifications and user needs. Statistical process control is a measurement tool.

The more you know about the process used to develop software, the more effective the testing
process will become. For example, if you know that the requirements process has significant
variability, meaning there is a high probability that the requirements as defined are not correct,
you should then focus testing efforts on determining the “correctness” of the requirements as
viewed by the customer. Software testing does not add a lot of value to the business if all they
are doing is validating that incorrect requirements are implemented correctly.
1-22 October 25, 2006

Software Testing Principles and Concepts
1.2.5 Software Product Defects
The U.S. General Accounting Office summarized the errors detected in computerized
applications they reviewed. It is reasonable to assume that these defects are typical of most
computer systems and thus those problems should be included in any test program. These
problems, resulting in the applications automatically initiating uneconomical or otherwise
incorrect actions, can be broadly categorized as software design defects and data defects.

1.2.5.1 Software Design Defects

Software design defects that most commonly cause bad decisions by automated decision-
making applications include:

• Designing software with incomplete or erroneous decision-making criteria. Actions
have been incorrect because the decision-making logic omitted factors that should
have been included. In other cases, decision-making criteria included in the software
were appropriate, either at the time of design or later, because of changed
circumstances.

• Failing to program the software as intended by the customer (user), or designer,
resulting in logic errors often referred to as programming errors.

• Omitting needed edit checks for determining completeness of output data. Critical data
elements have been left blank on many input documents, and because no checks were
included, the applications processed the transactions with incomplete data.

1.2.5.2 Data Defects

Input data is frequently a problem. Since much of this data is an integral part of the decision-
making process, its poor quality can adversely affect the computer-directed actions. Common
problems are:

• Incomplete data used by automated decision-making applications. Some input
documents prepared by people omitted entries in data elements that were critical to the
application but were processed anyway. The documents were not rejected when
incomplete data was being used. In other instances, data needed by the application that
should have become part of IT files was not put into the system.

• Incorrect data used in automated decision-making application processing. People have
often unintentionally introduced incorrect data into the IT system.

• Obsolete data used in automated decision-making application processing. Data in the
IT files became obsolete due to new circumstances. The new data may have been
available but was not put into the computer.
October 25, 2006 1-23

Guide to the 2006 CSTE CBOK
1.2.6 Finding Defects
All testing focuses on discovering and eliminating defects or variances from what is expected.
Testers need to identify these two types of defects:

• Variance from Specifications – A defect from the perspective of the builder of the
product.

• Variance from what is Desired – A defect from a user (or customer) perspective.

Typical software system defects include:
• IT improperly interprets requirements

IT staff misinterprets what the user wants, but correctly implements what the IT
people believe is wanted.

• Users specify the wrong requirements
The specifications given to IT are erroneous.

• Requirements are incorrectly recorded
IT fails to record the specifications properly.

• Design specifications are incorrect
The application system design does not achieve the system requirements, but the
design as specified is implemented correctly.

• Program specifications are incorrect
The design specifications are incorrectly interpreted, making the program
specifications inaccurate; however, it is possible to properly code the program to
achieve the specifications.

• Errors in program coding
The program is not coded according to the program specifications.

• Data entry errors
Data entry staff incorrectly enters information into your computers.

• Testing errors
Tests either falsely detect an error or fail to detect one.

• Mistakes in error correction
Your implementation team makes errors in implementing your solutions.

• The corrected condition causes another defect

In the process of correcting a defect, the correction process itself injects additional defects into
the application system.
1-24 October 25, 2006

Software Testing Principles and Concepts
1.3 Reducing the Frequency of Defects in Software
Development

In the early days of computing, experience showed that some software development processes
were much more effective than other software development processes. As one of the major
purchasers of customized software, the Department of Defense (DOD) undertook a study to
identify the criteria that made software development more effective. This research was
conducted by Carnegie Mellon University’s Software Engineering Institute (SEI). The end
result was an algorithm that enabled the DOD to identify the more effective and efficient
software development. This algorithm is now known as the capability maturity model.

1.3.1 The Five Levels of Maturity
QAI follows SEI’s maturity model with minimal changes. Figure 1-10 illustrates SE’s five
levels of maturity in a quality management environment.

What the capability maturity model does is identify five different levels of maturity. As the
model moves from Level 1 to Level 5, the variability in the process is significantly reduced.
Thus, those at Level 5 have minimal variability in their software development process, while
Level 1 organizations have significant variability. The cost differences to produce a function
point of logic between a Level 1 and Level 5 organization may vary by 100 times. In other
words, what a Level 1 organization may spend on building software, for example $1,000, may
only cost $10 for a Level 5 organization.
October 25, 2006 1-25

Guide to the 2006 CSTE CBOK
Figure 1-10 The Five Levels of Process Maturity

1.3.1.1 Level 1 – Ad Hoc

Ad hoc means unstructured, inconsistent levels of performance. At the ad hoc level, tasks are
not performed the same way by different people or different groups. For example, one system
development group may use part of the system development methodology, but improvise
1-26 October 25, 2006

Software Testing Principles and Concepts
other parts; another group may select different parts of the same system development
methodology to use, and decide not to perform tasks done by a previous group.

At this level, management manages people and jobs. Management will establish goals or
objectives for individuals and teams, and manage to those objectives and goals with minimal
concern about the means used to achieve the goals. This level is normally heavily schedule
driven, and those that meet the schedules are rewarded. Since there are not standards against
which to measure deliverables, people’s performance is often dependent upon their ability to
convince management that the job they have done is excellent. This causes the environment to
be very political. Both management and staff become more concerned with their personal
agenda than with meeting their organization’s mission.

The emphasis needed to move from Level 1 to Level 2 is discipline and control. The emphasis
is on getting the work processes defined, training the people in the work processes,
implementing sufficient controls to assure compliance to the work processes, and producing
products that meet predefined standards.

1.3.1.2 Level 2 – Control

There are two major objectives to be achieved at Level 2. The first is to instill discipline in the
culture of the information organization so that through the infrastructure, training, and
leadership of management individuals will want to follow defined processes. The second
objective is to reduce variability in the processes by defining them to a level that permits
relatively constant outputs. At this level, processes are defined with minimal regard to skills
needed to perform the process AND with minimal regard to the impact on other processes. At
Level 2, the work processes are defined; management manages those processes, and uses
validation and verification techniques to check compliance to work procedures and product
standards. Having the results predefined through a set of standards enables management to
measure people’s performance against meeting those standards. Education and training are an
important component of Level 2, as is building an infrastructure that involves the entire staff
in building and improving work processes.

The emphasis that needs to be put into place to move to Level 3 is defining and building the
information group’s core competencies.

1.3.1.3 Level 3 – Core Competency

At this level, an information organization defines its core competencies and then builds an
organization that is capable of performing those core competencies effectively and efficiently.
The more common core competencies for an information services organization include system
development, maintenance, testing, training, outsourcing, and operation. The information
group must decide if it wants core competencies in fields such as communication, hardware
and software selection, contracting, and so forth. Once the core competencies are determined,
then the processes defined at Level 2 must be reengineered to drive the core competencies. In
addition, the tasks are analyzed to determine what skills are needed to perform those
processes. Next, a staff must be retrained, recruited, motivated, and supported to perform
October 25, 2006 1-27

Guide to the 2006 CSTE CBOK
those core competencies in an effective and efficient manner. It is the integration of people
and processes, coupled with managers with people management skills, which are needed to
maintain and improve those core competencies. Lots of mentoring occurs at this level, with
the more experienced people building skills in the less experienced. It is also a level that is
truly customer focused – both the information organization and the customer know the
information group’s core competencies.

The managerial emphasis that is needed to move to Level 4 is quantitative measurement.
Measurement is only a practical initiative when the processes are stabilized and focused on
achieving management’s desired results.

1.3.1.4 Level 4 – Predictable

This level has two objectives. The first is to develop quantitative standards for the work
processes based on performance of the Level 3 stabilized processes. The second objective is to
provide management the dashboards and skill sets needed to manage quantitatively. The result
is predictable work processes. Knowing the normal performance of a work process,
management can easily identify problems through variation from the quantitative standards to
address problems quickly to keep projects on schedule and budget. This level of predictability
is one that uses measurement to manage as opposed to using measurement to evaluate
individual performance. At this level, management can become coaches to help people
address their day-to-day challenges in performing work processes in a predictable manner.
Management recognizes that obstacles and problems are normal in professional activities, and
through early identification and resolution, professional work processes can be as predictable
as manufacturing work processes.

The management emphasis that is needed to move to Level 5 is one of desiring to be world-
class. World-class means doing the best that is possible, given today’s technology.

1.3.1.5 Level 5 – Innovative

At Level 5, the information organization wants to be a true leader in the industry. At this level,
the organization is looking to measure itself against the industry through benchmarking, and
then define innovative ways to achieve higher levels of performance. Innovative approaches
can be achieved through benchmarking other industries, applying new technology in an
innovative way, reengineering the way work is done, and by constantly studying the literature
and using experts to identify potential innovations. This level is one in which continuous
learning occurs, both in individuals and the organization.

1.3.2 Testers Need to Understand Process Maturity
Software testers face a much greater challenge testing software developed by maturity Level
1, than they do by testing software developed by higher maturity levels. Some have
categorized Level 1 organizations as “Test and Fix” organizations. At this level, testing and
1-28 October 25, 2006

Software Testing Principles and Concepts
rework will consume more than 50% of the total software development effort. As software
development processes mature, two things happen: more testing occurs during the building of
software and the amount of testing required is reduced.

1.4 Factors Affecting Software Testing
Software testing varies from organization to organization. Many factors affect testing. The
major factors are:

• People relationships
• Scope of testing
• Misunderstanding life cycle testing
• Poorly developed test plans
• Testing constraints

Each of these factors will be discussed individually to explain how the role of testing in an IT
organization is determined.

1.4.1 People Relationships
With the introduction of the CSTE certification, testing is finally being recognized as a
profession with a specialized skill set and qualifications. Organizations are finally becoming
convinced that testers truly can not test in quality at the end of the development process and
that the traditional waterfall methodology has led to many of the issues surrounding testing
today. We now understand that testing has typically not been well defined and leaving it as the
last activity in the development process was not the best approach.

The word “testing” conjures up a variety of meanings depending upon an individual’s frame
of reference. Some people view testing as a method or process by which they add value to the
development cycle; they can even enjoy the challenges and creativity of testing. Other people
feel that testing tries a person’s patience, fairness, ambition, credibility, and capability. Testing
can actually affect a person’s mental and emotional health if you consider the office politics
and interpersonal conflicts that are often times present.

Some attitudes that have shaped a negative view of testing and testers are:
• Testers hold up implementation.
• Giving testers less time to test will reduce the chance that they will find defects.
• Letting the testers find problems is an appropriate way to debug.
• Defects found in production are the fault of the testers.
• Testers do not need training; only programmers need training.
October 25, 2006 1-29

Guide to the 2006 CSTE CBOK
Although testing is a process, it is very much a dynamic one in that the process will change
somewhat with each application under test. There are several variables that affect the testing
process including: the development process itself, software risk, customer/user participation,
the testing process, a tester’s skill set, use of tools, testing budget and resource constraints,
management support, and morale and motivation of the testers. It is obvious that the people
side of software testing has long been ignored for the more process-related issues of test
planning, test tools, defect tracking, and so on.

According to the book, Surviving the Top Ten Challenges of Software Testing, A People-
Oriented Approach by William Perry and Randall Rice, the top ten people challenges have
been identified as:

• Training in testing
• Relationship building with developers
• Using tools
• Getting managers to understand testing
• Communicating with users about testing
• Making the necessary time for testing
• Testing “over the wall” software
• Trying to hit a moving target
• Fighting a lose-lose situation
• Having to say “no”

Testers should perform a self-assessment to identify their own strengths and weaknesses as
they relate to people-oriented skills. They should also learn how to improve the identified
weaknesses, and build a master plan of action for future improvement.

Essential testing skills include test planning, using test tools (automated and manual),
executing tests, managing defects, risk analysis, test measurement, designing a test
environment, and designing effective test cases. Additionally, a solid vocabulary of testing is
essential. A tester needs to understand what to test, who performs what type of test, when
testing should be performed, how to actually perform the test, and when to stop testing.

1.4.2 Scope of Testing
The scope of testing is the extensiveness of the test process. A narrow scope may be limited to
determining whether or not the software specifications were correctly implemented. The
scope broadens as more responsibilities are assigned to software testers.

Among the broader scope of software testing are these responsibilities:

1. Software testing can compensate for the fact that the software development process
does not identify the true needs of the user, and thus test to determine whether or not
the user’s needs have been met regardless of the specifications.
1-30 October 25, 2006

Software Testing Principles and Concepts
2. Finding defects early in the software development process when they can be corrected
at significantly less cost than detected later in the software development process.

3. Removing defects of all types prior to software going into a production state when it is
significantly cheaper than during operation.

4. Identifying weaknesses in the software development process so that those processes
can be improved and thus mature the software development process. Mature processes
produce software more effectively and efficiently.

In defining the scope of software testing each IT organization must answer the question,
“Why are we testing?”

1.4.3 Misunderstanding Life Cycle Testing
The traditional view of the development life cycle places testing prior to operation and
maintenance as illustrated in Table 1-5. All too often, testing after coding is the only method
used to determine the adequacy of the system. When testing is constrained to a single phase
and confined to the later stages of development, severe consequences can develop. It is not
unusual to hear of testing consuming 50 percent of the development budget. All errors are
costly, but the later in the life cycle that the error discovered is made, the more costly the error.
An error discovered in the latter parts of the life cycle must be paid for four different times.
The first cost is developing the program erroneously, which may include writing the wrong
specifications, coding the system wrong, and documenting the system improperly. Second, the
system must be tested to detect the error. Third, the wrong specifications and coding must be
removed and the proper specifications, coding, and documentation added. Fourth, the system
must be retested to determine that it is now correct.
October 25, 2006 1-31

Guide to the 2006 CSTE CBOK
Table 1-5: Life Cycle Testing Activities

If lower cost and higher quality systems are the information services goals, verification must
not be isolated to a single phase in the development process, but rather, incorporated into each
phase of development. One of the most prevalent and costly mistakes on systems development
projects today is to defer the activity of detecting and correcting problems until late in the
project. A major justification for an early verification activity is that many costly errors are
made before coding begins.

Studies have shown that the majority of system errors occur in the design phase. These
numerous studies show that approximately two-thirds of all detected system errors can be
attributed to errors made during the design phase. This means that almost two-thirds of the
errors must be specified and coded into programs before they can be detected. The
recommended testing process is presented in Table 1-5 as a life cycle chart showing the
verification activities for each phase. The success of conducting verification throughout the
development cycle depends upon the existence of clearly defined and stated products at each
development stage. The more formal and precise the statement of the development product,
the more amenable it is to the analysis required to support verification. Many of the new
system development methodologies encourage firm products even in the early development
stages.

The recommended test process involves testing in every phase of the life cycle. During the
requirements phase, the emphasis is upon validation to determine that the defined
requirements meet the needs of the organization. During the design and program phases, the
emphasis is on verification to ensure that the design and programs accomplish the defined
requirements. During the test and installation phases, the emphasis is on inspection to
determine that the implemented system meets the system specification. During the
maintenance phases, the system will be retested to determine that the changes work and that
the unchanged portion continues to work.

The following activities should be performed at each phase of the life cycle:

Life Cycle Phase Testing Activities
Requirements - Determine verification approach

- Determine adequacy of design
- Generate functional test data
- Determine consistency of design with requirements

Design - Determine adequacy of design
- Generate structural and functional test data
- Determine consistency with design

Program (build/construction) - Determine adequacy of implementation
- Generate structural and functional test data for
programs

Test - Test application system

Installation - Place tested system into production

Maintenance - Modify and retest
1-32 October 25, 2006

Software Testing Principles and Concepts
• Analyze the structures produced at this phase for internal testability and adequacy.
• Generate test sets based on the structure at this phase.

In addition, the following should be performed during design and programming:
• Determine that the structures are consistent with structures produced during previous

phases.
• Refine or redefine test sets generated earlier.

Throughout the entire life cycle, neither development nor verification is a straight-line
activity. Modifications or corrections to a structure at one phase will require modifications or
re-verification of structures produced during previous phases.

1.4.3.1 Requirements

The verification activities that accompany the problem definition and requirements analysis
phase of software development are extremely significant. The adequacy of the requirements
must be thoroughly analyzed and initial test cases generated with the expected (correct)
responses. Developing scenarios of expected system use helps to determine the test data and
anticipated results. These tests form the core of the final test set. Generating these tests and the
expected behavior of the system clarifies the requirements and helps guarantee that they are
testable. Vague requirements or requirements that are not testable leave the validity of the
delivered product in doubt. Late discovery of requirements inadequacy can be very costly. A
determination of the criticality of software quality attributes and the importance of validation
should be made at this stage. Both product requirements and validation requirements should
be established.

1.4.3.2 Design

Organization of the verification effort and test management activities should be closely
integrated with preliminary design. The general testing strategy – including test methods and
test evaluation criteria – is formulated, and a test plan is produced. If the project size or
criticality warrants, an independent test team is organized. In addition, a test schedule with
observable milestones is constructed. At this same time, the framework for quality assurance
and test documentation should be established.

During detailed design, validation support tools should be acquired or developed and the test
procedures themselves should be produced. Test data to exercise the functions introduced
during the design process, as well as test cases based upon the structure of the system, should
be generated. Thus, as the software development proceeds, a more effective set of test cases is
built.

In addition to test organization and the generation of test cases, the design itself should be
analyzed and examined for errors. Simulation can be used to verify properties of the system
structures and subsystem interaction; the developers should verify the flow and logical
structure of the system, while the test team should perform design inspections using design
walkthroughs. Missing cases, faulty logic, module interface mismatches, data structure
October 25, 2006 1-33

Guide to the 2006 CSTE CBOK
inconsistencies, erroneous I/O assumptions, and user interface inadequacies, are items of
concern. The detailed design must prove to be internally coherent, complete, and consistent
with the preliminary design and requirements.

1.4.3.3 Program (Build/Construction)

Actual testing occurs during the construction stage of development. Many testing tools and
techniques exist for this stage of system development. Code walkthrough and code inspection
are effective manual techniques. Static analysis techniques detect errors by analyzing program
characteristics such as data flow and language construct usage. For programs of significant
size, automated tools are required to perform this analysis. Dynamic analysis, performed as
the code actually executes, is used to determine test coverage through various instrumentation
techniques. Formal verification or proof techniques are used to provide further quality control.

1.4.3.4 Test Process

During the test process, careful control and management of test information is critical. Test
sets, test results, and test reports should be catalogued and stored in a database. For all but
very small systems, automated tools are required to do an adequate job – the bookkeeping
chores alone become too large to handle manually. A test driver, test data generation aids, test
coverage tools, test results management aids, and report generators are usually required.

1.4.3.5 Installation

The process of placing tested programs into production is an important phase normally
executed within a narrow time span. Testing during this phase must ensure that the correct
versions of the program are placed into production; that data if changed or added is correct;
and that all involved parties know their new duties and can perform them correctly.

1.4.3.6 Maintenance

A large portion of the life cycle costs of a software system are spent on maintenance. As the
system is used, it is modified either to correct errors or to augment the original system. After
each modification the system must be retested. Such retesting activity is termed regression
testing. The goal of regression testing is to minimize the cost of system revalidation. Usually
only those portions of the system impacted by the modifications are retested. However,
changes at any level may necessitate retesting, re-verifying and updating documentation at all
levels below it. For example, a design change requires design re-verification, unit retesting
and subsystem retesting. Test cases generated during system development are reused or used
after appropriate modifications. The quality of the test documentation generated during
system development and modified during maintenance will affect the cost of regression
testing. If test data cases have been catalogued and preserved, duplication of effort will be
minimized.
1-34 October 25, 2006

Software Testing Principles and Concepts
1.4.4 Poorly Developed Test Planning
It is widely agreed that variability in test planning is a major factor affecting software testing.
A plan should be developed that defines how testing should be performed (see Skill Category
4 for building a test plan). With a test plan, testing can be considered complete when the plan
has been accomplished. The test plan is a contract between the software stakeholders and the
testers.

A typical test plan is illustrated in Figure 1-11. This plan will need to be customized for any
specific software system. The applicable test objectives would be listed and ranked, and the
phases of development would be listed as the phases in which testing must occur.

Figure 1-11 Example of a High-Level Test Plan

The following four steps must be followed to develop a customized test plan:

1. Select and rank test objectives.
The customers or key users of the system in conjunction with the test team should define
and rank the test objectives. In most instances, a limited number of test objectives will be
defined. Statistically, if the major test objectives are defined and ranked, potential other
test objectives will normally be addressed in a manner consistent with achieving the major
test objectives. These should be listed in the matrix in sequence from the most significant
objective to the least significant.

2. Identify the system development phases.
The project development team should identify the phases of their development process.
This is normally obtained from the system development methodology. These phases
should be recorded in the test phase component of the matrix.

3. Identify the business risks associated with the system under development.
The risks are the reasons the test objectives might not be met. The developers, key users,
customers, and test personnel should brainstorm the risks associated with the software
system. Most organizations have a brainstorming technique and it is appropriate for
October 25, 2006 1-35

Guide to the 2006 CSTE CBOK
individuals to use the technique in which they have had training and prior use. Using this
technique, the risks should be identified and agreed upon by the group. The risks should
then be ranked into high, medium, and low. This is a relational severity indicator, meaning
that one-third of all risks should be indicated as high; one-third, medium; and one-third,
low.

4. Place risks in the matrix.
The risk team should determine the test phase in which the risk needs to be addressed by
the test team and the test objective to which the risk is associated. Take the example of a
payroll system. If there were a concern about compliance to federal and state payroll laws,
the risk would be the penalties associated with noncompliance. Assuming assuring
compliance to payroll laws was picked as one of the significant test objectives, the risk
would be most prevalent during the requirements phase. Thus, in the matrix at the
intersection between the compliance test objective and the requirements phase, the risk of
“penalties associated with noncompliance to federal and state payroll laws” should be
inserted. Note that a reference number, cross-referencing the risk, may do this. The risk
would then have associated with it an H, M, or L, for high, medium, or low risk.

The completed matrix is a pictorial representation of a test plan.

1.4.5 Testing Constraints
Anything that inhibited the tester’s ability to fulfill their responsibilities is a constraint.
Constraints include:

• Limited schedule and budget
• Lacking or poorly written requirements
• Changes in technology
• Limited tester skills

Each of these four constraints will be discussed individually.

1.4.5.1 Budget and Schedule Constraints

Budget and schedule constraints may limit the ability of a tester to complete their test plan.
Understanding why the lack of life cycle testing can cause budget and schedule problems can
help relieve the constraint.

The cost of defect identification and correction increases exponentially as the project
progresses. Figure 1-12 illustrates the accepted industry standard for estimating costs, and
shows how costs dramatically increase the later you find a defect. A defect encountered
during requirement and design is the cheapest to fix. So let’s say it costs x; based on this a
defect corrected during the system test phase costs 10x to fix. A defect corrected after the
system goes into production costs 100x. Clearly, identifying and correcting defects early is the
most cost-effective way to develop an error-free system.
1-36 October 25, 2006

Software Testing Principles and Concepts
Figure 1-12 Relative Cost versus the Project Phase

Testing should begin during the first phase of the life cycle and continue throughout the life
cycle. It’s important to recognize that life cycle testing is essential to reducing the cost of
testing.

Let’s look at the economics of testing. One information services manager described testing in
the following manner. “Too little testing is a crime – too much testing is a sin.” The risk of
under testing is directly translated into system defects present in the production environment.
The risk of over testing is the unnecessary use of valuable resources in testing computer
systems that have no flaws, or so few flaws that the cost of testing far exceeds the value of
detecting the system defects. When control is viewed as a risk situation, this can result in over-
and-under testing.

Most problems associated with testing occur from one of the following causes:
• Failing to define testing objectives
• Testing at the wrong phase in the life cycle
• Using ineffective test techniques

The cost-effectiveness of testing is illustrated in Figure 1-13. As the cost of testing increases,
the number of undetected defects decreases. The left side of the illustration represents an
under test situation in which the cost of testing is less than the resultant loss from undetected
defects.
October 25, 2006 1-37

Guide to the 2006 CSTE CBOK
Figure 1-13 Testing Cost Curve

At some point, the two lines cross and an over test condition begins. In this situation, the cost
of testing to uncover defects exceeds the losses from those defects. A cost-effective
perspective means testing until the optimum point is reached, which is the point where the
cost of testing no longer exceeds the value received from the defects uncovered.

Few organizations have established a basis to measure the effectiveness of testing. This makes
it difficult for the individual systems analyst/programmer to determine the cost effectiveness
of testing. Without testing standards, the effectiveness of the process cannot be evaluated in
sufficient detail to enable the process to be measured and improved.

The use of standardized testing methodology provides the opportunity for a cause and effect
relationship to be determined. In other words, the effect of a change in the methodology can
be evaluated to determine whether that effect resulted in a smaller or larger number of defects.
The establishment of this relationship is an essential step in improving the test process.

The cost-effectiveness of a testing process can only be determined when the effect of that
process can be measured. When the process can be measured, it can be adjusted to improve
the cost-effectiveness of the test process for the organization.

1.4.5.2 Lacking or Poorly Written Requirements

If requirements are lacking or poorly written, then the test team must have a defined method
for uncovering and defining test objectives.

A test objective is simply a testing “goal.” It is a statement of what the test team or tester is
expected to accomplish or validate during a specific testing activity. Test objectives, usually
1-38 October 25, 2006

Software Testing Principles and Concepts
defined by the test manager or test team leader during requirements analysis, guide the
development of test cases, test scripts, and test data.

Test objectives enable the test manager and project manager to gauge testing progress and
success, and enhance communication both within and outside the project team by defining the
scope of the testing effort.

Each test objective should contain a statement of the objective, and a high-level description of
the expected results stated in measurable terms. The users and project team must prioritize the
test objectives. Usually the highest priority is assigned to objectives that validate high priority
or high-risk requirements defined for the project. In cases where test time is cut short, test
cases supporting the highest priority objectives would be executed first.

Test objectives can be easily derived from using the system requirements documentation, the
test strategy, the outcome of the risk assessment, and the test team assignments. A few
techniques for uncovering and defining test objectives if the requirements are poorly written
include brainstorming and relating test objectives to the system inputs, events, or system
outputs. Ideally, there should be less than 100 test objectives for all but the very largest
systems. Test objectives are not simply a restatement of the system’s requirements, but the
actual way the system will be tested to assure that the system objective has been met.
Completion criteria define the success measure for the tests.

As a final step, the test team should perform quality control. This activity entails using a
checklist or worksheet to ensure that the process to set test objectives was followed, or
reviewing them with the system users.

1.4.5.3 Changes in Technology

Effective testing must be done by a team comprised of information services professionals and
users. In corporations where the users are not readily available, i.e., they are in a remote
location, a professional test group can represent the users. Also vendors of software may not
be able, or may not want to have users testing their systems during the developmental process.
Again, in these instances, a professional test group can represent the users. The test group is
known by different names, including IT testing, quality control, quality assurance, and
inspectors.

The following technological developments are causing organizations to revise their approach
to testing:

• Integration
Technology is being more closely integrated into day-to-day business resulting in
business being unable to operate without computer technology. For example, the
airlines can only take reservations when their computer systems are operational.

• System Chains
Computer systems are interconnected into cycles of chains such that problems in one
can cascade into and affect others.
October 25, 2006 1-39

Guide to the 2006 CSTE CBOK
• The Domino Effect
One problem condition, such as a wrong price or a program defect, can cause hundreds
or even thousands of similar errors within a few minutes.

• Reliance on Electronic Evidence
With hard-copy documents being removed from processing, the validity of the
transactions is dependent upon the adequacy of controls, and thus a control error may
result in extensive losses.

• Multiple Users
Systems no longer belong to single users, but rather to multiple users, making it
difficult to identify a single organizational unit responsible for a system.

The organizational approach to testing commences with a policy on testing computer systems.
The policy should be developed under the direction of the IT department, but should represent
the philosophy of the entire organization. Once the policy has been established, then the
procedures and the methods of testing can be developed based upon the desires of
management as expressed in the testing policy.

1.4.5.4 Limited Tester Skills

Testers should be competent in all ten of the CSTE Common Body of Knowledge skill
categories to be effective. Lack of the skills needed for a specific test assignment constrains
the ability of the testers to effectively complete that assignment.

1.5 Life Cycle Testing
Life cycle testing involves continuous testing of the solution even after software plans are
complete and the tested system is implemented. At several points during the development
process, the test team should test the system in order to identify defects at the earliest possible
point.

Life cycle testing cannot occur until you formally develop your process. IT must provide and
agree to a strict schedule for completing various phases of the process for proper life cycle
testing to occur. If IT does not determine the order in which they deliver completed pieces of
software, it’s impossible to schedule and conduct appropriate tests.

Life cycle testing is best accomplished by forming a test team. The team is composed of
project members responsible for testing the system. They must use structured methodologies
when testing; they should not use the same methodology for testing that they used for
developing the system. The effectiveness of the test team depends on developing the system
under one methodology and testing it under another. The life cycle testing concept is
illustrated in Figure 1-14.
1-40 October 25, 2006

Software Testing Principles and Concepts
It shows that when the project starts, both the development process and system test process
also begin. Thus, the testing and implementation teams begin their work at the same time and
with the same information. The development team defines and documents the requirements
for implementation purposes, and the test team uses those requirements for the purpose of
testing the system. At appropriate points during the development process the test team runs
the compliance process to uncover defects. The test team should use the structured testing
techniques outlined in this book as a basis of evaluating the corrections.

Figure 1-14 Life Cycle Testing
October 25, 2006 1-41

Guide to the 2006 CSTE CBOK
As you’re testing the implementation, prepare a series of tests that your IT department can run
periodically after your revised system goes live. Testing does not stop once you’ve completely
implemented your system; it must continue until you replace or update it again!

1.6 Test Matrices
The test matrix shows the interrelationship between functional events and tests. The
completed test matrix defines the conditions that must be tested during the test process to
verify the proper functioning of the application system. It does not represent the totality of
testing because there may be types of tests that verify the structure of the system, such as
verifying the correct use of program statements that are not included in the test matrix.

The left side of the matrix shows the functional events and the top identifies the tests that
occur on those events. Within the matrix cells are the process that needs to be tested. During
requirements, the process may be generalized and vague, but it must become more specific as
the life cycle progresses.

The example illustrated in Figure 1-15 is for the functional event of an employee getting a pay
increase. The tests have been selected because each test:

• Represents the actions that must be performed on this functional event in order for the
employee to get a raise

• Represents a task that is performed individually
• Can be associated with the individual responsible to perform that action
• Is broad enough to limit the actions to a reasonable number

Figure 1-15 Testing Matrix

Actions

Economic
Events

Initiate
Event

Increase
Approved

Data
Entry

Form
Storage

Data Entry
Validation

Logical
Validation

Update
Pay

Record

Audit
Trail Report

Give Pay
Increase

Supervisor
completes
Form X

Management
initials
Form X

Verify
amount

Store
Form X 90
days in
Personnel

1. Numeric
2. Under
$100

1.Employee
exists
2. Within pay
range
3. Within ±
15%

Change
pay rate
amount

Put
change
on
payroll
history
file

Confirmation
to supervisor

Event

Event
1-42 October 25, 2006

Software Testing Principles and Concepts
In the figure example there are nine identified conditions that must be tested to determine
whether or not employees’ pay increases are processed correctly by the application system.

Let’s examine the nine tests to illustrate the conditions that must be tested:
• Initiate Event Action

This action creates the functional event which will eventually give an employee a pay
raise. Within the matrix is the process that needs to be evaluated. The process is for the
supervisor to complete Form X. The information on the matrix must be condensed. If
we were working with the application we would know, for example, that Form X was
the organizational form for initiating a pay increase.

• Increase Approved Action
After the supervisor has completed the form it must be approved by management. The
test condition indicates that management will initial Form X. Our test process or test
condition would then be designed to verify that procedures are established so that this
will happen. Note that this and the previous action are manual actions.

• Data Entry Action
The information on Form X is entered into the computer through a key entry process.
The test condition is to verify that the keyed information is correct. Since this is in the
early life cycle stages, we may not know all of the detailed information that will be
keyed in or the verification process, but even in requirements we could substantiate
that the requirements include a process to verify the accurate entry of data into the
computer.

• Form Storage Action
Form X needs to be retained until it is no longer of value to the organization. The test
condition states that the form should be stored for 90 days in the personnel department.
Again, our test process would verify that this is reasonable and that the system process
provides for this condition.

• Data Entry Validation Action
The verification that the information entered into the computer is correct. The test
conditions outlined in the matrix state that the application system should validate that
the pay increase amount is numeric, and that the increase is less than $100.

• Logical Validation Action
The test suggests that additional validation determination will be made beyond the
data values. Three test conditions are outlined as: 1) a logical check that the employee
exists, 2) the pay increase will be within the pay range the employee is authorized, and
3) that the pay increase is within plus or minus 15 percent of the amount the employee
was earning prior to the increase.

• Updated Pay Record Action
The pay amount increase should be added to the employee’s pay rate so that the pay
record will properly reflect the new amount. The test condition is to ensure that the
changed pay rate amount in the storage area is performed correctly.
October 25, 2006 1-43

Guide to the 2006 CSTE CBOK
• Audit Trail Action
A record should be maintained on the increases provided the employee. The action
shows that the increase in payroll should be maintained on a history file.

• Report Action
The results of computer processing should be sent back to the supervisor as a
confirmation process. The test condition is to verify that the system provides for such a
confirmation.

This testing matrix would be typical of one prepared during the requirements phase. The
functional events, as well as the actions, will be used throughout the systems development life
cycle. However, the test conditions will become more specific as the life cycle progresses. For
example, there is an action indicating that data will be entered into the computer. During
requirements, how that will occur may not be known, so that the test condition must still be
generalized as Figure 1-15 Testing Matrix shows. However, as the system progresses through
the life cycle, the testing matrix becomes more specific. Eventually, the testing matrix will be
expanded to the point where test transactions can be prepared from the matrix information.

1.6.1 Cascading Test Matrices
The tests that occur on functional events vary based on the events themselves. If generic
actions are used, it may be possible to include several functional events in the same matrix.
However, it is generally better to limit a matrix to a single functional event.

Including only one functional event on a matrix provides the following two advantages:
• Tests can be customized for specific functional events
• Tests on the functional events can be the creation of new functional events which show

a relationship between the events.

One functional event leading to the creation of another and leading to another will cause
several matrices to be prepared. Properly prepared, they will demonstrate the cascading events
illustrating how one event can create another event which can create yet another event. An
example of a cascading matrix is illustrated in Figure 1-16. This matrix is from an order entry
billing system.
1-44 October 25, 2006

Software Testing Principles and Concepts
Figure 1-16 Cascading Test Matrices

The first functional event is the order for a product placed by a customer. The type of actions
that would occur on this is the initiation of the order, the acceptance of the order, the entry of
the order, and the credit approval action. That action creates a new functional event which is
the formal approval of customer credit. Figure 1-16 shows how the action in the first matrix
cascades or points to the second matrix.

The tests for the functional event of approving credit involves such tasks as determining that
the customer is an authorized customer, causing a decision about the customer’s credit. If
good action occurs, it creates a new functional event to ship a product. The figure shows how
the action to ship a product creates a new functional event and a new matrix. This process
would continue until the entire order entry billing application was complete.

In the creation of the test plan, IT people sometimes lose track of the interrelationship of
functional events. The creation of the cascading test matrix reinforces the interrelationship of
functional events and enables that aspect of systems to be better tested.

1.7 Independent Testing
The primary responsibility of individuals accountable for testing activities is to ensure that
quality is measured accurately. Often, just knowing that the organization is measuring quality
is enough to cause improvements in the applications being developed. In the loosest definition
of independence, just having a tester or someone in the organization devoted to test activities
is a form of independence.

The roles and reporting structure of test resources differs across and within organizations.
These resources may be business or systems analysts assigned to perform testing activities, or
October 25, 2006 1-45

Guide to the 2006 CSTE CBOK
may be testers who report to the project manager. Ideally, the test resources will have a
reporting structure independent from the group designing or developing the application in
order to assure that the quality of the application is given as much consideration as the project
budget and timeline.

Misconceptions abound regarding the skill set required to perform testing, including:
• Testing is easy
• Anyone can perform testing
• No training or prior experience is necessary

In truth, to test effectively, an individual must:
• Thoroughly understand the system
• Thoroughly understand the technology the system is being deployed upon (e.g., client/

server or Internet technologies introduce their own challenges)
• Possess creativity, insight, and business knowledge
• Understand the development methodology used and the resulting artifacts

While much of this discussion focuses on the roles and responsibilities of an independent test
team, it is important to note that the benefits of independent testing can be seen in the unit
testing stage. Often, successful development teams will have a peer perform the unit testing
on a program or class. Once a portion of the application is ready for integration testing, the
same benefits can be achieved by having an independent person plan and coordinate the
integration testing.

Where an independent test team exists, they are usually responsible for system testing, the
oversight of acceptance testing, and providing an unbiased assessment of the quality of an
application. The team may also support or participate in other phases of testing as well as
executing special test types such as performance and load testing.

An independent test team is usually comprised of a test manager or team leader and a team of
testers. The test manager should join the team no later than the start of the requirements
definition stage. Key testers may also join the team at this stage on large projects to assist with
test planning activities. Other testers can join later to assist with the creation of test cases and
scripts, and right before system testing is scheduled to begin.

The test manager ensures that testing is performed, that it is documented, and that testing
techniques are established and developed. They are responsible for ensuring that tests are
designed and executed in a timely and productive manner, as well as:

• Test planning and estimation
• Designing the test strategy
• Reviewing analysis and design artifacts
• Chairing the Test Readiness Review
• Managing the test effort
• Overseeing acceptance tests
1-46 October 25, 2006

Software Testing Principles and Concepts
Testers are usually responsible for:
• Developing test cases and procedures
• Test data planning, capture, and conditioning
• Reviewing analysis and design artifacts
• Testing execution
• Utilizing automated test tools for regression testing
• Preparing test documentation
• Defect tracking and reporting

Other testers joining the team will primarily focus on test execution, defect reporting, and
regression testing. These testers may be junior members of the test team, users, marketing or
product representatives, and so on.

The test team should be represented in all key requirements and design meetings including:
• JAD or requirements definition sessions
• Risk analysis sessions
• Prototype review sessions

They should also participate in all inspections or walkthroughs for requirements and design
artifacts.

1.8 Tester’s Workbench
The tester’s workbench is a pictorial representation of how a specific test task is performed.
Prior to understanding a tester’s workbench it is important to understand a work process.

1.8.1 What is a Process?
A process can be defined as a set of activities that represent the way work is performed. The
outcome from a process is usually a product or service. Both software development and
software testing are processes. Table 1-6 illustrates a few examples of processes and their
outcomes.
October 25, 2006 1-47

Guide to the 2006 CSTE CBOK
Table 1-6: Process Example and Outcomes

There are two ways to visually portray a process. One is the Plan Do Check Act (PDCA)
cycle. The other is a workbench. The PDCA cycle is a conceptual view of a process, while the
workbench is a more practical illustration of a process. Let’s look at both views of software
testing.

1.8.1.1 The PDCA View of a Process

Brief descriptions of the four components of the PDCA concept are provided below and are
illustrated in Figure 1-17.

Figure 1-17 PDCA Concept

1.8.1.1.1 P – Plan - Devise Your Plan

Define your objective and determine the conditions and methods required to achieve your
objective. Describe clearly the goals and policies needed to achieve the objective at this stage.
Express a specific objective numerically. Determine the procedures and conditions for the
means and methods you will use to achieve the objective.

Examples of IT Processes Outcomes
Analyze Business Needs Needs Statement

Conduct JAD Session JAD Notes

Run Job Executed Job

Develop Strategic Plan Strategic Plan

Recognize Individual Performance Recognized Individual

Unit Test Defect-free Unit
1-48 October 25, 2006

Software Testing Principles and Concepts
1.8.1.1.2 D – Do (or Execute) the Plan

Create the conditions and perform the necessary teaching and training to execute the plan.
Make sure everyone thoroughly understands the objectives and the plan. Teach workers the
procedures and skills they need to fulfill the plan and thoroughly understand the job. Then
perform the work according to these procedures.

1.8.1.1.3 C – Check the Results

Check to determine whether work is progressing according to the plan and whether the
expected results are obtained. Check for performance of the set procedures, changes in
conditions, or abnormalities that may appear. As often as possible, compare the results of the
work with the objectives.

1.8.1.1.4 A – Act - Take the Necessary Action

If your checkup reveals that the work is not being performed according to plan or that results
are not as anticipated, devise measures for appropriate action.

If a check detects an abnormality – that is, if the actual value differs from the target value –
search for the cause of the abnormality and eliminate the cause. This will prevent the
recurrence of the defect. Usually you will need to retrain workers and revise procedures to
eliminate the cause of a defect.

1.8.1.2 The Workbench View of a Process

A process can be viewed as one or more workbenches, as shown in Figure 1-18. Each
workbench is built on the following two components:

• Objective – States why the process exists, or its purpose.
Example: A JAD session is conducted to uncover the majority of customer requirements
early and efficiently, and to ensure that all involved parties interpret these requirements
consistently.
• People Skills – The roles, responsibilities, and associated skill sets needed to execute a

process. Major roles include suppliers, owners, and customers.

Each workbench has the following components:
• Inputs – The entrance criteria or deliverables needed to perform testing.
• Procedures – Describe how work must be done; how methods, tools, techniques, and

people are applied to perform a process. There are Do procedures and Check
procedures. Procedures indicate the “best way” to meet standards.

Example:
1. Scribe: Use the XYZ tool to enter the requirements. Generate a list of any open
issues using the XX template.
2. Leader: Walk through the requirements, paraphrasing each item. Address each
open issue when its REF column contains the item being covered.
October 25, 2006 1-49

Guide to the 2006 CSTE CBOK
Figure 1-18 Workbench Concept

• Deliverables – Any product or service produced by a process. Deliverables can be
interim or external (or major). Interim deliverables are produced within the
workbench, but never passed on to another workbench. External deliverables may be
used by one or more workbench, and have one or more customers. Deliverables serve
as both inputs to and outputs from a process.

Example: JAD Notes are interim and Requirements Specifications are external.
• Standards – Measures used to evaluate products and identify nonconformance. The

basis upon which adherence to policies is measured.
• Tools – Aids to performing the process.
Example: CASE tools, checklists, templates, etc.

1.8.1.3 Workbenches are Incorporated into a Process

To understand the testing process, it is necessary to understand the workbench concept. In IT,
workbenches are more frequently referred to as phases, steps, or tasks. The workbench is a
way of illustrating and documenting how a specific activity is to be performed. Defining
workbenches is normally the responsibility of a Process Management Committee, or also
known as a Standards Committee.

The workbench and the software testing process, which is comprised of many workbenches,
are illustrated in Figure 1-19.
1-50 October 25, 2006

Software Testing Principles and Concepts
Figure 1-19 Software Testing Process

The workbench concept can be used to illustrate one of the steps involved in testing software
systems. The tester’s unit test workbench consists of these steps:

1. Input products (unit test specifications) are given to the tester.

2. Work is performed (e.g., debugging); a procedure is followed; a product or interim deliv-
erable is produced, such as a defect list.

3. Work is checked to ensure the unit meets specs and standards, and that the procedure was
followed.

4. If check finds no problems, product is released to the next workbench (e.g., integration
testing).

5. If check finds problems, product is sent back for rework.

1.9 Levels of Testing
The sequence in which testing occurs is represented by different levels or types of testing.
This sequence of testing is:

• Verification Testing
Static testing of development interim deliverables

• Unit Testing
These tests verify that the system functions properly; for example, pressing a function
key to complete an action.

• Integration Testing
The system runs tasks that involve more than one application or database to verify that
it performed the tasks accurately.
October 25, 2006 1-51

Guide to the 2006 CSTE CBOK
• System Testing
These tests simulate operation of the entire system, and verify that it ran correctly.

• User Acceptance Testing
This real-world test means the most to your business; and, unfortunately, there’s no
way to conduct it in isolation. Once your organization staff, customers, or vendors
begin to interact with your system, they’ll verify that it functions properly for you.

The “V” Concept of Testing illustrates the sequence in which testing should occur.

1.9.1 Verification versus Validation
Verification ensures that the system (software, hardware, documentation, and personnel)
complies with an organization’s standards and processes, relying on review or non-executable
methods. Validation physically ensures that the system operates according to plan by
executing the system functions through a series of tests that can be observed and evaluated.
Verification answers the question, “Did we build the right system?” while validations
addresses, “Did we build the system right?”

Keep in mind that verification and validation techniques can be applied to every element of
the computerized system. You’ll find these techniques in publications dealing with the design
and implementation of user manuals and training courses, as well as in industry publications.

1.9.1.1 Computer System Verification and Validation Examples

Verification requires several types of reviews, including requirements reviews, design
reviews, code walkthroughs, code inspections, and test reviews. The system user should be
involved in these reviews to find defects before they are built into the system. In the case of
purchased systems, user input is needed to assure that the supplier makes the appropriate tests
to eliminate defects. Table 1-7 shows examples of verification. The list is not exhaustive, but
it does show who performs the task and what the deliverables are. For purchased systems, the
term “developers” applies to the supplier’s development staff.
1-52 October 25, 2006

Software Testing Principles and Concepts
Table 1-7: Computer System Verification Examples

Validation is accomplished simply by executing a real-life function (if you wanted to check to
see if your mechanic had fixed the starter on your car, you’d try to start the car). Examples of
validation are shown in Table 1-8. As in the table above, the list is not exhaustive.

Verification
Example Performed by Explanation Deliverable

Requirements
Reviews

Developers, Users The study and
discussion of the
computer system
requirements to
ensure they meet
stated user needs and
are feasible.

Reviewed statement
of requirements, ready
to be translated into
system design.

Design Reviews Developers The study and
discussion of the
computer system
design to ensure it will
support the system
requirements.

System design, ready
to be translated into
computer programs,
hardware
configurations,
documentation, and
training.

Code Walkthroughs Developers An informal analysis of
the program source
code to find defects
and verify coding
techniques.

Computer software
ready for testing or
more detailed
inspections by the
developer.

Code Inspections Developers A formal analysis of
the program source
code to find defects as
defined by meeting
computer system
design specifications.
Usually performed by
a team composed of
developers and
subject matter experts.

Computer software
ready for testing by
the developer.
October 25, 2006 1-53

Guide to the 2006 CSTE CBOK
Table 1-8: Computer System Validation Examples

Determining when to perform verification and validation relates to the development,
acquisition, and maintenance of software. For software testing, this relationship is especially
critical because:

• The corrections will probably be made using the same process for developing the
software. If the software was developed internally using a waterfall methodology, that
methodology will probably be followed in making the corrections; on the other hand,
if the software was purchased or contracted, the supplier will likely make the
correction. You’ll need to prepare tests for either eventuality.

• Testers can probably use the same test plans and test data prepared for testing the
original software. If testers prepared effective test plans and created extensive test

Validation
Example Performed by Explanation Deliverable

Unit Testing Developers The testing of a single
program, module, or
unit of code. Usually
performed by the
developer of the unit.
Validates that the
software performs as
designed.

Software unit ready for
testing with other
system components,
such as other software
units, hardware,
documentation, or
users.

Integrated Testing Developers
with support from an
independent test team

The testing of related
programs, modules, or
units of code.
Validates that multiple
parts of the system
interact according to
the system design.

Portions of the system
ready for testing with
other portions of the
system.

System Testing Independent Test
Team

The testing of an
entire computer
system. This kind of
testing can include
functional and
structural testing, such
as stress testing.
Validates the system
requirements.

A tested computer
system, based on
what was specified to
be developed or
purchased.

User Acceptance
Testing

Users with support
from an independent
test team

The testing of a
computer system or
parts of a computer
system to make sure it
will work in the system
regardless of what the
system requirements
indicate.

A tested computer
system, based on user
needs.
1-54 October 25, 2006

Software Testing Principles and Concepts
data, those plans and test data can probably be used in the testing effort, thereby
reducing the time and cost of testing.

1.9.1.2 Functional and Structural Testing

While testing your project team’s solution, your testers will perform functional or structural
tests with the verification and validation techniques just described. Functional testing is
sometimes called black-box testing because no knowledge of the internal logic of the system
is used to develop test cases. For example, if a certain function key should produce a specific
result when pressed, a functional test validates this expectation by pressing the function key
and observing the result. When conducting functional tests, you’ll use validation techniques
almost exclusively.

Conversely, structural testing is sometimes called white-box testing because knowledge of the
internal logic of the system is used to develop hypothetical test cases. Structural tests use
verification predominantly. If a software development team creates a block of code that will
allow a system to process information in a certain way, a test team would verify this
structurally by reading the code, and given the system’s structure, see if the code would work
reasonably. If they felt it could, they would plug the code into the system and run an
application to structurally validate the code. Each method has its pros and cons:

• Functional Testing Advantages
• Simulates actual system usage.
• Makes no system structure assumptions

• Functional Testing Disadvantages
• Potential of missing logical errors in software
• Possibility of redundant testing

• Structural Testing Advantages
• You can test the software’s structure logic
• You test code that you wouldn’t use if you performed only functional testing

• Structural Testing Disadvantages
• Does not ensure that you’ve met user requirements
• Its tests may not mimic real-world situations

1.9.1.2.1 Why Use Both Testing Methods?

Both methods together validate the entire system as shown in Table 1-9. For example, a
functional test case might be taken from the documentation description of how to perform a
certain function, such as accepting bar code input. A structural test case might be taken from a
technical documentation manual. To effectively test systems, you need to use both methods.
October 25, 2006 1-55

Guide to the 2006 CSTE CBOK
Table 1-9: Functional Testing

1.9.2 Static versus Dynamic Testing
Static testing is performed using the software documentation. The code is not executing
during static testing. Dynamic testing requires the code to be in an executable state to perform
the tests.

Most verification techniques are static tests.
• Feasibility Reviews – Tests for this structural element would verify the logic flow of a

unit of software.
• Requirements Reviews – These reviews verify software relationships; for example, in

any particular system, the structural limits of how much load (e.g., transactions or
number of concurrent users) a system can handle.

Most validation tests are dynamic tests. Examples of this are:
• Unit Testing

These tests verify that the system functions properly; for example, pressing a function
key to complete an action.

• Integrated Testing
The system runs tasks that involve more than one application or database to verify that
it performed the tasks accurately.

• System Testing
The tests simulate operation of the entire system and verify that it ran correctly.

• User Acceptance
This real-world test means the most to your business, and unfortunately, there’s no
way to conduct it in isolation. Once your organization’s staff, customers, or vendors
begin to interact with your system, they’ll verify that it functions properly for you.

Test Phase Performed by: Verification Validation
Feasibility Review Developers, Users X

Requirements Review Developers, Users X

Unit Testing Developers X

Integrated Testing Developers X

System Testing Developers with User
Assistance

X

1-56 October 25, 2006

Software Testing Principles and Concepts
1.9.3 The “V” Concept of Testing
Life cycle testing involves continuous testing of the system during the developmental process.
At predetermined points, the results of the development process are inspected to determine the
correctness of the implementation. These inspections identify defects at the earliest possible
point.

Life cycle testing cannot occur until a formalized Systems Development Life Cycle (SDLC)
has been incorporated. Life cycle testing is dependent upon the completion of predetermined
deliverables at specified points in the developmental life cycle. If information services
personnel have the discretion to determine the order in which deliverables are developed, the
life cycle test process becomes ineffective. This is due to variability in the process, which
normally increases cost.

The life cycle testing concept can best be accomplished by the formation of a test team. The
team is comprised of members of the project who may be both implementing and testing the
system. When members of the team are testing the system, they must use a formal testing
methodology to clearly distinguish the implementation mode from the test mode. They also
must follow a structured methodology when approaching testing the same as when
approaching system development. Without a specific structured test methodology, the test
team concept is ineffective because team members would follow the same methodology for
testing as they used for developing the system. Experience shows people are blind to their
own mistakes, so the effectiveness of the test team is dependent upon developing the system
under one methodology and testing it under another.

The life cycle testing concept is illustrated in Figure 1-20. This illustration shows that when
the project starts both the system development process and system test process begins. The
team that is developing the system begins the systems development process and the team that
is conducting the system test begins planning the system test process. Both teams start at the
same point using the same information. The systems development team has the responsibility
to define and document the requirements for developmental purposes. The test team will
likewise use those same requirements, but for the purpose of testing the system. At
appropriate points during the developmental process, the test team will test the developmental
process in an attempt to uncover defects. The test team should use the structured testing
techniques outlined in this book as a basis of evaluating the system development process
deliverables.
October 25, 2006 1-57

Guide to the 2006 CSTE CBOK
Figure 1-20 The “V” Concept of Software Testing

During the system test process, an appropriate set of test transactions should be developed to
be completed at the same time as the completion of the application system. When the
application meets the acceptance criteria, it can be integrated into the operating environment.
During this process, the systems development team and the systems test team work closely
together to ensure that the application is properly integrated into the production environment.
At that point, the teams again split to ensure the correctness of changes made during the
maintenance phase. The maintenance team will make whatever changes and enhancements
are necessary to the application system, and the test team will continue the test process to
ensure that those enhancements are properly implemented and integrated into the production
environment.

In the V-testing concept, your project’s Do and Check procedures slowly converge from start
to finish (see Figure 1-21 The 11-Step Software Testing Process Example), which indicates
that as the Do team attempts to implement a solution, the Check team concurrently develops a
process to minimize or eliminate the risk. If the two groups work closely together, the high
level of risk at a project’s inception will decrease to an acceptable level by the project’s
conclusion.
1-58 October 25, 2006

Software Testing Principles and Concepts
1.9.3.1 An 11-Step Software Testing Process Example

The software testing process, as illustrated in Figure 1-21, is an 11-step testing process that
follows the “V” concept of testing. The “V” represents both the software development process
and the 11-step software testing process. The first five steps use verification as the primary
means to evaluate the correctness of the interim development deliverables. Validation is used
to test the software in an executable mode. Results of both verification and validation should
be documented. Both verification and validation will be used to test the installation of the
software as well as changes to the software. The final step of the “V” process represents both
the development and test team evaluating the effectiveness of testing.

Note: The terms in this example vary slightly from the SDLC example to illustrate there are
no common definitions used by all IT organizations.
October 25, 2006 1-59

Guide to the 2006 CSTE CBOK
Figure 1-21 The 11-Step Software Testing Process Example

1.9.3.1.1 Step 1: Assess Development Plan and Status

This first step is a prerequisite to building the Verification, Validation, and Testing (VV&T)
Plan used to evaluate the implemented software solution. During this step, testers challenge
the completeness and correctness of the development plan. Based on the extensiveness and
completeness of the Project Plan the testers can estimate the amount of resources they will
need to test the implemented software solution.
1-60 October 25, 2006

Software Testing Principles and Concepts
1.9.3.1.2 Step 2: Develop the Test Plan

Forming the plan for testing will follow the same pattern as any software planning process.
The structure of all plans should be the same, but the content will vary based on the degree of
risk the testers perceive as associated with the software being developed.

1.9.3.1.3 Step 3: Test Software Requirements

Incomplete, inaccurate, or inconsistent requirements lead to most software failures. The
inability to get requirements right during the requirements gathering phase can also increase
the cost of implementation significantly. Testers, through verification, must determine that the
requirements are accurate, complete, and they do not conflict with one another.

1.9.3.1.4 Step 4: Test Software Design

This step tests both external and internal design primarily through verification techniques. The
testers are concerned that the design will achieve the objectives of the requirements, as well as
the design being effective and efficient on the designated hardware.

1.9.3.1.5 Step 5: Program (Build) Phase Testing

The method chosen to build the software from the internal design document will determine
the type and extensiveness of tests needed. As the construction becomes more automated, less
testing will be required during this phase. However, if software is constructed using the
waterfall process, it is subject to error and should be verified. Experience has shown that it is
significantly cheaper to identify defects during the construction phase, than through dynamic
testing during the test execution step.

1.9.3.1.6 Step 6: Execute and Record Results

This involves the testing of code in a dynamic state. The approach, methods, and tools
specified in the test plan will be used to validate that the executable code in fact meets the
stated software requirements, and the structural specifications of the design.

1.9.3.1.7 Step 7: Acceptance Test

Acceptance testing enables users to evaluate the applicability and usability of the software in
performing their day-to-day job functions. This tests what the user believes the software
should perform, as opposed to what the documented requirements state the software should
perform.

1.9.3.1.8 Step 8: Report Test Results

Test reporting is a continuous process. It may be both oral and written. It is important that
defects and concerns be reported to the appropriate parties as early as possible, so that
corrections can be made at the lowest possible cost.
October 25, 2006 1-61

Guide to the 2006 CSTE CBOK
1.9.3.1.9 Step 9: The Software Installation

Once the test team has confirmed that the software is ready for production use, the ability to
execute that software in a production environment should be tested. This tests the interface to
operating software, related software, and operating procedures.

1.9.3.1.10 Step 10: Test Software Changes

While this is shown as Step 10, in the context of performing maintenance after the software is
implemented, the concept is also applicable to changes throughout the implementation
process. Whenever requirements change, the test plan must change, and the impact of that
change on software systems must be tested and evaluated.

1.9.3.1.11 Step 11: Evaluate Test Effectiveness

Testing improvement can best be achieved by evaluating the effectiveness of testing at the end
of each software test assignment. While this assessment is primarily performed by the testers,
it should involve the developers, users of the software, and quality assurance professionals if
the function exists in the IT organization.

1.10Testing Techniques
Testing techniques are the means used by testers to accomplish their test objectives. This
section addresses the following techniques:

• Structural versus Functional Technique Categories
• Examples of Specific Testing Techniques

1.10.1 Structural versus Functional Technique Categories
The properties that the test set is to reflect are classified according to whether they are derived
from a description of the program’s function or from the program’s internal structure. Both
structural and functional analysis should be performed to ensure adequate testing. Structural
analysis-based test sets tend to uncover errors that occur during “coding” of the program,
while functional analysis-based test sets tend to uncover errors that occur in implementing
requirements or design specifications.

Functional testing ensures that the requirements are properly satisfied by the application
system. The functions are those tasks that the system is designed to accomplish. Functional
testing is not concerned with how processing occurs, but rather, with the results of processing.

Structural testing ensures sufficient testing of the implementation of a function. Although
used primarily during the coding phase, structural analysis should be used in all phases of the
life cycle where the software is represented formally in some algorithmic, design, or
1-62 October 25, 2006

Software Testing Principles and Concepts
requirements language. The intent of structural testing is to assess the implementation by
finding test data that will force sufficient coverage of the structures present in the
implemented application. Structural testing evaluates that all aspects of the structure have
been tested and that the structure is sound. Determining that all tasks through a structure are
tested is a difficult process and one requiring extensive test data. However, determining if the
structure functions properly is a test task that is more easily accomplished.

1.10.1.1 Structural System Testing Technique Categories

Structural system testing is designed to verify that the developed system and programs work.
The objective is to ensure that the product designed is structurally sound and will function
correctly. It attempts to determine that the technology has been used properly and that when
all the component parts are assembled they function as a cohesive unit. The structural system
testing techniques provide the facility for determining that the implemented configuration and
its interrelationship of parts functions so that they can perform the intended tasks. The
techniques are not designed to ensure that the application system is functionally correct, but
rather, that it is structurally sound. The structural system testing techniques are briefly
described in Table 1-10.

Table 1-10: Structural Testing Techniques

1.10.1.1.1 Stress Testing Techniques

Stress testing is designed to determine if the system can function when subject to large
volumes of work i.e., larger than would be normally expected. The areas that are stressed
include input transactions, internal tables, disk space, output, communications, computer

Technique Description Example
Stress Determine system performs

with expected volumes.
• Sufficient disk space allocated
• Communication lines adequate

Execution System achieves desired level
of proficiency.

• Transaction turnaround time adequate
• Software/hardware use optimized

Recovery System can be returned to an
operational status after a
failure.

• Induce failure
• Evaluate adequacy of backup data

Operations System can be executed in a
normal operational status.

• Determine systems can run using
document

• JCL adequate

Compliance (to
Process)

System is developed in
accordance with standards and
procedures.

• Standards followed
• Documentation complete

Security System is protected in
accordance with importance to
organization.

• Access denied
• Procedures in place
October 25, 2006 1-63

Guide to the 2006 CSTE CBOK
capacity, and interaction with people. If the application functions adequately under test, it can
be assumed that it will function properly with normal volumes of work.

Objectives

The objective of stress testing is to simulate a production environment for the purpose of
determining that:

• Normal or above-normal volumes of transactions can be processed through the
transaction within the expected time frame.

• The application system is structurally able to process large volumes of data.
• System capacity, including communication lines, has sufficient resources available to

meet expected turnaround times.
• People can perform their assigned tasks and maintain the desired turnaround time.

How to Use Stress Testing

Stress testing should simulate as closely as possible the production environment. Online
systems should be stress tested by having people enter transactions at a normal or above
normal pace. Batch systems can be stress tested with large input batches. Error conditions
should be included in tested transactions. Transactions for use in stress testing can be obtained
from one of the following three sources:

• Test data generators
• Test transactions created by the test group
• Transactions previously processed in the production environment

In stress testing, the system should be run as it would in the production environment.
Operators should use standard documentation, and the people entering transactions or
working with the system should be the clerical personnel that will work with the system after
it goes into production. Online systems should be tested for an extended period of time, and
batch systems tested using more than one batch of transactions.

Stress Test Example

Stress tests can be designed to test all or parts of an application system. For example, stress
testing might:

• Enter transactions to determine that sufficient disk space has been allocated to the
application.

• Ensure that the communication capacity is sufficient to handle the volume of work by
attempting to overload the network with transactions.

• Test system overflow conditions by entering more transactions than can be
accommodated by tables, queues, and internal storage facilities, etc.

When to Use Stress Testing

Stress testing should be used when there is uncertainty regarding the amount of work the
application system can handle without failing. Stress testing attempts to break the system by
1-64 October 25, 2006

Software Testing Principles and Concepts
overloading it with a large volume of transactions. Stress testing is most common with online
applications because it is difficult to simulate heavy volume transactions using the other
testing techniques. The disadvantage of stress testing is the amount of time it takes to prepare
for the test, plus the amount of resources consumed during the actual execution of the test.
These costs need to be weighed against the risk of not identifying volume-related failures until
the application is placed into an operational mode.

1.10.1.1.2 Execution Testing Technique

Execution testing determines whether the system achieves the desired level of proficiency in a
production status. Execution testing can verify response times, turnaround times, as well as
design performance. The execution of a system can be tested in whole or in part, using the
actual system or a simulated model of a system.

Objectives

Execution testing is used to determine whether the system can meet the specific performance
criteria. The objectives of execution testing include:

• Determine the performance of the system structure.
• Verify the optimum use of hardware and software.
• Determine the response time to online user requests.
• Determine transaction processing turnaround time.

How to Use Execution Testing

Execution testing can be conducted in any phase of the system development life cycle. The
testing can evaluate a single aspect of the system, for example, a critical routine in the system,
or the ability of the proposed structure to satisfy performance criteria. Execution testing can
be performed in any of the following manners:

• Using hardware and software monitors
• Simulating the functioning of all or part of the system using a simulation model
• Creating a quick and dirty program(s) to evaluate the approximate performance of a

completed system

Execution testing may be executed on-site or off-site for the performance of the test. For
example, execution testing can be performed on hardware and software before being acquired,
or may be done after the application system has been completed. The earlier the technique is
used, the higher the assurance that the completed application will meet the performance
criteria.

Execution Test Examples

Examples of the use of execution testing include:
• Calculating turnaround time on transactions processed through the application
• Determining that the hardware and software selected provide the optimum processing

capability
October 25, 2006 1-65

Guide to the 2006 CSTE CBOK
• Using software monitors to determine that the program code is effectively used

When to Use Execution Testing

Execution testing should be used early in the developmental process. While there is value in
knowing that the completed application does not meet performance criteria, if that assessment
is not known until the system is operational, it may be too late or too costly to make the
necessary modifications. Therefore, execution testing should be used at that point in time
when the results can be used to affect or change the system structure.

1.10.1.1.3 Recovery Testing Technique

Recovery is the ability to restart operations after the integrity of the application has been lost.
The process normally involves reverting to a point where the integrity of the system is known,
and then reprocessing transactions up until the point of failure. The time required to recover
operations is affected by the number of restart points, the volume of applications run on the
computer center, the training and skill of the people conducting the recovery operation, and
the tools available for recovery. The importance of recovery will vary from application to
application.

Objectives

Recovery testing is used to ensure that operations can be continued after a disaster. Recovery
testing not only verifies the recovery process, but also the effectiveness of the component
parts of that process. Specific objectives of recovery testing include:

• Preserve adequate backup data
• Store backup data in a secure location
• Document recovery procedures
• Assign and train recovery personnel
• Develop recovery tools and make available

How to Use Recovery Testing

Recovery testing can be conducted in two modes. First, the procedures, methods, tools, and
techniques can be assessed to evaluate whether they appear adequate; and second, after the
system has been developed, a failure can be introduced into the system and the ability to
recover tested. Both types of recovery testing are important. The implementation of the
technique is different depending upon which type of recovery testing is being performed.

Evaluating the procedures and documentation is a process using primarily judgment and
checklists. On the other hand, the actual recovery test may involve off-site facilities and
alternate processing locations. Testing the procedures is normally done by skilled systems
analysts, professional testers, or management personnel. On the other hand, testing the actual
recovery procedures should be performed by computer operators and other clerical personnel,
who would be involved had there been an actual disaster instead of a test disaster.
1-66 October 25, 2006

Software Testing Principles and Concepts
A simulated disaster is usually performed on one aspect of the application system. For
example, the test may be designed to determine whether people using the system can continue
processing and recover computer operations after computer operations cease. While several
aspects of recovery need to be tested, it is better to test one segment at a time rather than
induce multiple failures at a single time. When multiple failures are induced, and problems are
encountered, it may be more difficult to pinpoint the cause of the problem than when only a
single failure is induced.

It is preferable not to advise system participants when a disaster test will be conducted. For
example, a failure might be intentionally introduced during a normal system test to observe
reaction and evaluate the recovery test procedures. When people are prepared, they may
perform the recovery test in a manner different from the performance when it occurs at an
unexpected time. Even if the participants know that recovery may be part of the test, it is not
recommended to let them know specifically when it will occur, or what type of recovery will
be necessary.

Recovery Test Example

Recovery testing can involve the manual functions of an application, loss of input capability,
loss of communication lines, hardware or operating system failure, loss of database integrity,
operator error, or application system failure. It is desirable to test all aspects of recovery
processing. One example of recovery testing would entail inducing a failure into one of the
application system programs during processing. This could be accomplished by inserting a
special instruction to look for a transaction code that upon identification would cause an
abnormal program termination.

The recovery could be conducted from a known point of integrity to ensure that the available
backup data was adequate for the recovery process. When the recovery had been completed,
the files at the point where the exercise was requested could be compared to the files recreated
during the recovery process.

When to Use Recovery Testing

Recovery testing should be performed whenever the user of the application states that the
continuity of operation of the application is essential to the proper functioning of the user area.
The user should estimate the potential loss associated with inability to recover operations over
various time spans; for example, the inability to recover within five minutes, one hour, eight
hours, and a week. The amount of the potential loss should both determine the amount of
resource to be put into disaster planning as well as recovery testing.

1.10.1.1.4 Operations Testing Technique

After testing, the application will be integrated into the operating environment. At this point in
time, the application will be executed using the normal operation staff, operations procedures,
and documentation. Operations’ testing is designed to verify prior to production that the
operating procedures and staff can properly execute the application.
October 25, 2006 1-67

Guide to the 2006 CSTE CBOK
Objectives

Operations’ testing is primarily designed to determine whether the system is executable
during normal systems operations. The specific objectives include:

• Determine the completeness of computer operator documentation
• Ensure that the necessary support mechanisms, such as job control language, are

prepared and function properly
• Evaluate the completeness of operator training
• Test to ensure that operators using prepared documentation can, in fact, operate the

system

How to Use Operations Testing

Operations’ testing evaluates both the process and the execution of the process. During the
requirements phase, operational requirements can be evaluated to determine the
reasonableness and completeness of those requirements. During the design phase, the
operating procedures should be designed and thus can be evaluated. This continual definition
of the operating procedures should be subjected to continual testing.

The execution of operations testing can normally be performed in conjunction with other tests.
However, if operations’ testing is included, the operators should not be prompted or helped by
outside parties during the test process. The test needs to be executed as if it was part of normal
computer operations in order to adequately evaluate the effectiveness of computer operators in
running the application in a true-to-life operations environment.

Operations Testing Example

Operations’ testing is a specialized technical test of executing the application system and
includes:

• Determining that the operator instructions have been prepared and documented in
accordance with other operations instructions, and that computer operators have been
trained in any unusual procedures

• Testing that the job control language statements and other operating systems support
features perform the predetermined tasks

• Verifying that the file labeling and protection procedures function properly

When to Use Operations Testing

Operations’ testing should occur prior to placing any application into a production status. If
the application is to be tested in a production-type setting, operations testing can piggyback
that process at a very minimal cost. It is as important to identify an operations flaw as it is an
application flaw prior to placing the application into production.

1.10.1.1.5 Compliance Testing Technique

Compliance testing verifies that the application was developed in accordance with
information technology standards, procedures, and guidelines. The methodologies are used to
1-68 October 25, 2006

Software Testing Principles and Concepts
increase the probability of success, to enable the transfer of people in and out of the project
with minimal cost, and to increase the maintainability of the application system. The type of
testing conducted varies on the phase of the systems development life cycle. However, it may
be more important to compliance test adherence to the process during requirements than at
later stages in the life cycle because it is difficult to correct applications when requirements
are not adequately documented.

Objectives

Compliance testing is performed to both ensure compliance to the methodology and to
encourage and help the information technology professional comply with the methodology.
Specific compliance objectives include:

• Determine that systems development and maintenance methodologies are followed
• Ensure compliance to departmental standards, procedures, and guidelines
• Evaluate the completeness and reasonableness of application system documentation

How to Use Compliance Testing

Compliance testing requires that the prepared document or program is compared to the
standards for that particular program or document. A colleague would be the most appropriate
person to do this comparison. The most effective method of compliance testing is the
inspection process.

Compliance Testing Examples

A peer group of programmers would be assembled to test line-by-line that a computer
program is compliant with programming standards. At the end of the peer review, the
programmer would be given a list of noncompliant information that would need to be
corrected.

When to Use Compliance Testing

Compliance to information technology application system development standards and
procedures is dependent upon management’s desire to have the procedures followed and the
standards enforced. Therefore, if management really wants compliance they should perform
sufficient tests to determine both the degree of compliance with the methodology and to
identify violators for management action. However, lack of compliance should also be used
from the perspective that the standards may be misunderstood, not adequately instructed or
publicized, or may, in fact, be poor standards inhibiting the development of application
systems. In these instances, it may be desirable to change the methodology.

1.10.1.1.6 Security Testing Technique

Security is a protection system that is needed for both secure confidential information and for
competitive purposes to assure third parties their data will be protected. The amount of
security provided will be dependent upon the risks associated with compromise or loss of
information. Protecting the confidentiality of the information is designed to protect the
resources of the organization. However, information such as customer lists or improper
October 25, 2006 1-69

Guide to the 2006 CSTE CBOK
disclosure of customer information may result in a loss of customer business to competitors.
Security testing is designed to evaluate the adequacy of the protective procedures and
countermeasures.

Objectives

Security defects do not become as obvious as other types of defects. Therefore, the objectives
of security testing are to identify defects that are very difficult to identify. Even failures in the
security system operation may not be detected, resulting in a loss or compromise of
information without the knowledge of that loss. The security testing objectives include:

• Determine that adequate attention is devoted to identifying security risks
• Determine that a realistic definition and enforcement of access to the system is

implemented
• Determine that sufficient expertise exists to perform adequate security testing
• Conduct reasonable tests to ensure that the implemented security measures function

properly

How to Use Security Testing Techniques

Security testing is a highly specialized part of the test process. Most organizations can
evaluate the reasonableness of security procedures to prevent the average perpetrator from
penetrating the application. However, the highly skilled perpetrator using sophisticated
techniques may use methods undetectable by novices designing security measures and/or
testing those measures.

The first step in testing is the identification of the security risks and the potential loss
associated with those risks. If either the loss is low or the penetration method mere routine, the
information technology personnel can conduct the necessary tests. On the other hand, if either
the risks are very high or the technology that might be used is sophisticated, specialized help
should be acquired in conducting the security tests.

Security Test Example

Security testing involves a wide spectrum of conditions. Testing can first be divided into
physical and logical security. Physical deals with the penetration by people in order to
physically gather information, while logical security deals with the use of computer
processing and/or communication capabilities to improperly access information. Second,
access control can be divided by type of perpetrator, such as employee, consultant, cleaning or
service personnel, as well as categories of employees. The type of test conducted will vary
upon the condition being tested and can include:

• Determination that the resources being protected are identified, and access is defined
for each resource. Program or individual can define access.

• Evaluation as to whether the designed security procedures have been properly
implemented and function in accordance with the specifications.

• Unauthorized access can be attempted in online systems to ensure that the system can
identify and prevent access by unauthorized sources.
1-70 October 25, 2006

Software Testing Principles and Concepts
When to Use Security Testing

Security testing should be used when the information and/or assets protected by the
application system are of significant value to the organization. The testing should be
performed both prior to the system going into an operational status and after the system is
placed into an operational status. The extent of testing should depend on the security risks,
and the individual assigned to conduct the test should be selected based on the estimated
sophistication that might be used to penetrate security.

1.10.1.2 Functional System Testing Technique Categories

Functional system testing ensures that the system requirements and specifications are
achieved. The process normally involves creating test conditions for use in evaluating the
correctness of the application. The types of techniques useful in performing functional testing
techniques are briefly described in Table 1-11.

Table 1-11: Functional Testing Techniques

1.10.1.2.1 Requirements Testing Techniques

Requirements testing must verify that the system can perform its function correctly and that
the correctness can be sustained over a continuous period of time. Unless the system can
function correctly over an extended period of time, management will not be able to rely upon
the system. The system can be tested for correctness throughout the life cycle, but it is
difficult to test the reliability until the program becomes operational.

Technique Description Example
Requirements System performs as specified. Prove system requirements.

Compliance to policies, regulations.

Regression Verifies that anything
unchanged still performs
correctly.

Unchanged system segments
function.
Unchanged manual procedures
correct.

Error Handling Errors can be prevented or
detected, and then corrected.

Error introduced into test.
Errors re-entered.

Manual Support The people-computer
interaction works.

Manual procedures developed.
People trained.

Intersystem Data is correctly passed from
system to system.

Intersystem parameters changed.
Intersystem documentation updated.

Control Controls reduce system risk to
an acceptable level.

File reconciliation procedures work.
Manual controls in place.

Parallel Old system and new system
are run and the results
compared to detect unplanned
differences.

Old and new systems can reconcile.
Operational status of old system
maintained.
October 25, 2006 1-71

Guide to the 2006 CSTE CBOK
Objectives

Successfully implementing user requirements is only one aspect of requirements testing. The
responsible user is normally only one of many groups having an interest in the application
system. The objectives that need to be addressed in requirements testing are:

• Implement user requirements
• Maintain correctness over extended processing periods
• Ensure that application processing complies with the organization’s policies and

procedures

Secondary user needs have been included, such as:
• Security officer
• Database administrator
• Internal auditors
• Records retention
• Comptroller
• System processes accounting information in accordance with generally accepted

accounting procedures.
• Application systems process information in accordance with governmental

regulations.

How to Use Requirements Testing

Requirements’ testing is primarily performed through the creation of test conditions and
functional checklists. Test conditions are generalized during requirements, and become more
specific as the SDLC progresses, leading to the creation of test data for use in evaluating the
implemented application system.

Functional testing is more effective when the test conditions are created directly from user
requirements. When test conditions are created from the system documentation, defects in that
documentation will not be detected through testing. When the test conditions are created from
other than the system documentation, defects introduced into the documentation will be
detected.

Requirements Test Example

Typical requirement test examples include:
• Creating a test matrix to prove that the systems requirements as documented are the

requirements desired by the user
• Using a checklist prepared specifically for the application to verify the application’s

compliance to organizational policies and governmental regulations
• Determining that the system meets the requirements established by the organization’s

department of internal auditors
1-72 October 25, 2006

Software Testing Principles and Concepts
When to Use Requirements Testing

Every application should be requirements tested. The process should begin in the
requirements phase, and continue through every phase of the life cycle into operations and
maintenance. It is not a question as to whether requirements must be tested but, rather, the
extent and methods used in requirements testing.

1.10.1.2.2 Regression Testing Technique

One of the attributes that has plagued information technology professionals for years is the
snowballing or cascading effect of making changes to an application system. One segment of
the system is developed and thoroughly tested. Then a change is made to another part of the
system, which has a disastrous effect on the thoroughly tested portion. Either the incorrectly
implemented change causes a problem, or the change introduces new data or parameters that
cause problems in a previously tested segment. Regression testing retests previously tested
segments to ensure that they still function properly after a change has been made to another
part of the application.

Objectives

Regression testing involves assurance that all aspects of an application system remain
functional after testing. The introduction of change is the cause of problems in previously
tested segments. The objectives of regression testing include:

• Determine whether systems documentation remains current
• Determine that system test data and test conditions remain current
• Determine that previously tested system functions perform properly after changes are

introduced into the application system

How to Use Regression Testing

Regression testing is retesting unchanged segments of the application system. It normally
involves rerunning tests that have been previously executed to ensure that the same results can
be achieved currently as were achieved when the segment was last tested. While the process is
simple in that the test transactions have been prepared and the results known, unless the
process is automated it can be a very time-consuming and tedious operation. It is also one in
which the cost/benefit needs to be carefully evaluated or large amounts of effort can be
expended with minimal payback.

Regression Test Example

Examples of regression testing include:
• Rerunning of previously conducted tests to ensure that the unchanged system

segments function properly
• Reviewing previously prepared manual procedures to ensure that they remain correct

after changes have been made to the application system
• Obtaining a printout from the data dictionary to ensure that the documentation for data

elements that have been changed is correct
October 25, 2006 1-73

Guide to the 2006 CSTE CBOK
When to Use Regression Testing

Regression testing should be used when there is a high risk that new changes may affect
unchanged areas of the application system. In the developmental process, regression testing
should occur after a predetermined number of changes are incorporated into the application
system. In maintenance, regression testing should be conducted if the potential loss that could
occur due to affecting an unchanged portion is very high. The determination as to whether to
conduct regression testing should be based upon the significance of the loss that could occur
due to improperly tested applications.

1.10.1.2.3 Error-Handling Testing Technique

One characteristic that differentiates automated from manual systems is the predetermined
error-handling features. Manual systems can deal with problems as they occur, but automated
systems must preprogram error-handling. In many instances the completeness of error-
handling affects the usability of the application. Error-handling testing determines the ability
of the application system to properly process incorrect transactions.

Objectives

Errors encompass all unexpected conditions. In some systems, approximately 50 percent of
the programming effort will be devoted to handling error conditions. Specific objectives of
error-handling testing include:

• Determine that all reasonably expected error conditions are recognizable by the
application system

• Determine that the accountability for processing errors has been assigned and that the
procedures provide a high probability that the error will be properly corrected

• Determine that reasonable control is maintained over errors during the correction
process

How to Use Error-Handling Testing

Error-handling testing requires a group of knowledgeable people to anticipate what can go
wrong with the application system. Most other forms of testing involve verifying that the
application system conforms to requirements. Error-handling testing uses exactly the opposite
concept.

A successful method for developing test error conditions is to assemble, for a half-day or a
day, people knowledgeable in information technology, the user area, and auditing or error-
tracking. These individuals are asked to brainstorm what might go wrong with the application.
The totality of their thinking must then be organized by application function so that a logical
set of test transactions can be created. Without this type of synergistic interaction on errors, it
is difficult to develop a realistic body of problems prior to production.

Error-handling testing should test the introduction of the error, the processing of the error, the
control condition, and the reentry of the condition properly corrected. This requires error-
handling testing to be an iterative process in which errors are first introduced into the system,
1-74 October 25, 2006

Software Testing Principles and Concepts
then corrected, then reentered into another iteration of the system to satisfy the complete
error-handling cycle.

Error-Handling Test Examples

Error-handling requires you to think negatively, and conduct such tests as:
• Produce a representative set of transactions containing errors and enter them into the

system to determine whether the application can identify the problems.
• Through iterative testing, enter errors that will result in corrections, and then reenter

those transactions with errors that were not included in the original set of test
transactions.

• Enter improper master data, such as prices or employee pay rates, to determine if
errors that will occur repetitively are subjected to greater scrutiny than those causing
single error results.

When to Use Error-Handling Testing

Error testing should occur throughout the system development life cycle. At all points in the
developmental process the impact from errors should be identified and appropriate action
taken to reduce those errors to an acceptable level. Error-handling testing assists in the error
management process of systems development and maintenance. Some organizations use
auditors, quality assurance, or professional testing personnel to evaluate error processing.

1.10.1.2.4 Manual Support Testing Techniques

Systems commence when transactions originate and conclude with the use of the results of
processing. The manual part of the system requires the same attention to testing, as does the
automated segment. Although the timing and testing methods may be different, the objectives
of manual testing remain the same as testing the automated segment of the application system.

Objectives

Manual support involves all the functions performed by people in preparing data for, and
using data from, automated applications. The objectives of testing the manual support systems
are:

• Verify that the manual support procedures are documented and complete
• Determine that manual support responsibility has been assigned.
• Determine that the manual support people are adequately trained
• Determine that the manual support and the automated segment are properly interfaced

How to Use Manual Support Testing

Manual testing involves the evaluation of the adequacy of the process first, and then, second,
the execution of the process. The process itself can be evaluated in all segments of the systems
development life cycle. The execution of the process can be done in conjunction with normal
systems testing. Rather than prepare and enter test transactions, the system can be tested
October 25, 2006 1-75

Guide to the 2006 CSTE CBOK
having the actual clerical and supervisory people prepare, enter, and use the results of
processing from the application system.

Manual testing normally involves several iterations of the process. To test people processing
requires testing the interface between people and the application system. This means entering
transactions, and then getting the results back from that processing, making additional actions
based on the information received, until all aspects of the manual computer interface have
been adequately tested.

The manual support testing should occur without the assistance of the systems personnel. The
manual support group should operate using the training and procedures provided them by the
systems personnel. However, the systems personnel should evaluate the results to determine if
the tests have been adequately performed.

Manual Support Test Example

The process of conducting manual support testing can include the following types of tests:
• Provide input personnel with the type of information they would normally receive

from their customers and then have them transcribe that information and enter it into
the computer.

• Output reports are prepared from the computer based on typical conditions, and the
users are then asked to take the necessary action based on the information contained in
computer reports.

• Users can be provided a series of test conditions and then asked to respond to those
conditions. Conducted in this manner, manual support testing is like an examination in
which the users are asked to obtain the answer from the procedures and manuals
available to them.

When to Use Manual Support Testing

Verification that the manual systems function properly should be conducted throughout the
systems development life cycle. This aspect of system testing should not be left to the latter
stages of the life cycle to test. However, extensive manual support testing is best done during
the installation phase so that the clerical people do not become involved with the new system
until immediately prior to its entry into operation. This avoids the confusion of knowing two
systems and not being certain which rules to follow. During the maintenance and operation
phases, manual support testing may only involve providing people with instructions on the
changes and then verifying with them through questioning that they properly understand the
new procedures.

1.10.1.2.5 Intersystem Testing Technique

Application systems are frequently interconnected to other application systems. The
interconnection may be data coming into the system from another application, leaving for
another application, or both. Frequently multiple applications – sometimes called cycles or
functions – are involved. For example, there is a revenue function or cycle that interconnects
all of the income-producing applications such as order entry, billing, receivables, shipping,
1-76 October 25, 2006

Software Testing Principles and Concepts
and returned goods. Intersystem testing is designed to ensure that the interconnection between
applications functions correctly.

Objectives

Many problems exist in intersystem testing. One is that it is difficult to find a single individual
having jurisdiction over all of the systems below the level of senior management. In addition,
the process is time-consuming and costly. The objectives of intersystem testing include:

• Determine that proper parameters and data are correctly passed between applications
• Ensure that proper coordination and timing of functions exists between the application

systems
• Determine that documentation for the involved systems is accurate and complete

How to Use Intersystem Testing

Intersystem testing involves the operation of multiple systems in the test. Thus, the cost may
be expensive, especially if the systems have to be run through several iterations. The process
is not difficult; in that files or data used by multiple systems are passed from one another to
verify that they are acceptable and can be processed properly. However, the problem can be
magnified during maintenance when two or more of the systems are undergoing internal
changes concurrently.

One of the best testing tools for intersystem testing is the integrated test facility. This permits
testing to occur during a production environment and thus the coupling of systems can be
tested at minimal cost. The integrated test facility is described in Skill Category 2, Building
the Test Environment.

Intersystem Test Example

Procedures used to conduct intersystem testing include:
• Developing a representative set of test transactions in one application for passage to

another application for processing verification.
• Entering test transactions in a live production environment using the integrated test

facility so that the test conditions can be passed from application to application to
application, to verify that the processing is correct.

• Manually verifying that the documentation in the affected systems is updated based
upon the new or changed parameters in the system being tested.

When to Use Intersystem Testing

Intersystem testing should be conducted whenever there is a change in parameters between
application systems. The extent and type of testing will depend on the risk associated with
those parameters being erroneous. If the integrated test facility concept is used, the
intersystem parameters can be verified after the changed or new application is placed into
production.
October 25, 2006 1-77

Guide to the 2006 CSTE CBOK
1.10.1.2.6 Control Testing Technique

Approximately one-half of the total system development effort is directly attributable to
controls. Controls include data validation, file integrity, audit trail, backup and recovery,
documentation, and the other aspects of systems related to integrity. Control testing
techniques are designed to ensure that the mechanisms that oversee the proper functioning of
an application system work.

Objectives

Control is a management tool to ensure that processing is performed in accordance with the
intents of management. The objectives of control include:

• Data is accurate and complete
• Transactions are authorized
• An adequate audit trail of information is maintained.
• The process is efficient, effective, and economical
• The process meets the needs of the user

How to Use Control Testing

Control can be considered a system within a system. The term “system of internal controls” is
frequently used in accounting literature to describe the totality of the mechanisms that ensure
the integrity of processing. Controls are designed to reduce risks; therefore, in order to test
controls the risks must be identified. The individual designing the test then creates the risk
situations in order to determine whether the controls are effective in reducing them to a
predetermined acceptable level of risk.

One method that can be used in testing controls is to develop a risk matrix. The matrix
identifies the risks, the controls, and the segment within the application system in which the
controls reside. The risk matrix is described in Skill Category 4, Risk Analysis.

Control Testing Example

Control-oriented people frequently do control testing. Like error-handling, it requires a
negative look at the application system to ensure that those “what-can-go-wrong” conditions
are adequately protected. Error-handling is a subset of controls oriented toward the detection
and correction of erroneous information. Control in the broader sense looks at the totality of
the system.

Examples of testing that might be performed to verify controls include:
• Determine that there is adequate assurance that the detailed records in a file equal the

control total. This is normally done by running a special program that accumulates the
detail and reconciles it to the total.

• Determine that the manual controls used to ensure that computer processing is correct
are in place and working.
1-78 October 25, 2006

Software Testing Principles and Concepts
On a test basis, select transactions and verify that the processing for those transactions can be
reconstructed.

When to Use Control Testing

Control testing should be an integral part of system testing. Controls must be viewed as a
system within a system, and tested in parallel with other system tests. Knowing that
approximately 50 percent of the total development effort goes into controls, a proportionate
part of testing should be allocated to evaluating the adequacy of controls.

1.10.1.2.7 Parallel Testing Techniques

In the early days of computer systems, parallel testing was one of the more popular testing
techniques. However, as systems become more integrated and complex, the difficulty in
conducting parallel tests increases and thus the popularity of the technique diminishes.
Parallel testing is used to determine that the results of the new application are consistent with
the processing of the previous application or version of the application.

Objectives

The objectives of conducting parallel testing are:
• Conduct redundant processing to ensure that the new version or application performs

correctly
• Demonstrate consistency and inconsistency between two versions of the same

application system

How to Use Parallel Testing

Parallel testing requires that the same input data be run through two versions of the same
application. Parallel testing can be done with the entire application or with a segment of the
application. Sometimes a particular segment, such as the day-to-day interest calculation on a
savings account, is so complex and important that an effective method of testing is to run the
new logic in parallel with the old logic.

If the new application changes data formats, then the input data will have to be modified
before it can be run through the new application. This also makes it difficult to automatically
check the results of processing through a tape or disk file compare. The more difficulty
encountered in verifying results or preparing common input, the less attractive the parallel
testing technique becomes.

Parallel Test Example

Examples of the use of parallel testing include:
• Operate a new and old version of a payroll system to determine that the paychecks

from both systems are reconcilable.
• Run the old version of the application system to ensure that the operational status of

the old system has been maintained in the event that problems are encountered in the
new application.
October 25, 2006 1-79

Guide to the 2006 CSTE CBOK
When to Use Parallel Testing

Parallel testing should be used when there is uncertainty regarding the correctness of
processing of the new application, and the old and new versions of the application are similar.
In applications like payroll, banking, and other heavily financial applications where the results
of processing are similar, even though the methods may change significantly – for example,
going from batch to online banking – parallel testing is one of the more effective methods of
ensuring the integrity of the new application.

1.10.2 Examples of Specific Testing Techniques
There are numerous specific testing techniques. Some can be performed using test tools. A
discussion of the more commonly used specific techniques follow:

1.10.2.1 White-Box Testing

White-box testing assumes that the path of logic in a unit or program is known. White-box
testing consists of testing paths, branch by branch, to produce predictable results. The
following are white-box testing techniques:

• Statement Coverage
Execute all statements at least once.

• Decision Coverage
Execute each decision direction at least once.

• Condition Coverage
Execute each decision with all possible outcomes at least once.

• Decision/Condition Coverage
Execute all possible combinations of condition outcomes in each decision. Treat all
iterations as two-way conditions exercising the loop zero times and one time.

• Multiple Condition Coverage
Invoke each point of entry at least once.

Choose the combinations of techniques appropriate for the application. You can
have an unmanageable number of test cases, if you conduct too many
combinations of these techniques.
1-80 October 25, 2006

Software Testing Principles and Concepts
1.10.2.2 Black-Box Testing

Black-box testing focuses on testing the function of the program or application against its
specification. Specifically, this technique determines whether combinations of inputs and
operations produce expected results.

When creating black-box test cases, the input data used is critical. Three successful techniques
for managing the amount of input data required include:

• Equivalence Partitioning
An equivalence class is a subset of data that is representative of a larger class. Equivalence
partitioning is a technique for testing equivalence classes rather than undertaking
exhaustive testing of each value of the larger class. For example, a program which edits
credit limits within a given range ($10,000 - $15,000) would have three equivalence
classes:

• < $10,000 (invalid)
• Between $10,000 and $15,000 (valid)
• > $15,000 (invalid)

• Boundary Analysis
A technique that consists of developing test cases and data that focus on the input and
output boundaries of a given function. In same credit limit example, boundary analysis
would test:

• Low boundary +/- one ($9,999 and $10,001)
• On the boundary ($10,000 and $15,000)
• Upper boundary +/- one ($14,999 and $15,001)

• Error Guessing
Test cases can be developed based upon the intuition and experience of the tester. For
example, in an example where one of the inputs is the date, a tester may try February 29,
2000.

1.10.2.3 Incremental Testing

Incremental testing is a disciplined method of testing the interfaces between unit-tested
programs as well as between system components. It involves adding unit-tested programs to a
given module or component one by one, and testing each resultant combination. There are two
types of incremental testing:

• Top-down
Begin testing from the top of the module hierarchy and work down to the bottom using
interim stubs to simulate lower interfacing modules or programs. Modules are added in
descending hierarchical order.
• Bottom-up
Begin testing from the bottom of the hierarchy and work up to the top. Modules are added
in ascending hierarchical order. Bottom-up testing requires the development of driver
October 25, 2006 1-81

Guide to the 2006 CSTE CBOK
modules, which provide the test input, that call the module or program being tested, and
display test output.

There are pros and cons associated with each of these methods, although bottom-up testing is
often thought to be easier to use. Drivers are often easier to create than stubs, and can serve
multiple purposes.

1.10.2.4 Thread Testing

This test technique, which is often used during early integration testing, demonstrates key
functional capabilities by testing a string of units that accomplish a specific function in the
application. Thread testing and incremental testing are usually utilized together. For example,
units can undergo incremental testing until enough units are integrated and a single business
function can be performed, threading through the integrated components.

When testing client/server applications, these techniques are extremely critical. An example
of an effective strategy for a simple two-tier client/server application could include:

1. Unit and bottom-up incremental testing of the application server components

2. Unit and incremental testing of the GUI (graphical user interface) or client components

3. Testing of the network

4. Thread testing of a valid business transaction through the integrated client, server, and net-
work

Table 1-12 illustrates how the various techniques can be used throughout the standard test
stages.

Table 1-12: Testing Techniques and Standard Test Stages

It is important to note that when evaluating the paybacks received from various
test techniques, white-box or program-based testing produces a higher defect
yield than the other dynamic techniques when planned and executed correctly.

Technique
Stages White-Box Black-Box Incremental Thread
Unit Testing X

String/Integration
Testing

X X X X

System Testing X X X

Acceptance Testing X
1-82 October 25, 2006

Software Testing Principles and Concepts
1.10.2.5 Requirements Tracing

One key component of a life cycle test approach is verifying at each step of the process the
inputs to a stage are correctly translated and represented in the resulting artifacts.
Requirements, or stakeholder needs, are one of these key inputs that must be traced
throughout the rest of the software development life cycle.

The primary goal of software testing is to prove that the user or stakeholder requirements are
actually delivered in the final product developed. This can be accomplished by tracing these
requirements, both functional and non-functional, into analysis and design models, class and
sequence diagrams, test plans and code to ensure they’re delivered. This level of traceability
also enables project teams to track the status of each requirement throughout the development
and test process.

1.10.2.5.1 Example

If a project team is developing an object-oriented Internet application, the requirements or
stakeholder needs will be traced to use cases, activity diagrams, class diagrams and test cases
or scenarios in the analysis stage of the project. Reviews for these deliverables will include a
check of the traceability to ensure that all requirements are accounted for.

In the design stage of the project, the tracing will continue to design and test models. Again,
reviews for these deliverables will include a check for traceability to ensure that nothing has
been lost in the translation of analysis deliverables. Requirements mapping to system
components drives the test partitioning strategies. Test strategies evolve along with system
mapping. Test cases to be developed need to know where each part of a business rule is
mapped in the application architecture. For example, a business rule regarding a customer
phone number may be implemented on the client side as a GUI field edit for high performance
order entry. In another it may be implemented as a stored procedure on the data server so the
rule can be enforced across applications.

When the system is implemented, test cases or scenarios will be executed to prove that the
requirements were implemented in the application. Tools can be used throughout the project
to help manage requirements and track the implementation status of each one.

1.10.2.6 Desk Checking and Peer Review

Desk checking is the most traditional means for analyzing a program. It is the foundation for
the more disciplined techniques of walkthroughs, inspections, and reviews. In order to
improve the effectiveness of desk checking, it is important that the programmer thoroughly
review the problem definition and requirements, the design specification, the algorithms and
the code listings. In most instances, desk checking is used more as a debugging technique than
a testing technique. Since seeing one's own errors is difficult, it is better if another person does
the desk checking. For example, two programmers can trade listings and read each other's
code. This approach still lacks the group dynamics present in formal walkthroughs,
inspections, and reviews.
October 25, 2006 1-83

Guide to the 2006 CSTE CBOK
Another method, not directly involving testing, which tends to increase overall quality of
software production, is peer review. There is a variety of implementations of peer review, but
all are based on a review of each programmer's code. A panel can be set up which reviews
sample code on a regular basis for efficiency, style, adherence to standard, etc., and which
provides feedback to the individual programmer. Another possibility is to maintain a notebook
of required "fixes" and revisions to the software and indicate the original programmer or
designer. In a "chief programmer team" environment, the librarian can collect data on
programmer runs, error reports, etc., and act as a review board or pass the information on to a
peer review panel.

1.10.2.7 Walkthroughs, Inspections, and Reviews

Walkthroughs and inspections are formal manual techniques that are a natural evolution of
desk checking. While both techniques share a common philosophy and similar organization,
they are quite distinct in execution. Furthermore, while they both evolved from the simple
desk check discipline of the single programmer, they are very disciplined procedures aimed at
removing the major responsibility for verification from the developer.

Both procedures require a team, usually directed by a moderator. The team includes the
developer, but the remaining members and the moderator should not be directly involved in
the development effort. Both techniques are based on a reading of the product (e.g.,
requirements, specifications, or code) in a formal meeting environment with specific rules for
evaluation. The difference between inspection and walkthrough lies in the conduct of the
meeting. Both methods require preparation and study by the team members, and scheduling
and coordination by the team moderator.

Inspection involves a step-by-step reading of the product, with each step checked against a
predetermined list of criteria. These criteria include checks for historically common errors.
Guidance for developing the test criteria can be found elsewhere. The developer is usually
required to narrate the reading product. The developer finds many errors just by the simple act
of reading aloud. Others, of course, are determined because of the discussion with team
members and by applying the test criteria.

Walkthroughs differ from inspections in that the programmer does not narrate a reading of the
product by the team, but provides test data and leads the team through a manual simulation of
the system. The test data is walked through the system, with intermediate results kept on a
blackboard or paper. The test data should be kept simple given the constraints of human
simulation. The purpose of the walkthrough is to encourage discussion, not just to complete
the system simulation on the test data. Most errors are discovered through questioning the
developer's decisions at various stages, rather than through the application of the test data.

At the problem definition stage, walkthrough and inspection can be used to determine if the
requirements satisfy the testability and adequacy measures as applicable to this stage in the
development. If formal requirements are developed, formal methods, such as correctness
techniques, may be applied to ensure adherence with the quality factors.
1-84 October 25, 2006

Software Testing Principles and Concepts
Walkthroughs and inspections should again be performed at the preliminary and detailed
design stages. Design walkthroughs and inspection will be performed for each module and
module interface. Adequacy and testability of the module interfaces are very important. Any
changes that result from these analyses will cause at least a partial repetition of the
verification at both stages and between the stages. A reexamination of the problem definition
and requirements may also be required.

Finally, the walkthrough and inspection procedures should be performed on the code
produced during the construction stage. Each module should be analyzed separately and as
integrated parts of the finished software.

Design reviews and audits are commonly performed as stages in software development as
follows:

• System Requirements Review
This review is an examination of the initial progress during the problem definition
stage and of the convergence on a complete system configuration. Test planning and
test documentation are begun at this review.

• System Design Review
This review occurs when the system definition has reached a point where major
system modules can be identified and completely specified along with the
corresponding test requirements. The requirements for each major subsystem are
examined along with the preliminary test plans. Tools required for verification support
are identified at this stage.

• Preliminary Design Review
This review is a formal technical review of the basic design approach for each major
subsystem or module. The revised requirements and preliminary design specifications
for each major subsystem and all test plans, procedures and documentation are
reviewed at this stage. Development and verification tools are further identified at this
stage. Changes in requirements will lead to an examination of the test requirements to
maintain consistency.

• Final Design Review
This review occurs just prior to the beginning of the construction stage. The complete
and detailed design specifications for each module and all draft test plans and
documentation are examined. Again, consistency with previous stages is reviewed,
with particular attention given to determining if test plans and documentation reflect
changes in the design specifications at all levels.

• Final Review
This review determines through testing that the final coded subsystem conforms to the
final system specifications and requirements. It is essentially the subsystem
acceptance test.

Three rules should be followed for all reviews:
October 25, 2006 1-85

Guide to the 2006 CSTE CBOK
1. The product is reviewed, not the producer.

2. Defects and issues are identified, not corrected.

3. All members of the reviewing team are responsible for the results of the review.

Reviews are conducted to utilize the variety of perspectives and talents brought together in a
team. The main goal is to identify defects within the stage or phase of the project where they
originate, rather than in later test stages; this is referred to as “stage containment.” As reviews
are generally greater than 65 percent efficient in finding defects, and testing is often less than
30 percent efficient, the advantage is obvious. In addition, since defects identified in the
review process are found earlier in the life cycle, they are less expensive to correct.

Another advantage of holding reviews is not readily measurable. That is, reviews are an
efficient method of educating a large number of people on a specific product/project in a
relatively short period of time. Semiformal reviews are especially good for this, and indeed,
are often held for just that purpose. In addition to learning about a specific product/project,
team members are exposed to a variety of approaches to technical issues, a cross-pollination
effect. Finally, reviews provide training in and enforce the use of standards, as
nonconformance to standards is considered a defect and reported as such.

1.10.2.8 Proof of Correctness Techniques

Proof techniques as methods of validation have been used since von Neumann's time (the
mathematician, promoter of the stored program concept and developer of the von Neumann
Architecture in the 1940’s). These techniques usually consist of validating the consistency of
an output "assertion" (specification) with respect to a program (requirements or design
specification) and an input assertion (specification). In the case of software programs, the
assertions are statements about the software program's variables. The software program is
"proved" if, whenever the input assertion is true for particular values of variables, and the
program executes, then it can be shown that the output assertion is true for the program's
variables that have changed. The issue of abnormal termination is normally treated separately.

There are two approaches to proof of correctness: formal proof and informal proof. A formal
proof consists of developing a mathematical logic consisting of axioms and inference rules
and defining a proof either to be a proof tree in the natural deduction style or to be a finite
sequence of axioms and inference rules in the Hilbert-Ackermann style. The statement to be
proved is at the root of the proof tree or is the last object in the proof sequence. Since the
formal proof logic must also "talk about" the domain of the program and the operators that
occur in the program, a second mathematical logic must be employed. This second
mathematical logic is usually not decidable.

Most recent research in applying proof techniques to verification has concentrated on
programs. The techniques apply, however, equally well to any level of the development life
cycle where a formal representation or description exists.

Informal proof techniques follow the logical reasoning behind the formal proof techniques but
without the formal logical system. Often the less formal techniques are more palatable to the
1-86 October 25, 2006

Software Testing Principles and Concepts
programmers. The complexity of informal proof ranges from simple checks such as array
bounds not being exceeded, to complex logic chains showing noninterference of processes
accessing common data. Programmers always use informal proof techniques implicitly. To
make them explicit is similar to imposing disciplines, such as structured walkthroughs, on the
programmer.

1.10.2.9 Simulation

Simulation is used in real-time systems development where the "real-world" interface is
critical and integration with the system hardware is central to the total design. In many non-
real-time applications, simulation is a cost effective verification and test-data generation
technique.

To use simulation as a verification tool several models must be developed. Verification is
performed by determining if the model of the software behaves as expected on models of the
computational and external environments using simulation. This technique also is a powerful
way of deriving test data. Inputs are applied to the simulated model and the results recorded
for later application to the actual code. This provides an "oracle" for testing. The models are
often "seeded" with errors to derive test data, which distinguish these errors. The data sets
derived cause errors to be isolated and located as well as detected during the testing phase of
the construction and integration stages.

To develop a model of the software for a particular stage in the development life cycle a
formal representation compatible with the simulation system is developed. This may consist
of the formal requirement specification, the design specification, or separate model of the
program behavior. If a different model is used, then the developer will need to demonstrate
and verify that the model is a complete, consistent, and accurate representation of the software
at the stage of development being verified.

The next steps are to develop a model of the computational environment in which the system
will operate, a model of the hardware on which the system will be implemented, and a model
of the external demands on the total system. These models can be largely derived from the
requirements, with statistical representations developed for the external demand and the
environmental interactions. The software behavior is then simulated with these models to
determine if it is satisfactory.

Simulating the system at the early development stages is the only means of determining the
system behavior in response to the eventual implementation environment. At the construction
stage, since the code is sometimes developed on a host machine quite different from the target
machine, the code may be run on a simulation of the target machine under interpretive control.

Simulation also plays a useful role in determining the performance of algorithms. While this is
often directed at analyzing competing algorithms for cost, resource, or performance trade-
offs, the simulation under real loads does provide error information.
October 25, 2006 1-87

Guide to the 2006 CSTE CBOK
1.10.2.10 Boundary Value Analysis

The problem of deriving test data sets is to partition the program domain in some meaningful
way so that input data sets, which span the partition, can be determined. There is no direct,
easily stated procedure for forming this partition. It depends on the requirements, the program
domain, and the creativity and problem understanding of the programmer. This partitioning,
however, should be performed throughout the development life cycle.

At the requirements stage a coarse partitioning is obtained according to the overall functional
requirements. At the design stage, additional functions are introduced which define the
separate modules allowing for a refinement of the partition. Finally, at the coding stage,
submodules implementing the design modules introduce further refinements. The use of a top
down testing methodology allows each of these refinements to be used to construct functional
test cases at the appropriate level.

Once the program domain is partitioned into input classes, functional analysis can be used to
derive test data sets. Test data should be chosen which lie both inside each input class and at
the boundary of each class. Output classes should also be covered by input that causes output
at each class boundary and within each class. These data are the extremal and non-extremal
test sets. Determination of these test sets is often called boundary value analysis or stress
testing.

1.10.2.11 Error Guessing and Special Value Analysis

Some people have a natural intuition for test data generation. While this ability cannot be
completely described nor formalized, certain test data seem highly probable to catch errors.
Zero input values and input values that cause zero outputs are examples of where a tester may
guess an error could occur. Guessing carries no guarantee for success, but neither does it carry
any penalty.

1.10.2.12 Cause-Effect Graphing

Cause-effect graphing is a technique for developing test cases for programs from the high-
level specifications. A high-level specification of requirements states desired characteristics
of behavior for the system. These characteristics can be used to derive test data. Problems
arise, however, of a combinatorial nature. For example, a program that has specified responses
to eight characteristic stimuli (called causes) given some input has potentially 256 "types" of
input (i.e., those with characteristics 1 and 3, those with characteristics 5, 7, and 8, etc.). A
naive approach to test case generation would be to try to generate all 256 types. A more
methodical approach is to use the program specifications to analyze the program's effect on
the various types of inputs.

The program's output domain can be partitioned into various classes called effects. For
example, inputs with characteristic 2 might be subsumed by those with characteristics 3 and 4.
Hence, it would not be necessary to test inputs with just characteristic 2 and also inputs with
1-88 October 25, 2006

Software Testing Principles and Concepts
characteristics 3 and 4, for they cause the same effect. This analysis results in a partitioning of
the causes according to their corresponding effects.

A limited entry decision table is then constructed from the directed graph reflecting these
dependencies (i.e., causes 2 and 3 result in effect 4, causes 2, 3 and 5 result in effect 6, etc.).
The decision table is then reduced and test cases chosen to exercise each column of the table.
Since many aspects of the cause-effect graphing can be automated, it is an attractive tool for
aiding in the generation of functional test cases.

1.10.2.13 Design-Based Functional Testing

The techniques described above derive test data sets from analysis of functions specified in
the requirements. Functional analysis can be extended to functions used in the design process.
A distinction can be made between requirements functions and design functions.
Requirements functions describe the overall functional capabilities of a program. In order to
implement a requirements function it is usually necessary to invent other "smaller functions."
These other functions are used to design the program. If one thinks of this relationship as a
tree structure, then a requirements function would be represented as a root node. All
functional capabilities represented by boxes at the second level in the tree correspond to
design functions. The implementation of a design function may require the invention of other
design functions.

To utilize design-based functional testing, the functional design trees as described above are
constructed. The trees document the functions used in the design of the program. The
functions included in the design trees must be chosen carefully. The most important selection
feature is that the function be accessible for independent testing. It must be possible to apply
the appropriate input values to test the function, to derive the expected values for the function,
and to observe the actual output computed by the code implementing the function.

Each of the functions in the functional design tree, if top down design techniques are
followed, can be associated with the final code used to implement that function. This code
may consist of one or more procedures, parts of a procedure, or even a single statement.
Design-based functional testing requires that the input and output variables for each design
function be completely specified.

1.10.2.14 Coverage-Based Testing

Most coverage metrics are based on the number of statements, branches, or paths in the
program, which are exercised by the test data. Such metrics can be used both to evaluate the
test data and to aid in the generation of the test data.

Any program can be represented by a graph. The nodes represent statements or collections of
sequential statements. Directed lines or edges that connect the nodes represent the control
flow. A node with a single exiting edge to another node represents a sequential code segment.
A node with multiple exiting edges represents a branch predicate or a code segment
containing a branch predicate as the last statement.
October 25, 2006 1-89

Guide to the 2006 CSTE CBOK
On a particular set of data, a program will execute along a particular path, where certain
branches are taken or not taken depending on the evaluation of branch predicates. Any
program path can be represented by a sequence, possibly with repeating subsequences (when
the program has backward branches), of edges from the program graph. These sequences are
called path expressions. Each path or each data set may vary depending on the number of loop
iterations caused. A program with variable loop control may have effectively an infinite
number of paths. Hence, there are potentially an infinite number of path expressions.

To completely test the program structure, the test data chosen should cause the execution of all
paths. Since this is not possible in general, metrics have been developed which give a measure
of the quality of test data based on the proximity to this ideal coverage. Path coverage
determination is further complicated by the existence of infeasible paths. Often a program has
been inadvertently designed so that no data will cause the execution of certain paths.
Automatic determination of infeasible paths is generally difficult if not impossible. A main
theme in structured top-down design is to construct modules that are simple and of low
complexity so that all paths, excluding loop iteration, may be tested and that infeasible paths
may be avoided.

All techniques for determining coverage metrics are based on graph representations of
programs. Varieties of metrics exist ranging from simple statement coverage to full path
coverage. There have been several attempts to classify these metrics; however, new variations
appear so often that such attempts are not always successful. We will discuss the major ideas
without attempting to cover all the variations.

The simplest metric measures the percentage of statements executed by all the test data. Since
coverage tools supply information about which statements have been executed (in addition to
the percentage of coverage), the results can guide the selection of test data to ensure complete
coverage. To apply the metric, the program or module is instrumented by hand or by a
preprocessor. A post processor or manual analysis of the results reveals the level of statement
coverage. Determination of an efficient and complete test data set satisfying this metric is
more difficult. Branch predicates that send control to omitted statements should be examined
to help determine input data that will cause execution of omitted statements.

A slightly stronger metric measures the percentage of segments executed under the
application of all test data. A segment in this sense corresponds to a decision-to-decision path
(dd-path). It is a portion of a program path beginning with the execution of a branch predicate
and including all statements up to the evaluation (but not execution) of the next branch
predicate. Segment coverage guarantees statement coverage. It also covers branches with no
executable statements; e.g., an IF-THEN-ELSE with no ELSE statement still requires data
causing the predicate to be evaluated as both True and False. Techniques similar to those
needs for statement coverage are used for applying the metric and deriving test data.

The next logical step is to strengthen the metric by requiring separate coverage for both the
exterior and interior of loops. Segment coverage only requires that both branches from a
branch predicate be taken. For loops, segment coverage can be satisfied by causing the loop to
be executed one or more times (interior test) and then causing the loop to be exited (exterior
test). Requiring that all combinations of predicate evaluations be covered requires that each
1-90 October 25, 2006

Software Testing Principles and Concepts
loop be exited without interior execution for at least one data set. This metric requires more
paths to be covered than segment coverage requires. Two successive predicates will require at
least four sets of test data to provide full coverage. Segment coverage can be satisfied by two
tests, while statement coverage may require only one test for two successive predicates.

1.10.2.15 Complexity-Based Testing

Several complexity measures have been proposed recently. Among these are cyclomatic
complexity and software complexity measures. These, and many other metrics are designed to
analyze the complexity of software systems and, although these are valuable new approaches
to the analysis of software, many are not suitable, or have not been applied to the problem of
testing. The McCabe metrics are the exception.

McCabe actually proposed three metrics: cyclomatic, essential, and actual complexity. All
three are based on a graphical representation of the program being tested. The first two are
calculated from the program graph, while the third is a runtime metric.

McCabe uses a property of graph theory in defining cyclomatic complexity. There are sets of
linearly independent program paths through any program graph. A maximum set of these
linearly independent paths, called a basis set, can always be found. Intuitively, since the
program graph and any path through the graph can be constructed from the basis set, the size
of this basis set should be related to the program complexity.

1.10.2.16 Statistical Analyses and Error Seeding

The most common type of test data analysis is statistical. An estimate of the number of errors
in a program can be obtained from an analysis of the errors uncovered by the test data. In fact,
as we shall see, this leads to a dynamic testing technique.

Let us assume that there are some number of errors, E, in the software being tested. There are
two things we would like to know – a maximum estimate for the number of errors, and a level
of confidence measure on that estimate. The technique is to insert known errors in the code in
some way that is statistically similar to the actual errors. The test data is then applied and
errors uncovered are determined. If one assumes that the statistical properties of the seeded
and original errors is the same and that the testing and seeding are statistically unbiased, then

estimate E = IS/K

where S is the number of seeded errors, K is the number of discovered seeded errors, and I is
the number of discovered unseeded errors. This estimate obviously assumes that the
proportion of undetected errors is very likely to be the same for the seeded and original errors.

1.10.2.17 Mutation Analysis

Another metric is called mutation analysis. This method rests on the competent programmer
hypothesis that states that a program written by a competent programmer will be, after
debugging and testing, "almost correct." The basic idea of the method is to seed the program
October 25, 2006 1-91

Guide to the 2006 CSTE CBOK
to be tested with errors, creating several mutants of the original program. The program and its
mutants are then run interpretively on the test set. If the test set is adequate, it is argued, it
should be able to distinguish between the program and its mutants.

The method of seeding is crucial to the success of the technique and consists of modifying
single statements of the program in a finite number of "reasonable" ways. The developers
conjecture a coupling effect that implies that these "first order mutants" cover the deeper,
more subtle errors that might be represented by higher order mutants. The method has been
subject to a small number of trials and so far has been successfully used interactively to
develop adequate test data sets. It should be noted that the method derives both branch
coverage and statement coverage metrics as special cases.

It must be stressed that mutation analysis, and its appropriateness, rests on the competent
programmer and coupling effect theses. Since neither is provable, they must be empirically
demonstrated to hold over a wide variety of programs before the method of mutations can
itself be validated.

1.10.2.18 Flow Analysis

Data and control flow analysis are similar in many ways. Both are based upon graphical
representation. In control flow analysis, the program graph has nodes that represent a
statement or segment possibly ending in a branch predicate. The edges represent the allowed
flow of control from one segment to another. The control flow graph is used to analyze the
program behavior, to locate instrumentation breakpoints, to identify paths, and in other static
analysis activities. In data flow analysis, graph nodes usually represent single statements,
while the edges still represent the flow of control. Nodes are analyzed to determine the
transformations made on program variables. Data flow analysis is used to discover program
anomalies such as undefined or unreferenced variables.

In data flow analysis, we are interested in tracing the behavior of program variables as they
are initialized and modified while the program executes. This behavior can be classified by
when a particular variable is referenced, defined, or undefined in the program. A variable is
referenced when its value must be obtained from memory during the evaluation of an
expression in a statement. For example, a variable is referenced when it appears on the right-
hand side of an assignment statement, or when it appears as an array index anywhere in a
statement. A variable is defined if a new value for that variable results from the execution of a
statement, such as when a variable appears on the left-hand side of an assignment. A variable
is unreferenced when its value is no longer determinable from the program flow. Examples of
unreferenced variables are local variables in a subroutine after exit and DO indices on loop
exit.

Data flow analysis is performed by associating, at each node in the data flow graph, values for
tokens (representing program variables) which indicate whether the corresponding variable is
referenced, unreferenced, or defined with the execution of the statement represented by that
node.
1-92 October 25, 2006

Software Testing Principles and Concepts
1.10.2.19 Symbolic Execution

Symbolic execution is a method of symbolically defining data that forces program paths to be
executed. Instead of executing the program with actual data values, the variable names that
hold the input values are used. Thus all variable manipulations and decisions are made
symbolically. Consequently, all variables become string variables, all assignments become
string assignments and all decision points are indeterminate.

The result of a symbolic execution is a large, complex expression. The expression can be
decomposed and viewed as a tree structure where each leaf represents a path through the
program. The symbolic values of each variable are known at every point within the tree and
the branch points of the tree represent the decision points of the program. Every program path
is represented in the tree, and every branch path is effectively taken.

If the program has no loops, then the resultant tree structure is finite. The tree structure can
then be used as an aid in generating test data that will cause every path in the program to be
executed. The predicates at each branch point of the tree structure for a particular path are then
collected into a conjunction. Data that causes a particular path to be executed can be found by
determining which data will make the path conjunction true. If the predicates are equalities,
inequalities, and orderings, the problem of data selection becomes the classic problem of
trying to solve a system of equalities and orderings.

There are two major difficulties with using symbolic execution as a test set construction
mechanism. The first is the combinatorial explosion inherent in the tree structure construction.
The number of paths in the symbolic execution tree structure may grow as an exponential in
the length of the program leading to serious computational difficulties. If the program has
loops, then the symbolic execution tree structure is necessarily infinite. Usually only a finite
number of loop executions is required enabling a finite loop unwinding to be performed. The
second difficulty is that the problem of determining whether the conjunct has values that
satisfy it is undecidable even with restricted programming languages. For certain applications,
however, the method has been successful.

Another use of symbolic execution techniques is in the construction of verification conditions
from partially annotated programs. Typically, the program has attached to each of its loops an
assertion, called an invariant, which is true at the first statement of the loop and at the last
statement of the loop (thus the assertion remains “invariant” over one execution of the loop).
From this assertion, an assertion true before entrance to the loop and assertions true after exit
of the loop can be constructed. The program can then be viewed as "free" of loops (i.e., each
loop is considered as a single statement) and assertions extended to all statements of the
program (so it is fully annotated) using techniques similar to the backward substitution
method described above for symbolic execution.

1.10.3 Combining Specific Testing Techniques
There are many ways in which the techniques described in this skill category can be used in
concert to form more powerful and efficient testing techniques. One of the more common
October 25, 2006 1-93

Guide to the 2006 CSTE CBOK
combinations today is the merger of standard testing techniques with formal verification. Our
ability, through formal methods, to verify significant segments of code is improving, and
moreover there are certain modules, which for security or reliability reasons, justify the
additional expense of formal verification.

Other possibilities include the use of symbolic execution or formal proof techniques to verify
segments of code, which through coverage analysis have been shown to be most frequently
executed. Mutation analysis, for some special cases like decision tables, can be used to fully
verify programs. Formal proof techniques may be useful in one of the problem areas of
mutation analysis, the determination of equivalent mutants.

Osterweil addresses the issue of how to combine efficiently powerful techniques in one
systematic method (combining dataflow analysis, symbolic execution, elementary theorem
proving, dynamic assertions, and standard testing). As has been mentioned, symbolic
execution can be used to generate dynamic assertions. Here, paths are executed symbolically
so that each decision point and every loop has an assertion. The assertions are then checked
for consistency using both dataflow and proof techniques. If all the assertions along the path
are consistent, they can be reduced to a single dynamic assertion for the path. Theorem
proving techniques can be employed to "prove" the path assertion and termination, or the path
can be tested and the dynamic assertions evaluated for the test data.

The technique allows for several trade-offs between testing and formal methods. For instance,
symbolically derived dynamic assertions are more reliable than manually derived assertions,
but cost more to generate. Consistency analysis of the assertions using proof and dataflow
techniques adds cost at the front end, but reduces the execution overhead. Finally there is the
obvious trade-off between theorem proving and testing to verify the dynamic assertions.
1-94 October 25, 2006

Building the Test
Environment

he test environment is comprised of all the conditions, circumstances, and influences
surrounding and affecting the testing of software. The environment includes the
organization’s policies, procedures, culture, attitudes, rewards, test processes, test
tools, methods for developing and improving test processes, management’s support of

software testing, as well as any test labs developed for the purpose of testing software and
multiple operating environments. This skill category also includes the process for assuring the
test environment fairly represents the production environment to enable realistic testing to
occur.

2.1 Management Support
Without adequate management support testing is rarely performed effectively. For example, if
management views development as a more important activity than testing, they will spend
more of their personal time with developers and thus send the message of minimal support for
testing. Management support also means that the appropriate resources will be spent on
training testers and providing the processes and tools needed for testing. Management support
will be discussed in these two areas:

2.1 Management Support 2-1
2.2 Test Work Processes 2-8
2.3 Test Tools 2-36
2.4 Testers Competency 2-49

Skill
Category

2

T

October 25, 2006 2-1

Guide to the 2006 CSTE CBOK
• Management “tone”
Management sets the tone by providing testers the resources and management time
needed to do their job effectively.

• Test process alignment
Management creates a test function that is aligned with the business needs of the
organization.

2.1.1 Management Tone
Management “tone” is representative of the environment that management has established
that influence the way testers work. Before explaining the control environment, testers need to
know three things about the control environment, which are:

1. The control environment is established by the highest levels of management and works
downward through the organization.

2. The test function cannot create the organization’s control environment, but can influence
how that environment is implemented within the test function.

3. The control environment will influence the way in which testers perform the work which
may be ethical or unethical.

The control environment has a pervasive influence on the way test activities are structured,
objectives established, and risks assessed. It also influences test activities, information and
communication systems, and monitoring activities. This is true not only of their design, but
also the way they work day to day. The control environment is influenced by the IT
organization’s history and culture. It influences the control consciousness of its people.

Effectively controlled entities strive to have competent people, instill an attitude of integrity
and control consciousness, and set a positive “tone at the top.” They establish appropriate
policies and procedures, often including a written code of conduct, which foster shared values
and teamwork in pursuit of the entity’s objectives.1

The control environment encompasses factors discussed below. Although all are important,
the extent to which each is addressed will vary with the entity. For example, the Test Manager
with a small workforce and centralized operations may not establish formal lines of
responsibility and detailed operating policies, but could still have an appropriate control
environment.

1. The Control Environment factors are taken from The Committee of Sponsoring Organizations of the Treadway
Commission (COSO) report Internal Control – Integrated Framework, 1992.
2-2 October 25, 2006

Building the Test Environment
2.1.2 Integrity and Ethical Values
An entity’s objectives and the way they are achieved are based on preferences, value
judgments and management styles. Those preferences and value judgments, which are
translated into standards of behavior, reflect management’s integrity and its commitment to
ethical values.

The effectiveness of internal controls cannot rise above the integrity and ethical values of the
people, who create, administer and monitor them. Integrity and ethical values are essential
elements of the control environment, affecting the design, administration and monitoring of
the internal control components.

Integrity is a prerequisite for ethical behavior in all aspects of an enterprise’s activities. A
strong corporate ethical climate at all levels is vital to the well-being of the corporation, all of
its constituencies, and the public at large. Such a climate contributes importantly to the
effectiveness of company policies and control systems, and helps influence behavior that is
not subject to even the most elaborate system of controls.

Establishing ethical values is often difficult because of the need to consider the concerns of
several parties. Top management’s values must balance the concerns of the enterprise, its
employees, suppliers, customers, competitors and the public. Balancing these concerns can be
a complex and frustrating effort because interests often are at odds. For example, testers may
want the most current test tool, but management does not want unproven technology.

Managers of well-run enterprises have increasingly accepted the view that “ethics pays” – that
ethical behavior is good business. Positive and negative examples abound. The well-
publicized handling of a crisis by a pharmaceutical company involving tampering with one of
its major products was both sound ethics and sound business. The impact on customer
relations or stock prices of slowly leaked bad news, such as profit shortfalls or illegal acts,
generally is worse than if full disclosures are made as quickly as possible.

Focusing solely on short-term results can hurt even in the short term. Concentration on the
bottom line – sales or profit at any cost – often evokes unsought actions and reactions. High-
pressure sales tactics, ruthlessness in negotiations or implicit offers of kickbacks, for instance,
may evoke reactions that can have immediate (as well as lasting) effects.

Ethical behavior and management integrity are a product of the “corporate culture.” Corporate
culture includes ethical and behavioral standards, how they are communicated and how they
are reinforced in practice. Official policies specify what management wants to happen.
Corporate culture determines what actually happens, and which rules are obeyed, bent or
ignored. Top management – starting with the CEO – plays a key role in determining the
corporate culture. The CEO usually is the dominant personality in an organization, and
individually often sets its ethical tone.
October 25, 2006 2-3

Guide to the 2006 CSTE CBOK
2.1.2.1 Incentives and Temptations

Individuals may engage in dishonest, illegal or unethical acts simply because their
organizations give them strong incentives or temptations to do so. Emphasis on “results,”
particularly in the short term, fosters an environment in which the price of failure becomes
very high.

Incentives cited for engaging in fraudulent or questionable financial reporting practices and,
by extension, other forms of unethical behavior are:

• Pressure to meet unrealistic performance targets, particularly for short-term results
• High performance-dependent rewards.

There may be “temptations” for employees to engage in improper acts:
• Nonexistent or ineffective controls, such as poor segregation of duties in sensitive

areas that offer temptations to steal or to conceal poor performance.
• High decentralization that leaves top management unaware of actions taken at lower

organizational levels and thereby reduces the chances of getting caught.
• A weak internal audit function that does not have the ability to detect and report

improper behavior.
• Penalties for improper behavior that are insignificant or unpublicized and thus lose

their value as deterrents.

Removing or reducing these incentives and temptations can go a long way toward diminishing
undesirable behavior. As suggested, this can be achieved following sound and profitable
business practices. For example, performance incentives – accompanied by appropriate
controls – can be a useful management technique as long as the performance targets are
realistic. Setting realistic performance targets is a sound motivational practice; it reduces
counterproductive stress as well as the incentive for fraudulent financial reporting that
unrealistic targets create. Similarly, a well-controlled reporting system can serve as a
safeguard against temptation to misstate performance.

2.1.2.2 Providing and Communicating Moral Guidance

The most effective way of transmitting a message of ethical behavior throughout the
organization is by example. People imitate their leaders. Employees are likely to develop the
same attitudes about what’s right and wrong – and about internal control – as those shown by
top management. Knowledge that the CEO has “done the right thing” ethically when faced
with a tough business decision sends a strong message to all levels of the organization.

Setting a good example is not enough. Top management should verbally communicate the
entity’s values and behavioral standards to employees. A formal code of corporate conduct is
“a widely used method of communicating to employees the company’s expectations about
duty and integrity.” Codes address a variety of behavioral issues, such as integrity and ethics,
conflicts of interest, illegal or otherwise improper payments, and anti-competitive
arrangements. Spurred in part by revelations of scandals in the defense industry, many
companies have adopted such codes in recent years, along with necessary communications
2-4 October 25, 2006

Building the Test Environment
channels and monitoring. While codes of conduct can be helpful, they are not the only way to
transmit an organization’s ethical values to employees, suppliers and customers.

Existence of a written code of conduct, and even documentation that employees received and
understand it, does not ensure that it is being followed. Compliance with ethical standards,
whether or not embodied in a written code of conduct, is best ensured by top management’s
actions and examples. Of particular importance are resulting penalties to employees who
violate such codes, mechanisms that exist to encourage employee reporting of suspected
violations, and disciplinary actions against employees who fail to report violations. Messages
sent by management’s actions in these situations quickly become embodied in the corporate
culture.

2.1.3 Commitment to Competence
Competence should reflect the knowledge and skills needed to accomplish tasks that define
the individual’s job. How well these tasks need to be accomplished generally is a management
decision that should be made considering the entity’s objectives and management’s strategies
and plans for achievement of the objectives. There often is a trade-off between competence
and cost – it is not necessary, for instance, to hire a computer science major to operate a
computer.

Management needs to specify the competence levels for particular jobs and to translate those
levels into requisite knowledge and skills. The necessary knowledge and skills may in turn
depend on individual’s intelligence, training and experience. Among the many factors
considered in developing knowledge and skill levels are the nature and degree of judgment to
be applied to a specific job. There often can be a trade-off between the extent to supervision
and the requisite competence level of the individual.

2.1.4 Management’s Philosophy and Operating Style
Management’s philosophy and operating style affect the way testing is managed, including the
kinds of business risks accepted. An entity that has been successful taking significant risks
may have a different outlook on internal control than one that has faced harsh economic or
regulatory consequences as a result of venturing into dangerous territory. An informally
managed company may control operations largely by face-to-face contact with key managers.
A more formally managed one may rely more on written policies, performance indicators and
exception reports.

Other elements of management’s philosophy and operating style include attitudes toward
financial reporting, conservative or aggressive selection from available alternative accounting
principles, conscientiousness and conservatism with which accounting estimates are
developed, and attitudes toward data processing and accounting functions and personnel.
October 25, 2006 2-5

Guide to the 2006 CSTE CBOK
2.1.5 Organizational Structure
An entity’s organizational structure provides the framework within which its activities for
achieving entity-wide objectives are planned, executed, controlled and monitored. Activities
may relate to what is sometimes referred to as the value chain: inbound (requirements)
activities, operations or production, outbound (software), deployment and maintenance. There
may be support functions, relating to administration, human resources or technology
development.

Significant aspects of establishing a relevant organizational structure include defining key
areas of authority and responsibility and establishing appropriate lines of reporting. An entity
develops an organizational structure suited to its needs. Some are centralized, others
decentralized. Some have direct reporting relationships, others are more of a matrix
organization. Some entities are organized by industry or product line, by geographical
location or by a particular distribution or marketing network. Other entities, including many
state and local governmental units and not-for-profit institutions, are organized on a functional
basis.

The appropriateness of an entity’s organizational structure depends, in part, on its size and the
nature of its activities. A highly structured organization, including formal reporting lines and
responsibilities, may be appropriate for a large entity with numerous operating divisions,
including foreign operations. However, it could impede the necessary flow of information in a
small entity. Whatever the structure, an entity’s activities will be organized to carry out the
strategies designed to achieve particular objectives.

2.1.5.1 Assignment of Authority and Responsibility

Management has an important function with the assignment of authority and responsibility for
operating activities, and establishment of reporting relationships and authorization protocols.
It involves the degree to which individuals and teams are encouraged to use initiative in
addressing issues and solving problems, as well as limits of their authority. This management
function also deals with policies describing appropriate business practices, knowledge and
experience of key personnel, and resources provided for carrying out duties.

There is a growing tendency to push authority downward to bring decision-making closer to
front-line personnel. An organization may take this tact to become more market-driven or
quality focused – perhaps to eliminate defects, reduce cycle time or increase customer
satisfaction. To do so, the organization needs to recognize and respond to changing priorities
in market opportunities, business relationships, and public expectations.

Alignment of authority and accountability often is designed to encourage individual
initiatives, within limits. Delegation of authority, or “empowerment,” means surrendering
central control of certain business decisions to lower echelons – to the individuals who are
closest to everyday business transactions. This may involve empowerment to sell products at
discount prices; negotiate long-term supply contracts, licenses or patents; or enter alliances or
joint ventures.
2-6 October 25, 2006

Building the Test Environment
A critical challenge is to delegate only to the extent required to achieve objectives. This
requires ensuring that risk acceptance is based on sound practices for identification and
minimization of risk, including sizing risks and weighing potential losses versus gains in
arriving at good business decisions.

Another challenge is ensuring that all personnel understand the entity’s objectives. It is
essential that each individual know how his or her actions interrelate and contribute to
achievement of the objectives.

Increased delegation sometimes is accompanied by, or the result of, streamlining or
“flattening” of an entity’s organizational structure, and is intentional. Purposeful structural
change to encourage creativity, initiative and the capability to react quickly can enhance
competitiveness and customer satisfaction. Such increased delegation may carry an implicit
requirement for a higher level of employee competence, as well as greater accountability. It
also requires effective procedures for management to monitor results.

The control environment is greatly influenced by the extent to which individuals recognize
that they will be held accountable. This holds true all the way to the chief executive, who has
ultimate responsibility for all activities within an entity, including the internal control system.

2.1.5.2 Human Resource Policies and Practices

Human resource practices send messages to employees regarding expected levels of integrity,
ethical behavior and competence. Such practices relate to hiring, orientation, training,
evaluating, counseling, promoting, compensating and remedial actions:

• Standards for hiring the most qualified individuals, with emphasis on educational
background, prior work experience, past accomplishments and evidence of integrity
and ethical behavior, demonstrate an organization’s commitment to competent and
trustworthy people.

• Recruiting practices that include formal, in-depth employment interviews and
informative and insightful presentations on the organization’s history, culture and
operating style send a message that the organization is committed to its people.

• Training policies that communicate prospective roles and responsibilities and include
practices such as training schools and seminars, simulated case studies and role-play
exercises, illustrate expected levels of performance and behavior.

• Rotation of personnel and promotions driven by periodic performance appraisals
demonstrate the entity’s commitment to the advancement of qualified personnel to
higher levels of responsibility.

• Competitive compensation programs that include bonus incentives serve to motivate
and reinforce outstanding performance. Disciplinary actions send a message that
violations of expected behavior will not be tolerated.

It is essential that personnel be equipped for new challenges as issues that organizations face
change and become more complex – driven in part by rapidly changing technologies and
increasing competition. Education and training – whether classroom instruction, self-study or
on-the-job training – must prepare an entity’s people to keep pace and deal effectively with the
October 25, 2006 2-7

Guide to the 2006 CSTE CBOK
evolving environment. They will also strengthen the organization’s ability to affect quality
initiatives. Hiring of competent people and one-time training are not enough; the education
process must be ongoing.

2.2 Test Work Processes
Work processes are the policies, standards and procedures in a quality IT environment. Test
work processes are those work processes specific to the testing activity. Once management
commits to create a work environment conducive to effective software testing, test work
processes need to be created. It is the tester’s responsibility to follow these test work
processes; and management’s responsibility to change the processes if the processes do not
work. A process to improve the test work processes should be implemented to improve the
effectiveness and efficiency of the policies, standards, and procedures.

It is important to have a common understanding of the following definitions:
• Policy

Managerial desires and intents concerning either process (intended objectives) or
products (desired attributes).

• Standards
The measure used to evaluate products and identify nonconformance. The basis upon
which adherence to policies is measured.

• Procedure
The step-by-step method that ensures that standards are met.

Policies provide direction, standards are the rules or measures by which the implemented
policies are measured, and the procedures are the means used to meet or comply with the
standards. These definitions show the policy at the highest level, standards established next,
and procedures last. However, the worker sees a slightly different view, which is important in
explaining the practical view of standards.

The following aspects of test work processes are critical to the success of the testing activity
and are discussed further:

• The importance of work processes
• The responsibilities

2.2.1 The Importance of Work Processes
It is important for a quality IT environment to establish, adhere to, and maintain work
processes in the testing activity. It is also critical that the work processes represent sound
policies, standards and procedures. It must be emphasized that the purposes and advantages to
2-8 October 25, 2006

Building the Test Environment
standards discussed below exist only when sound work processes are in place. If the processes
are defective or out of date, the purposes will not be met. Poor standards can, in fact, impede
quality and reduce productivity. Thus, constant attention is needed to operate and improve an
organization’s standards program.

The major purposes for and advantages to having work processes for testers are:
• Improves communication

The standards define the products to be produced. Not only are the products defined,
but also the detailed attributes of each product are defined. This definition attaches
names to the products and the attributes of the products. Thus, in a standardized
environment when someone says, “a requirements document,” it is clear what that
means and what attributes must be defined in order to have requirements defined. In an
environment without standards, the communication between workers is reduced
because when one says requirements, another is probably not certain what that means.

• Enables knowledge transfer
Processes are in fact “expert systems.” They enable the transfer of knowledge from the
more senior people to the more junior. Once a procedure has been learned, it can be
formalized and all people in the department can perform that procedure with
reasonable effort. In an environment in which processes are not well defined, some
people may be able to do a job very effectively, and others perform the same job
poorly. The formalization of process engineering should raise the productivity of the
poor performers in the department and at the same time not hinder the productivity of
the effective performers.

• Improves productivity
It is difficult to improve productivity throughout a function without first standardizing
how the function is performed. Once it is clear to everyone how the function is
performed, they can contribute to improve that process. The key to productivity
becomes constant improvement. Since no one person can do everything the best, each
shortcut or better method identified by anyone in the organization can be quickly
incorporated into the procedures and the benefits gained by everybody.

• Assists with mastering new technology
The processes are designed to help the IT function master new technology. There is a
huge cost of learning whenever new technology is introduced. Each individual must
invest time and energy into mastering new technology. Effective processes assist in
that technological mastery. It is knowledge transfer for new technology.

• Reduces defects and cost
It costs a lot of money to make defective products. If workers make defects through
lack of mastery of technology or using ineffective processes, the organization has to
pay for not only making the defect, but also for searching and correcting it. Doing it
right the first time significantly reduces the cost of doing work.
October 25, 2006 2-9

Guide to the 2006 CSTE CBOK
2.2.2 Developing Work Processes
Prior to creating any processes, the Process Engineering Committee, as discussed in 2.2.4.4.3
Role of the Process Engineering Committee, must develop a standard and procedure for
developing standards and procedures. The standards and procedures developed by the
standards program are products. Those products must be standardized just as the other
products produced in an IT function. After all, a standard is an attribute of a product.
Therefore, until the standard and procedure development process has been standardized, the
same type of process the Process Engineering Committee is proposing the IT staff follow in
creating their products cannot develop it.

2.2.2.1 Defining the Attributes of a Standard for a Standard

The standard for a standard defines the format, style, and attributes of a document called a
standard. The standard for a procedure defines the format, style, and attributes of a document
called a procedure. The standard for a standard and standard for a procedure become the
prototype that will be used by the Ad Hoc Committees in developing standards and
accompanying procedure(s). Thus, it is an important document and warrants the full attention
of the Process Engineering Committee. It is, in fact, the only standard and procedure
developed by the Process Engineering Committee and Process Engineering Manager. They,
too, may wish to form an Ad Hoc Committee to assist them in this effort.

2.2.2.2 Developing a Test Standard

When developing a test standard, one should keep in mind the purpose of a test standard. A
test standard should define the following:

• Testing policies
• Testing standards
• Testing procedures (Do Procedures)
• Testing procedures (Check Procedures)

2.2.2.2.1 Establishing a Testing Policy

A testing policy is management’s objective for testing. It is the objective to be accomplished.
A process must be in place to determine how that policy will be achieved. A workbench is one
means to illustrate how a policy will be achieved. A sample testing policy is illustrated in
Figure 2-1.
2-10 October 25, 2006

Building the Test Environment
Figure 2-1 Simplistic Testing Policy

Good testing does not just happen, it must be planned, and a testing policy should be the
cornerstone of that plan. Figure 2-1 is a simplistic testing policy that an IT department could
adopt. A good practice is for management to establish the testing policy for the IT department,
then have all members of IT management sign that policy as their endorsement and intention
to enforce that testing policy, and then prominently display that endorsed policy where
everyone in the IT department can see it.

IT management normally assumes that their staff understands the testing function and what
they, management, want from testing. Exactly the opposite is normally true. Testing is not
clearly defined, nor is management’s intent made known regarding their desire for the type
and extent of testing.

IT departments frequently adopt testing tools such as a test data generator, make the system
programmer/analyst aware of those testing tools, and then leave it to the discretion of the staff
how testing is to occur and to what extent. In fact, many “anti-testing” messages may be
directly transmitted from management to staff. For example, pressure to get projects done on
time and within budget is an anti-testing message from management. The message says, “I
don’t care how you get the system done, but get it done on time and within budget,” which
translates to the average system programmer/analyst as “Get it in on time even if it isn’t
tested.”

2.2.3 Tester’s Workbench
We need to revisit the tester’s workbench in order to put the definitions into perspective. The
tester’s workbench, illustrated in Figure 2-2, shows that input products drive the workbench,
which uses procedures and standards to produce output products.

It is the policies that define the objective for the workbenches. They may not define them
directly for low-level workbenches, but will define them indirectly by establishing the areas of
activity and direction for the activity. For example, if the policies define an activity of support
for end users, it is normally necessary to define and establish a help desk workbench.
October 25, 2006 2-11

Guide to the 2006 CSTE CBOK
Figure 2-2 Tester’s Workbench

Many of the productivity and quality problems within the test function are attributable to the
incorrect or incomplete definition of tester’s workbenches. For example, workbenches may
not be established, or too few may be established. A test function may only have one
workbench for software test planning, when in fact, they should have several; such as, a
budgeting workbench, and scheduling workbench, a risk assessment workbench, and a tool
selection workbench. In addition, they may have an incompletely defined test data workbench
that leads to poorly defined test data for whatever tests are made at the workbench, which has
not been fully defined.

As illustrated in Figure 2-2 Tester’s Workbench, the solid line encircling the workbench
defines the scope of activities the worker performs at that workbench. Note that a single
worker may have several workbenches, or several workers may use a single workbench. The
input products are prepared at the previous workbench. The worker should validate that the
input products contain the attributes needed for their workbench activities. If the input
products fail to meet the entrance criteria, they should be rejected and reworked prior to
starting the next workbench’s activities.

The objective of the workbench is to produce the defined output products in a defect-free
manner. The procedures and standards established for each workbench are designed to assist
in this objective. If defect-free products are not produced they should be reworked until the
defects are removed or, with management’s concurrence, the defects can be noted and the
defective products passed to the next workbench. This might be done because of scheduling
constraints.
2-12 October 25, 2006

Building the Test Environment
The worker performs defined procedures on the input products in order to produce the output
products. The procedures are step-by-step instructions that the worker follows in performing
his/her tasks. Note that if tools are to be used, they are incorporated into the procedures. It is
important that tool usage becomes mandatory, not optional.

The standards are the measures that the worker uses to validate whether or not the products
have been produced according to specifications. If they meet specifications, they are quality
products or defect-free products. If they fail to meet specifications or standards they are
defective and subject to rework.

It is the execution of the workbench that defines worker product quality, and is the basis for
productivity improvement. Without process engineering, the worker has little direction or
guidance to know the best way to produce a product, and to determine whether or not a quality
product has been produced.

2.2.4 Responsibility for Building Work Processes
It is important that organizations clearly establish who is responsible for developing work
processes (i.e., policies, procedures, and standards). Responsibility must be assigned and
fulfilled. Having them developed by the wrong group can impede the effectiveness of the
standards program.

2.2.4.1 Responsibility for Policy

IT management is responsible for issuing IT policy. Policies are the means which senior
management uses to run their area. Again, policies define direction and by definition are
general rules or principles. It is the standards, which will add the specificity needed for
implementation of policies.

Policies define the intent of management. For example, IT project personnel need direction in
determining how many defects are acceptable in their products. If there is no policy on defects
each worker decides what level of defects is acceptable. However, if the organization issues a
quality policy indicating that it is a policy to produce “defect-free products and services,” then
the individual workers are provided the needed direction.

Policies are needed in all major areas in which the IT function conducts business, such as:
• Building Systems
• Testing Systems
• Maintaining Systems
• Operating Systems
• Quality of Systems
• Security of Systems
• Allocation of Resources
• Planning for Systems
October 25, 2006 2-13

Guide to the 2006 CSTE CBOK
• Training Personnel

These areas may actually result in multiple policies. For example, in software test planning
there could be separate policies on scheduling, budgeting, risk assessment, and tool selection.

The key concepts that need to be understood on policies are:
• Policies are developed by senior management. (Note that in some instances

subordinates develop the policy, but senior management approves it.)
• Policies set direction but do not define specific products or procedures.
• Policies are needed in areas that cause problems. For example, the transfer of

developed applications from one group to another, or one person to another.
• Policies define the areas in which processes will be developed. (Note that if there are

no policies, there should by definition be no standards or procedures in that area.)

2.2.4.2 Responsibility for Standards and Procedures

The workers who use the procedures and are required to comply with the standards should be
responsible for the development of those standards and procedures. Management sets the
direction and the workers define that direction. This division permits each to do what they are
best qualified to do.

The workers generally know better than management what internal IT products are needed to
meet a specific task objective, and how to produce those products. Failure to involve workers
in the development of standards and procedures robs the company of the knowledge and
contribution of the workers. In effect, it means that the people best qualified to do a task (i.e.,
development of standards and procedures) are not involved in that task. It does not mean that
every worker develops his own procedures and standards, but that the workers have that
responsibility and selected workers will perform the tasks.

IT management needs to define the hierarchical structure, which enables workers to develop
standards and procedures. IT management must also encourage and motivate workers to fulfill
that responsibility and then reward them for compliance.

The key concepts of a process engineering program are:
• Management provides an organizational structure for the workers to develop their own

standards and procedures
• The program is driven by management policies
• Absolute compliance to standards and procedures is required
• A mechanism is provided for the continual maintenance of standards and procedures

to make them more effective

Please note that he software tester should be the owners of test processes—and thus involved
in the selection, development and improvement of test processes.
2-14 October 25, 2006

Building the Test Environment
2.2.4.3 Test Process Selection

Selecting, developing, and acquiring work processes is an overall IT organization
responsibility. Normally there is a function that performs this activity for the entire IT
organization – frequently called a process engineering function. Software testers need to both
understand how the activity operates AND participate when test processes, and related
processes, are selected and put into practice.

An effective process engineering program does not happen without an active process
engineering program. The program can be under the direction of the quality assurance group,
a Process Engineering Committee, a Process Engineering Manager, or the direction of senior
IT management. However, without a “catalyst” to push and prod for processes, the program
frequently flounders.

An active program begins with a self-assessment, continues with the formation of the proper
organization, and continues as an ongoing active program as long as products are made and
modified.

The process engineering program should be proactive, rather than a reactive program. It
should take an active role in determining areas in which standards and policies are needed,
and then taking the steps necessary to ensure they are developed. Reactive programs do not
provide the same benefits to an organization as a proactive program.

IT groups should develop a plan for implementing and operating a process engineering
program. This would require a policy for standards, and a charter or job description for the
function. These need to be customized for each organization. The specific components that
need to be addressed include:

• Building a Process Engineering Organization
• Developing a Standard and Procedure for Standards
• Planning for Standards
• Writing, Storing, and Retrieving Standards and Procedures
• Enforcing Standards

2.2.4.4 Building a Process Engineering Organization

The structure that is put in place to develop and update policies, standards, and procedures
must involve both staff and management. The process engineering program should be directed
by management, but implemented by staff. This is the same basic approach used for any other
activity undertaken in the IT department.

The implementation of processes by management (i.e., senior management and/or
management staff functions such as quality assurance) is wrong. It makes no more sense to
have management write processes, than it does to have management design systems and write
software. As stated previously, the individual best equipped to perform that job should
perform the work.
October 25, 2006 2-15

Guide to the 2006 CSTE CBOK
Some guidelines on establishing an organizational structure for process engineering are:
• Establish a Process Engineering Committee compromised of the most senior IT

managers possible.
• Represent all IT organizational areas on the Process Engineering Committee.
• Appoint an individual as the Process Engineering Manager. (Note that this can be a

part-time assignment.)
• Appoint Ad Hoc Committees (i.e., special task forces) to develop individual standards

and procedures.
• Let the Standards Ad Hoc Committees develop the technical standard.

2.2.4.4.1 Recommended Standards Organizational Structure

The recommended organizational structure is comprised of the following three components:
• Process Engineering Manager

A full-time or part-time individual responsible for managing the standards program.

• Process Engineering Committee
A policy-setting board, which runs the standards program.

• Ad Hoc Committee
Small groups which develop single standards at a time.

A suggested organizational chart for process engineering is illustrated in Figure 2-1. This
shows both the Process Engineering Manager and a Process Engineering Committee as a staff
function to the most senior IT Manager. The IT Manager is defined as the top operational
officer in IT, the one to whom systems and programming, database, data communications, and
operations, reports. The Process Engineering Committee should be comprised of the IT
Manager and all of the managers who directly report to that individual, or an acceptable
substitute. An acceptable substitute is one who can speak for the manager, and feels
comfortable about it. If the Process Engineering Committee is comprised of lower-level
personnel it lacks the necessary clout and image needed to promote processes effectively in
the organization. Note that in large organizations, lower-level managers may be selected to
represent more senior managers.
2-16 October 25, 2006

Building the Test Environment
Figure 2-1 Recommended Standards Organizational Chart

The Ad Hoc Committees are comprised of the individuals responsible for developing the
procedures and the standards. Their peers should respect the individuals selected on the Ad
Hoc Committees. It is the Ad Hoc Committees who develop the standards, and then have a
moral obligation to ensure that their peers follow them.

2.2.4.4.2 Role of Process Engineering Manager

The responsibilities of the Process Engineering Manager include:
• Promote the concept of process engineering.

The Process Engineering Manager must actively develop and implement programs
that create enthusiasm and motivation for the program. This includes development of
processes, recommendations for improvement of processes, and personal enforcement
of processes.

• Be the driving force behind processes.
The Process Engineering Manager must be the leader of process engineering and the
advocate for processes. The manager must be the one that prods and encourages the
Process Engineering Committee, Ad Hoc Committees, and involved parties to do their
job.

• Administer the standards program defined by the Process Engineering Committee.
The Process Engineering Manager must make the program work through personal
energy, enthusiasm, and hard work.
October 25, 2006 2-17

Guide to the 2006 CSTE CBOK
• Be a resource to the Process Engineering Committee and Ad Hoc Committees.
The Process Engineering Manager should be available to these committees to ensure
that both organizations are fulfilling their assigned responsibilities.

• Ensure involved parties are adequately trained.
The Process Engineering Manager must ensure that the Process Engineering
Committee and Ad Hoc Committees are trained in how to fulfill their function, and
that the users of the standards and procedures are trained in how to use them. This does
not mean that the Process Engineering Manager per se should run the training sessions
but, rather, must ensure they are run.

2.2.4.4.3 Role of the Process Engineering Committee

The role of the Process Engineering Committee is to:
• Accept topics for processes.

The members of the Process Engineering Committee, including the Process
Engineering Manager, can nominate activities for processes. These activities should be
related to the policies of the department. The Process Engineering Committee votes to
determine whether an activity will be accepted or rejected as a process activity.

• Set priority for implementation of processes.
The Process Engineering Committee should determine the sequence in which
standards are to be implemented. Ideally, this includes the approximate date when the
standards should be developed and become effective.

• Obtain the resources necessary to develop the process.
Someone on the Process Engineering Committee should accept responsibility for
forming an Ad Hoc Committee. This means finding a chairperson (i.e., sponsor for the
committee) and ensuring that the appropriate resources are available for that Ad Hoc
Committee to develop the process.

• Approve or reject developed processes.
The Ad Hoc Committee should send the standards to the Process Engineering
Committee for approval. The committee approves as is, approves subject to
modification, or rejects the standard.

Any member of the Process Engineering Committee should not spend more than
approximately one hour per month in a Process Engineering Committee meeting. However,
between meetings the individual members would be disseminating approved standards to their
function, obtaining resources to develop new processes, and working with or providing
support to the Ad Hoc Committees.

2.2.4.4.4 Role of the Ad Hoc Committee

The responsibilities of the Ad Hoc Committee are to:
• Gain representatives from all involved areas.
2-18 October 25, 2006

Building the Test Environment
Each activity within the organization that is affected by the process should have a
representative on the Process Engineering Committee. Note that in some cases, one
representative may represent more than one area.

• Ensure that the committee has between three and eight members in size.
However, if the process is somewhat perfunctory, such as assigning a job number, it
may be accomplishable by a single individual.

• Create the standard and procedure.
This means that the final written standard and procedure does not have to be written by
the Ad Hoc Committee, just the material needed to write the final standard and
procedure.

• Coordinate reviews of the standard with involved parties.
The Ad Hoc Committee has the obligation to ensure that all involved parties have had
an opportunity to react and comment on the standard and procedure. Hopefully, this
task would also obtain concurrence from the involved parties. The work of the Ad Hoc
Committee continues until consensus is developed. Note that in some instances, if
consensus is impossible, IT management must make a decision regarding direction.

• Periodically review and update the standards and procedures previously developed by
the Ad Hoc Committee.
Approximately annually, the Ad Hoc Committee should reconvene to quickly review
the standards and procedures to see that they are still current and applicable. If not, the
Ad Hoc Committee should make any necessary changes.

2.2.4.4.5 Selecting Process Engineering Committee Members

The general guideline for selecting members of the Process Engineering Committee is to aim
high. Having members of senior IT management on the Process Engineering Committee
solves many problems. First, it draws attention to the importance of the committee through
committee assignments. Second, it solves the problem of people not attending the meeting,
because when senior managers attend, everyone involved attends. Third, it places the
responsibility for quality clearly on the shoulders of the individuals who should have that
responsibility – management.

The makeup of the Process Engineering Committee is important. Some guidelines in selecting
members are:

• Select the highest-level manager who will accept the position
• Assign individuals who are supportive and enthusiastic over standards
• Make long-term assignments to the Process Engineering Committee
• Select individuals who are respected by their peers and subordinates
• Ensure the appropriate areas of interest are involved
October 25, 2006 2-19

Guide to the 2006 CSTE CBOK
Some of the above criteria may be mutually exclusive. For example, a senior manager may
not be enthusiastic over standards. On the other hand, assignment to the committee and
involvement in standards may create that enthusiasm. Go for the high-level managers first.

Some guidelines to ensure the appropriate areas of interest are included in developing
standards are:

• Is every organizational function within IT involved?
• Are the activities that interface to the IT function involved; for example, key users and

customers?
• Are activities having a vested interest involved, such as auditors?
• Are all the IT “businesses” represented such as the project leaders, systems

programmers, data library, security, help desk, and so forth?

The technical and functional challenges of each activity should be identified. For example, if
the help desk is an activity, what technical and functional challenges do the help desk have in
fulfilling its mission.

Candidates should be selected who can adequately represent the activity, and are aware and
knowledgeable in the technical and functional challenges. The candidates should be listed in
order of desirability. The manager of the Standards Committee, or the Standards Manager,
should then visit and make an appeal to those individuals for participation on the committee.
Note that clearly defining the technical and functional challenges, and the IT activity, helps
get the right people on the committee. Individuals are more willing to serve when they know
they are on for a specific purpose. Whether they accept or reject can then be indicated on the
worksheet.

2.2.4.5 Professional Test Standards

Professionals in any industry need to be aware of industry standards that apply to their
domain. Several organizations publish standards covering the test process, activities, and
work products. Test professionals should be familiar with the standards published by
organizations such as the International Standards Organization (ISO), U.S. Department of
Commerce (National Institute of Standards and Technology), and IEEE. In addition, testers
should know when these standards apply, and how to obtain the latest versions.

2.2.4.5.1 IEEE Software Engineering Standards

IEEE publishes a body of standards that address software engineering and maintenance. A
portion of these standards addresses software testing and test reporting. Listed below are the
current standards that apply to the test process.

829-1998IEEE Standard for Software Test Documentation

830-1998IEEE Recommended Practice for Software Requirements Specifications

1008-1987 (R1993)IEEE Standard for Software Unit Testing (ANSI)
2-20 October 25, 2006

Building the Test Environment
1012-1998 IEEE Standard for Software Verification and Validation

1012a-1998IEEE Standard for Software Verification and Validation – Supplement to 1012-
1998 – Content Map to IEEE 12207.1

1028-1997IEEE Standard for Software Reviews

Other professional organizations have similar standards. The CSTE candidate should have an
overall familiarity with the purpose and contents of these standards.

2.2.5 Analysis and Improvement of the Test Process
Studies at many IT organizations have indicated that testers make more defects in performing
test activities than developers do in performing developmental activities. For example, if the
developers make three defects per function point of logic; testers would make more than three
defects in testing that function point of logic.

There are two reasons for this high defect rate. The first is that test processes are less mature
than most developmental processes. In this case, mature means the variability in performing
the activity. Generally the more variability in a test process the higher the defect rates. The
second reason is that testers do not have a quality control process over their test process.

Figure 2-2 illustrates the two test processes. One process performs testing and one parallel
process checks the performance of testing.

Figure 2-2 The Two Testing Processes

Let’s look at an example. If testers were to develop test transactions to test transactions a, b,
and c, there would be a quality control process that checks to assure that those three test
transactions were actually prepared, and the transactions contained necessary data to perform
the specified testing. Quality control can be performed by the individual who does the work,
or by another individual. For example, testers may be involved in performing a code
inspection process on programming code prior to unit testing. This same inspection process
can be used to inspect the test plan, test data and the documentation produced from testing.
Other testers would perform the test inspection process on the work performed by another
tester.
October 25, 2006 2-21

Guide to the 2006 CSTE CBOK
Testers are the quality control process for developers. They are checking to see that the work
done by developers meets the specifications for those developer-produced products. The same
concepts need to be applied to the test process. If high-quality work is needed, quality control
should be an integral part of the test process. Sometimes quality control can be automated,
other times it must be performed manually.

2.2.5.1 Test Process Analysis

Test quality control is performed during the execution of the process. In other words, a test
task is performed and then the quality of that test task is checked. Analysis is performed after
the test process is completed. This analysis can be performed by the test group, or it can be
performed by another group within the IT organization such as the quality assurance function
or process engineering activity.

Test analysis can only be performed if adequate data is maintained during the test process. A
determination needs to be made as to the type of analysis that will be performed, and then that
data collected for analysis purposes. Ideally, the data that should be collected is data that is
produced as a by-product of testing. This data tends to be more reliable than data which is
collected manually during and after the execution of a test activity.

If data is to be collected during the test process for analysis purposes, the process must include
the capabilities to collect that data. The type of data collected might include time spent on a
specific activity, rework, defects caused by the tester or the test process, surveys of testers and
stakeholders in the test process, inquiries by developers and/or users regarding test activities,
test reports and test results, as well as logs of the specific activities performed by testers.

There are many reasons why a test group may want to perform an analysis of the test process.
The following analyses are the most common in the test industry. Each is discussed in more
detail below.

• Effectiveness and efficiency of test processes
• The test objectives are applicable, reasonable, adequate, feasible, and affordable
• The test program meets the test objectives
• The correct test program is being applied to the project
• The test methodology is used correctly
• The task work products are adequate to meet the test objectives
• Analysis of the results of testing to determine the adequacy of testing

2.2.5.1.1 Effectiveness and Efficiency of Test Processes

Estimates show that in many organizations testing consumes 50% of the total developmental
cost. In fact, this often has been referred to as “test and fix.” Many organizations are not aware
of the division between doing work, testing work, and rework because all of those activities
are charged to a project without dividing the charge among the three previously described
activities.
2-22 October 25, 2006

Building the Test Environment
Effectiveness means that the testers completed their assigned responsibilities. As previously
stated, this should be completion of the activities included in the test plan. Efficiency is the
amount of resources and time required to complete test responsibilities.

There is normally a trade-off between efficiency and effectiveness. Since there are usually
time and budget constraints the testers should be looking for test processes which maximize
the two variables of effectiveness and efficiency.

2.2.5.1.2 The test objectives are applicable, reasonable, adequate, feasible, and affordable

The test objectives are the responsibilities assigned to testers to test an individual software
system. The test objectives should be incorporated into the test plan. The test plan will then
define how those test objectives will be accomplished during the execution of testing.

Test objectives may be assigned to testers which are not applicable, not reasonable, not
adequate, not feasible and not affordable. The reasons test objectives may not achieve these
objectives include:

• Testers do not have the needed competencies to meet the test objectives
• Test tools are not available which can complete the test objectives within reasonable

time or resource constraints.
• Test objectives are not objectives that should be assigned to testers, such as whether

the software is appropriately aligned to the corporate business objectives.
• The test objectives overlook what would reasonably be incorporated into software

testing, such as identifying implemented functionality not requested by the user of the
software.

2.2.5.1.3 The test program meets the test objectives

Surveys by the Quality Assurance Institute have indicated that only approximately one half of
the software testing groups develop test plans. Of those groups that develop test plans,
approximately 50% do not follow those plans during the test execution activities.

Failure to plan, or follow the plan limits the ability of the software testers to determine
whether or not the written or implied test objectives have been achieved. Very few testers can
prepare reports at the end of testing indicating whether or not the stated test objectives have
been implemented.

This problem is frequently compounded by the fact that the software specifications have
changed from the time the test objectives were defined. This may mean that the objectives
need to be modified or changed based on the change in specification. However, if the test plan
and test objectives are not changed to reflect those different specifications, whether the
original objectives are met or not met may be immaterial based on the new specifications.

2.2.5.1.4 The correct test program is being applied to the project

The test environment specifies the approach and test processes that should be used to test
software. The environment should also specify how those general test processes should be
October 25, 2006 2-23

Guide to the 2006 CSTE CBOK
customized based on different testing needs and different software development
methodologies used.

Depending upon management support for using and following the appropriate test processes,
the testers may or may not follow those processes. In some IT organizations more emphasis is
placed on meeting implementation schedules than on following the test processes.

If the correct test processes are not followed improvement of those processes is severely
limited. In other words, if specific processes or tasks within processes are not followed and
the results are undesirable, it may be difficult to determine whether the cause is the process, or
the changes to the process made by a single software test team.

There are two aspects of determining whether the correct test program was applied:
• Was it applied as developed and incorporated into the test environment?
• Was it corrected to adjust for changing test conditions and different software

development methodologies?

2.2.5.1.5 The test methodology is used correctly

This analysis requires an effective quality control process. Without quality control in place it
may be difficult and expensive to identify the root cause of a test failure. For example, if a
tester selects an alternate tool rather than the specified tool, but no record is maintained of
what tool is actually used, then compliance to the test methodology is difficult to determine.

If adequate quality control records are maintained over testing it is possible to identify where
the methodology was not complied with. Non-compliance is not necessarily bad, because the
process may not be doable as developed. In other words if the tester followed the process
exactly as specified an undesirable result would occur. Testers frequently know this and make
changes during test execution so that their test objectives can be met. However, for the
processes to be continuously improved they must know:

• Whether or not the process was complied with
• Whether the tasks not adequately defined can be followed or if followed will not work

2.2.5.1.6 The task work products are adequate to meet the test objectives

During development and execution of testing, testers produce many different test products.
Among these are risk analysis reports, the test plan, test data specifications, test matrices, test
results, test status reports and final test reports.

The following two analyses need to be performed on these work products:
• Are they adequate to ensure that the test objectives can be met?
• Are they products, or parts of test products that are not needed to meet the test

objectives?

The result of this analysis is to ensure that the appropriate information is prepared and
available for the testers and other stakeholders to use. Reports that contain unwanted or
unnecessary information make the task of using the work products more difficult.
2-24 October 25, 2006

Building the Test Environment
2.2.5.1.7 Analysis of the results of testing to determine the adequacy of testing

Two processes must be in place in order to manage testing and assess the adequacy of testing.
These are a monitoring process which monitors progress and a communication process which
provides information to both monitor and act on monitoring information. Skill Category 6, the
Test Reporting Process, provides the monitoring and communication processes.

Many test organizations develop “tester’s dashboards” comprised of key indicators to
facilitate this monitoring process. The key indicators on the dashboard are those
measurements which are needed to assure that testing is performed in an effective, efficient
and timely manner. Some of the frequently used key indicators are:

• Budget status
• Schedule status
• Requirements tested correctly
• Requirements tested but not correct
• Severity of recorded defects
• Age of recorded but not corrected defects
• Percentage of test plan completed
• Stakeholders satisfaction

To determine the adequacy of the test process, adequacy must be defined quantitatively. For
example adequacy might define that checkpoints are completed no later than two days
following the checkpoint date. If that standard/goal is met then the test program is deemed to
be adequate. Another adequate test standard/goal might be that all high-priority and medium-
priority requirements are tested, and at least 80% of the low-priority requirements are tested
by implementation date.

2.2.5.1.8 Adequate, not excessive, testing is performed

Implementing defective software is a risk, testing is a control designed to eliminate or
minimize that risk. However, the cost of controls should never exceed the maximum potential
loss associated with risk. For example if the cost of testing requirement X is $10,000 and the
potential loss if requirement X does not work correctly is $500, that testing would not be
warranted. Perhaps a very minimal test that would cost $200 that could reduce the risk from
$500 to $100 would be economically feasible.

Adequate testing needs to be defined to ensure that adequate, but not excessive, testing is
performed. To do this testing must establish guidelines as to what is excessive testing. These
guidelines might include:

• A potential test objective is not wanted by the stakeholders, for example testing the
efficiency of the software when operating on the hardware

• The cost of testing exceeds the potential loss of the risks associated with not testing
• The cost of acquiring and using automated tools exceeds the costs of performing the

same test manually
October 25, 2006 2-25

Guide to the 2006 CSTE CBOK
• Testing is assigned to an individual who does not have the appropriate competencies to
perform the test, and thus would be very inefficient in performing the test

To ensure that testing is not excessive, testers must continually question the value of each test
they perform. They must also look at the magnitude of the risks that are associated with the
software being tested. Once the magnitude of the risks is known, the testers can focus their
limited resources on the high-risk attributes associated with the software.

2.2.5.2 Continuous Improvement

Process improvement is best considered as a continuous process, where the organization
moves continually around an improvement cycle. Within this cycle, improvement is
accomplished in a series of steps or specific actions. An important step in the improvement
cycle is the execution of data gathering to establish the initial state, and subsequently to
confirm the improvements. A testing process assessment is one excellent way to determine the
status of your current test process.

Assessment is the thoughtful analysis of testing results, and then taking
corrective action on the identified weaknesses.

Testing process assessment is a means of capturing information describing the current
capability of an organization’s test process. Assessment is an activity that is performed either
during an improvement initiative or as part of a capability determination. In either case, the
formal entry to the process occurs with the compilation of the assessment input, which defines
the:

• Purpose – why it is being carried out
• Scope – which processes are being assessed and what constraints (if any) apply
• Any additional information that needs to be gathered
• The input also defines the responsibility for carrying out the assessment

Process assessment is undertaken to measure an organization’s current processes. An
assessment may be conducted as a self-assessment, an assisted self-assessment, or an
independent assessment. The assessment may be discrete or continuous. A team with, or
without, tool support typically carries out a discrete assessment manually. A continuous
assessment may use manual methods or automated tools for a data collection. Whatever form
of assessment is used, a qualified assessor who has the competencies required oversees the
assessment.

An assessment is carried out by assessing selected processes against a compatible model of
good engineering practice created from, or mapped to, the defined reference model. The
reference model defines processes characterized by statements of purpose, and attributes that
2-26 October 25, 2006

Building the Test Environment
apply across all processes. The process attributes are grouped into process capability levels
that define an ordinal scale of capability.

The assessment output consists of a set of attribute ratings for each process instance assessed,
and may also include the capability level achieved. Process assessment is applicable in the
following circumstances:

• Understanding the state of processes for improvement
• Determining the suitability of processes for a particular requirement or class of

requirements
• Determining the suitability of another organization’s processes for a particular contract

or class of contracts.

The framework for process assessment:
• Encourages self-assessment
• Takes into account the context in which the assessed process operates
• Produces a set of process ratings (a process profile) rather than a pass or fail result
• Addresses the adequacy of the management of the assessed processes through generic

practices
• Is appropriate across all application categories and sizes of organization

The sophistication and complexity required of a process is dependent upon its context. This
influences how a qualified assessor judges a practice when assessing its adequacy, and
influences the degree of comparability between process profiles.

Within a process improvement context, assessment provides the means of characterizing the
current practice within an organizational unit in terms of capability. Analysis of the results in
the light of business needs identifies strengths, weaknesses, and risks inherent in the
processes. This, in turn, leads to the ability to determine whether the processes are effective in
achieving their goals and to identify significant causes of poor quality or overruns in time or
cost. These provide the drivers for prioritizing improvements to processes.

One of the most commonly identified weaknesses in software testing has been the lack of
facts (metrics), and without facts there is no reason to take action (improvement). Once
appropriate measures are identified, tracked, and analyzed, then a plan for continuous
improvement can be implemented.

It is important to understand that the concept of “measurement first and action second”, is
most effective when the measures are very specific. Measurement must be able to determine
the effect of the actions. For example, the metric approach fulfills this requirement in that it
shows very specific relationships. Using this concept, if action is taken by changing one of the
metric variables, the result of that action can be quickly measured.

Changing the variable in one metric can usually be measured by the changes to another
metric. As another example, if the number of defects detected after the system goes into
production is higher than expected or desirable, then appropriate and timely action should be
taken. That action might be to increase the number of test steps. Obviously, this will increase
October 25, 2006 2-27

Guide to the 2006 CSTE CBOK
testing costs with the objective of improving the quality of the product by reducing defects. If,
after analysis, it is demonstrated that increasing the emphasis on test steps has had the
desirable effect, then these additional steps should be incorporated into the normal testing
process. If the opposite is true, then the action did not produce the desired effect and the time
and resources spent were less than effective and the actions should be discontinued and
another attempted. The process continues until the appropriate and effective improvement
mechanisms are uncovered and included in the normal process.

2.2.5.3 Test Process Improvement Model

A model for test process improvement has these eight steps:

1. Examine the Organization’s Needs and Business Goals
A process improvement program starts with the recognition of the organization’s needs
and business goals, usually based on the main drivers and stimuli identified. From an
analysis of the organizations needs and existing stimuli for improvement, the objectives of
process improvement are identified and described. The final stage of the preliminary
definition of the goals for the improvement program is setting the priorities of the process
improvement objectives.
Once the analysis of the organization’s needs and business goals has been completed, it is
essential to build executive awareness of the necessity for a process improvement
program. This requires both managerial and financial commitments.
The objectives of such a process improvement program should be clearly stated and
understood, and expressed using measurable process goals. The process improvement
program should form part of the organizations overall strategic business plan.

2. Conduct Assessment
The assessment should be conducted according to a documented process. Assessors must
have access to appropriate guidance on how to conduct the assessment and the necessary
competence to use the tools.
Each process is assessed by detailed examination. A rating is assigned and validated for
each process attribute assessed. In order to provide the basis for repeatability across
assessments, the defined set of indicators is used during the assessment to support the
assessors’ judgment in rating process attributes.
Objective evidence based on the indicators that support the assessors’ judgment of the
ratings are recorded and maintained to provide the basis for verification of the ratings.

3. Initiate Process Improvement
The process improvement program is a project in its own right, and planned and managed
accordingly. A plan should be produced at the beginning of the program and subsequently
used to monitor progress. The plan should include the relevant background, history, and
the current status, if possible expressed in specific, numerical terms. The input derived
from the organization’s needs and business goals provide the main requirements for the
plan.
The plan should include a preliminary identification of the scope in terms of the
boundaries for the program and the processes to be improved. The plan should cover all
2-28 October 25, 2006

Building the Test Environment
the process improvement steps, although initially it may give only outline indications of
the later stages. It is important to ensure that key roles are clearly identified; adequate
resources allocated, appropriate milestones and review points established, and all risks are
identified and documented in the plan. The plan should also include activities to keep all
those affected by the improvement informed of progress.

4. Analyze Assessment Output and Derive Action Plan
Information collected during the assessment, in particular the capability level ratings, the
generic practice ratings, and the base practice ratings, is first analyzed, and a plan of action
is derived. This consists of the following activities:

• Identify and prioritize improvement areas.
• Analyze assessment results.

Analysis of the results provides information about the variability as well as current
strengths and weaknesses and indicates opportunities for improvement.

• Analyze the organization’s needs and improvement goals.
The processes and their relationships are analyzed to evaluate which have direct
impact on the goals identified. A priority list of processes to be improved is then
derived.

• Analyze effectiveness measurements.
• Analyze the risks in not achieving improvement goals.

The impact of failing to achieve improvement goals is evaluated in order to
understand the urgency and to set the priority of initiatives.

• Analyze risks of improvement action failure.
The potential risks of failure of an improvement action is analyzed to support the
definition of priorities and to assure commitment and organizational support.

• List improvement areas.
A prioritized list of improvement areas is provided as a result of analyzing all the
factors listed above.

• Define specific improvement goals and set targets.
Targets for improvement should be quantified for each priority area.

• Derive action plan.
A set of actions to improve processes should be developed. Care should be taken to
select a set of actions, which support each other in achieving the complete set of
goals and targets. It is desirable also to include some improvement actions, which
yield clear short-term benefits in order to encourage acceptance of the process
improvement program.

5. Implement Improvements
A process improvement action plan is implemented in order to improve the process.
Implementation may be simple or complex depending on the contents of the action plan
and the characteristics of the organization.
In practice, several process improvement projects will be initiated, each concerned with
implementing one or more process improvement actions. Such projects will often not
October 25, 2006 2-29

Guide to the 2006 CSTE CBOK
cover only initial implementation of improvements. Four main tasks are involved in each
process improvement project:

• Operational approach to implementation.
Where there are alternative operational approaches to implementation, they should
be evaluated and the most suitable selected. It may be possible to implement in
small steps through piloting in a selected unit or throughout the whole organization
at the same time, or somewhere between these two extremes. Among the factors to
consider are costs, time scales, and risks.

• Detailed implementation planning.
A detailed implementation plan is then developed. The process improvement
project may need to carry out a deeper analysis of improvement opportunities than
that already carried out. Those implementing the actions and those affected by
them should be involved, or be consulted, in developing the plan and in evaluating
alternatives, in order to draw both on their expertise and enlist their cooperation.

• Implementing improvement actions.
During this activity, it is critical for successful improvement that due account is
taken of human and cultural factors.

• Monitoring the process improvement project.
The organization’s management against the process improvement project plan
should monitor the process improvement project. Records should be kept for use to
both confirm the improvements, and to improve the process of process
improvement.

6. Confirm Improvements
Management as well as stakeholders must be involved both to approve the results and to
evaluate whether the organization’s needs have been met. If, after improvement actions
have been taken, measurements show that process goals and improvement targets have not
been achieved, it may be desirable to redefine the project or activity by returning to an
appropriate earlier step.

• Improvement targets.
Current measurements of process effectiveness should be used to confirm
achievement of process effectiveness targets. The possibility of having introduced
desirable or undesirable side effects should be investigated.

• Confirm achievement of targets.
A further process assessment should be used to confirm achievement of targets
expressed as process capability levels. Where several improvement projects were
undertaken, however, consideration should be given to a reassessment of wider
scope to check for potential side effects arising from the parallel improvement
actions.

• Organizational culture.
The effect of the improvements on organizational culture should be reviewed to
establish that desired changes have taken place without undesirable side effects.

• Re-evaluate risks.
2-30 October 25, 2006

Building the Test Environment
The organization should re-evaluate the risks of using the improved process to
confirm that they remain acceptable, and if they are not, determine what further
actions are required.

• Re-evaluate cost benefit.
The costs and benefits of the improvements may be re-evaluated and compared
with earlier estimates made. These results are useful to support planning of
subsequent improvement actions.

7. Sustain Improvement Gains
After improvement has been confirmed, the process needs to be sustained at the new level
of performance. This requires management to monitor institutionalization of the improved
process and to give encouragement when necessary. Responsibilities for monitoring
should be defined, as well as how this will be done by using appropriate effectiveness
measurements.
If an improved process has been piloted in a restricted area or on a specific project or
group of projects, it should be deployed across all areas or projects in the organization
where it is applicable. This deployment should be properly planned and the necessary
resources assigned to it. The plan should be documented as part of the process
improvement project plan or the process improvement program plan as appropriate.

8. Monitor Performance
The performance of the process should be continuously monitored. New process
improvement projects should be selected and implemented as part of a continuing process
improvement program, since additional improvements are always possible.

• Monitoring performance of the process.
The performance of the process should be monitored as it evolves over time. The
effectiveness and conformance measures used for this should be chosen to suit the
organization’s needs and business goals, and should be regularly reviewed for
continuing suitability. The risks to the organization and its products from using the
process should also be monitored and action taken as risks materialize or become
unacceptable.

• Reviewing the process improvement program.
Management should review the process improvement program regularly. Further
process assessments can be an important component of the continuing
improvement program. The extent to which improved processes have been
institutionalized should be considered before scheduling further process
assessments. It may be more cost-effective to delay assessing a process until
improvements have been fully deployed, rather than expend resources assessing a
process, which is in transition, when the results can be difficult to interpret.

The bottom line of assessment is making application system testing more effective. This is
performed by a careful analysis of the results of testing, and then taking action to correct
identified weaknesses. Facts precede action, and testing in many organizations has suffered
from the lack of facts. Once those facts have been determined, action should be taken.
October 25, 2006 2-31

Guide to the 2006 CSTE CBOK
The “measurement first, action second” concept is effective when the measurement process is
specific. Measurement must be able to determine the effect of action. For example, the metric
approach fulfills this requirement in that it shows very specific relationships. Using this
concept, if action is taken by changing one of the metric variables, the result of that action can
be quickly measured.

Changing the variable in one metric can normally be measured by the change in another
metric. For example, if the number of defects detected after the system goes operational is
higher than desirable, then action should be taken. The action taken might be to increase the
number of instructions exercised during testing. Obviously, this increases test cost with the
hopeful objective of reducing undetected defects prior to operation. On the other hand, if
increasing the number of instructions executed does not reduce the number of defects
undetected prior to production, then those resources have not been used effectively and that
action should be eliminated and another action tried.

Using the measurement/action approach, the variables can be manipulated until the desired
result is achieved. Without the measurement, management can never be sure that intuitive or
judgmental actions are effective. The measurement/action approach works and should be
followed to improve the test process.

2.2.5.4 Test Process Alignment

In establishing the test environment management must assure that the mission/goals of the test
function are aligned to the mission/goals of the organization. For example if a goal of the
organization is to have high customer satisfaction, then the mission/goal of the test function
would be to do those activities which lead to high customer satisfaction of the testers
customers. This may mean that they focus testing more on what the customer needs, as
opposed to the defined specifications.

Figure 2-3 is an example of how that alignment occurs. This figure is a test process alignment
map. The objective of the map is to assure that the test processes are aligned with the
organizational user testing goals. One axis of the matrix lists the organizational user testing
goals, and the other axis the test processes. A determination is then made as to whether or not
a specific test process contributes to an organizational and/or user testing goal. In this example
a check-mark is put in the intersection indicating which test process contributes to which goal.
2-32 October 25, 2006

Building the Test Environment

Figure 2-3 Example of a Test Process Alignment Map

The assessment of this map is two-fold:

1. To determine that there are adequate processes in place to achieve the goal

2. To determine that there are no goals without processes or processes that do not contribute
to defined goals

2.2.5.5 Adapting the Test Process to Different Software Development
Methodologies

In the initial days of software development, testing was considered a phase of development.
The testing phase began after software was developed. However, that proved to be a very
costly approach as the cost of correcting defects rose significantly as the development process
proceeded. Many have estimated that it costs ten times as much to correct a defect found in a
test phase, than if that same defect had been found during the requirements phase.

When testing is viewed as a life cycle activity, it becomes an integral part of the development
process. In other words as development occurs testing occurs in conjunction with
development. For example, when requirements are developed, the testers can perform a
requirements review to help evaluate the completeness and correctness of requirements. Note
that testers may be supplemented with subject matter experts in some of these tests, such as
including users in a requirements review.

Understanding the software development process used in his/her organization is important in
conducting software testing for the following three reasons:

1. Understanding the developmental timetable and deliverables.
If testers are going to perform test activities throughout the development process they
need to know what developmental products will occur at what time. For example, if testers

Test Processes

Organizational
and User Testing

Goals
Risk Analysis Test Planning Test Data

Preparation Test Reporting Measurement of
Results

Software meets
requirements √ √ √

Software meets
user needs √ √ √ √

Software easy to
use √ √ √

Five sigma defects
in operational
software

√ √ √ √
October 25, 2006 2-33

Guide to the 2006 CSTE CBOK
plan on performing a requirements review, they need to understand the requirements
document, and when those documents will be available for testing

2. Integrating the software testing process with the development process
The test process is in fact a mirror image of the development process. Later in this
category you will review an eleven-step software testing process that is related to the
development process. Until the development process is known, the test process cannot be
appropriately created and integrated into the development process. This integration is
important so that adequate time and resources are allocated for both building the software
and testing the software.

3. Understanding how software is developed
It is difficult to effectively test the product if you don’t know how the product was
developed. It is for this reason that we differentiate white-box testing from black- box
testing. If the tester is going to effectively perform white-box testing they need to
understand the process by which the software products were developed. If they do not
understand the process by which software is developed, they become forced to emphasize
black-box testing.

There are literally thousands of software development and testing processes. A study a
number of years ago indicated that in the United States alone there were 50,000 different
software applications for calculating payroll. If a common business activity such as payroll
can be performed using 50,000 different variations, there is no reason to suspect that there
aren’t 50,000 variations for building and testing software.

While there may be literally thousands of software development methodologies, the book
“Quality Software Project Management” published by the Software Quality Institute,
describes the following six major categories of developmental methodologies and then
indicates the advantages and disadvantages of each.

• Waterfall - The waterfall methodology is the oldest software development
methodology. It follows a logical progression of defining requirements, designing the
system, building the system, testing the system, and placing the system in operation. It
is primarily used for the development of systems that do batch processing. The
waterfall methodology assumes that at the end of the requirements phase the
requirements for development are known.

• Prototype - The prototype methodology assumes that the user does not have a rigid
definition of requirements. Prototyping applies an “I’ll know it when I see it”
environment and produces an operational methodology of the user’s requirements
currently defined. The user can then see the system in operation and make changes for
another generation or prototype of the system. The development of prototype versions
continues until the user believes the system contains the requirements desired by the
user. Used alone, the prototype methodology lacks the necessary controls to ensure
correct and high-quality processing.

• Rapid Application Development (RAD) - The objective of the RAD methodology is
a quick turnaround time with emphasis on requirements definition, which is
accomplished by heavy user involvement throughout all developmental phases. RAD
2-34 October 25, 2006

Building the Test Environment
makes extensive use of developmental tools. Much of its effectiveness and reduced
cycle time is due to rapid movement from one phase of development to the next.

• Spiral - The spiral methodology focuses on objectives, alternatives, constraints, and
risks. The spiral methodology, like RAD, heavily involves the user. At each part of the
spiral, development, the risks, constraints, and alternative methods are evaluated. The
objective is to use the best possible system from a business perspective, although
development may require a longer developmental cycle than RAD.

• Incremental - The objective of the incremental methodology is to develop the system
in parts (or increments). It is effective when single parts of the system can be used
immediately without the full system being developed or when a particular part is
critical to the success of the overall system, but there is some uncertainty as to whether
that part can be effectively developed. The incremental method can be effective in
reducing the risk of investing and building an entire system when the outcome is
questionable.

• The V Methodology - The V methodology is mostly associated with software testing.
It develops two processes: one for building the system and one for testing the system.
The two processes are then interrelated as a V methodology. The V shows
development on one side and testing on the other side. For example, during the
requirements stage of development, the software acceptance testing side is developed.
The V methodology assumes that approximately one-half of the total development
effort will be spent on testing. The V then integrates testing so that testing is more
effective and defects are uncovered earlier in the developmental process.

Testers testing software developed by a specific software development methodology need to:

1. Understand the methodology

2. Understand the deliverables produced when using that methodology

3. Identify compatible and incompatible test activities associated with the developmental
methodology

4. Customize the software test methodology to effectively test the software based on the spe-
cific developmental methodology used to build the software

In customizing the software testing process to the different methodologies the tester needs to
know:

• Will the users be involved in the developmental process?
• Do the users understand this developmental process?
• Are the user’s experts in their business activity?
• Is this project an enhancement to an existing software system developed using another

methodology?
• Is high reliability an important aspect of this software development project and does

the selected developmental methodology assure high reliability?
• Is the amount of changes expected to be implemented in the software system

consistent with the capabilities of developmental methodology?
October 25, 2006 2-35

Guide to the 2006 CSTE CBOK
2.3 Test Tools
It is difficult to perform testing economically without the aid of automated tools. For example
regression testing without a capture-playback tool would be very difficult to achieve
manually. However, it is important that tools are selected to support the test methodology and
thus their use should be mandatory and not optional.

The most important aspect of software testing tools is the process used to acquire those tools.
Most of this component of the environment will focus on acquiring or developing testing
tools.

2.3.1 Tool Development and Acquisition
The procedures developed for testers to follow during testing should include testing tools and
techniques. The testing organization should select which testing tools and techniques they
want used in testing, and then incorporate their use into testing procedures. Thus, tool and
technique usage is not optional but rather mandatory. However, a procedure could include
more than one tool and give the tester the option to select the most appropriate given the
testing task to be performed.

A tool is a vehicle for performing a test process. The tool is a resource to the tester, but by
itself is insufficient to conduct testing. For example, a hammer is a tool but until the technique
for using that hammer is determined, the tool will lie dormant.

A testing technique is a process for ensuring that some aspect of an applications system or unit
functions properly. There are few techniques but many tools. For example, a technique would
be the advantage provided by swinging an instrument to apply force to accomplish an
objective e.g., the swinging of a hammer to drive in a nail. The hammer is the tool used by
swinging to drive in the nail. On the other hand, a swinging technique can also be used to split
a log using an axe or to drive a stake in the ground with a sledgehammer.

The concept of tools and techniques is important in the testing process. It is a combination of
the two that enables the test process to be performed. The tester should first understand the
testing techniques and then understand the tools that can be used with each of the techniques.

There are many tools available to support the testing process, from simple checklists to defect
tracking tools and automated regression tools. The Test Manager plays a key role in the
identification, selection, and acquisition of automated tools. This section’s discussion
describes one acquisition process that may be used.

The management of any significant project requires the work be divided into tasks for which
completion criteria can be defined. To permit orderly progress of the activities, the
introduction of a test tool, and the scheduling of these events must be determined in advance.
A general outline for such a schedule is discussed in “2.3.1.1 Sequence of Events to Select
Testing Tools” on page 2-39. The actual calendar time schedule will depend on many factors,
particularly on the time required for procurement of the tool and training. One format used for
2-36 October 25, 2006

Building the Test Environment
the event sequence is consistent with the Critical Path Method (CPM) of project scheduling
and can be used to develop the optimum calendar time schedule.

Most of the activities included in the event sequence are obviously necessary, but a few are
included specifically to avoid the difficulties encountered when tools are obtained "through
the side door" without adequate consideration of the resources required for the effective
employment of the tool and without determination by a responsible manager that the tool will
serve a primary need of the organization. Tools acquired without managerial approval are
seldom used in an optimal way and are sometimes discarded. Experiences of this type are not
conducive to gaining widespread acceptance of tools in the smaller programming
environments where the activities required for the introduction of tools will impose, under the
best of circumstances, a severe drain on resources. A key feature of the proposed approach is,
therefore, that tool usage will be initiated only in response to an expressed management goal
for software development or for the entire computing function.

Difficulties surrounding the introduction of tools can arise in three areas:
• Organizational obstacles
• Problems arising from the tools
• Obstacles in the computer environment

The individual activities described below, as well as the ordering of the event sequence, are
designed to eliminate as many of these difficulties as possible. They are most effective with
regard to organizational obstacles and probably least effective with regard to obstacles in the
computer environment. The need for involving a responsible management level in the tool
introduction has already been mentioned, and this is, indeed, the key provision for avoiding
organizational obstacles. "Responsible management" is that level that has the authority to
obligate the resources required for the introduction process.

The scope of the resource requirement will become clearer after all introduction activities
have been described. Because one criterion for the selection of a tool is its ability to commit
funds, the management level that can commit funds is hereafter referred to as funding
management. In other organizations, this may be the project management, functional
management, or department management.

The activities associated with the introduction of tools should include these activities:
• Identifying the goals to be met by the tool (or by the technique supported by the tool),

and assigning responsibility for the activities required to meet these goals.
• Approving a detailed tool acquisition plan that defines the resource requirements for

procurement and in-house activities.
• Approving the procurement of tools and training, if this is not explicit in the approval

of the acquisition plan.
• Determining, after some period of tool use, whether the goals have been met.

The management of the organization that will introduce the tool must overcome additional
organizational obstacles. A pitfall that must be avoided is assigning the details of the tool
acquisition as a sideline to an individual who carries many other responsibilities. Even in a
October 25, 2006 2-37

Guide to the 2006 CSTE CBOK
small software organization (up to 14 programmers), it should be possible to make the tool
introduction the principal assignment of an experienced individual with adequate professional
background. This person is referred to as the Tool Manager. In medium-size organizations (15
to 39 testers), several individuals may be involved in deploying a test tool.

Obstacles arising from the tools themselves are expected to be avoided in the event sequence
by a careful, methodical selection of tools. In particular, distinct contributions to the tool
selection are specified for test management and the Test Manager.

Test management is assigned responsibility for:
• Identifying tool objectives
• Approving the acquisition plan (it may also require approval by funding management)
• Defining selection criteria
• Making the final selection of the tool or the source

The Test Manager is responsible for the following activities (note that a selection group for
the more important test tools may assist the Tool Manager):

• Identifying candidate tools
• Applying the selection criteria (in informal procurement) or preparing the RFP (in

formal procurement)
• Preparing a ranked list of tools or sources
• Conducting any detailed evaluations or conference room pilots

Further, the ultimate user of the tool is involved in the recommended event sequence in
reviewing either the list of candidate tools or, for formal procurement, the tool requirements.

This distribution of responsibilities reduces the chances of selecting a tool that:
• Does not meet the recognized needs of the organization
• Is difficult to use
• Requires excessive computer resources
• Lacks adequate documentation

The repeated exchange of information required by the process outlined above will also avoid
undue emphasis on very short-term objectives that may lead to the selection of a tool based on
availability rather than suitability.

The obstacles to tool usage that reside in the computer environment are primarily due to the
great diversity of computer architectures and operating system procedures, and to the lack of
portability in most software tools. Activities associated with the introduction of tools can only
modestly alleviate these difficulties.
2-38 October 25, 2006

Building the Test Environment
2.3.1.1 Sequence of Events to Select Testing Tools

The event sequence provides the following help in this area:

1. Employ a methodical process of identifying candidate tools and selecting among these
based on established criteria. This will avoid some of the worst pitfalls associated with
"borrowing" a tool from an acquaintance or procuring one from the most accessible or per-
suasive tool vendor.

2. Determine the assignment and training of a Tool Manager who can make minor modifica-
tions to both the computer environment and the tool. This is expected to provide relief
where there are version-related or release-related incompatibilities with the operating sys-
tem, or where the memory requirements of the tool exceed the capabilities of the installa-
tion. In the latter case, remedies may be provided by removing tool options or by
structuring the tool program into overlays.

The event sequence described below is conceived as a procedure generally applicable to the
introduction of tools. For this reason, a systematic reporting of the experience with the
introduction process as well as with the tool is desirable. The evaluation plan and the
evaluation report specified in the event sequence support these goals.

2.3.1.1.1 Recommended Event Sequence

The event sequence described below is applicable to both small and large IT tool
environments. Because of differences in tool requirements, personnel qualifications, and
organizational structure, some differences in the content of the individual events will be
expected. The event sequence addresses only the introduction of existing tools. Where a
newly developed tool is introduced, a considerable modification of the activities and their
sequence will be necessary.

The recommended event sequence allows for two procurement methods for bids:

1. Informal procurement (by purchase order)

2. Formal procurement (by a request)

Obviously, the latter is much more time-consuming, but it may lead to the procurement of
better or cheaper tools. Acquisition of tools from the purchasing department or from
government agencies should follow the informal procurement steps even when there is no
procedural requirement for this. As mentioned above, tool acquisitions, which do not obtain
the concurrence of all affected operational elements frequently, do not achieve their
objectives.

Some steps are shown which can be combined or eliminated where less formal control is
exercised or where plans or modifications required for the introduction of a tool are available
from a prior user. The event sequence is intended to cover a wide range of applications. It was
constructed with the thought that it is easier for the tool user to eliminate steps than to be
confronted with the need for adding some that had not been covered in this section.
October 25, 2006 2-39

Guide to the 2006 CSTE CBOK
2.3.1.1.2 Event 1: Goals

The goals should be identified in a format that permits later determination that they have been
met (see “2.3.1.1.15 Event 14: Determine if Goals Are Met” on page 2-47).

Typical goal statements are:
• Reduce the average test time by one-fifth.
• Achieve complete interchangeability of test data sets.
• Adhere to an established standard for documentation format.

The goals should also identify responsibilities, in particular, the role that project development
may have and coordination with other activities. Where a decentralized management method
is employed, the goals may include a not-to-exceed budget and a desired completion date.
Once these constraints are specified, funding management may delegate the approval of the
acquisition plan to a lower level.

2.3.1.1.3 Event 2: Tool Objectives

The goals generated in Event 1 are translated into desired tool features and requirements
arising from the development and operating environment. Constraints on tool cost and
availability may also be added at this event.

Typical test tool objectives are:
• The tool must run on our ABC computer under XOSnn.
• Only tools that have been in commercial use for at least one year and at no less than N

different sites shall be considered.

At this point, the sequence continues with either Event 2: A or Event 2: B.

Event 2: A Acquisition Activities for Informal Procurement

Event 2: A1 – Acquisition Plan
The acquisition plan communicates the actions of test management both upward
and downward. The plan may also be combined with the statement of the tool
objectives created in Event 2. The acquisition plan should include:

• Budgets and schedules for subsequent steps in the tool introduction.

• Justification of resource requirements in light of expected benefits.

• Contributions to the introduction expected from other organizations (e.g.,
the tool itself, modification patches, or training materials).

• Assignment of responsibility for subsequent events within the IT
organization, particularly the identification of the Test Manager.

• Minimum tool documentation requirements.
2-40 October 25, 2006

Building the Test Environment
Event 2: A2 – Selection Criteria
The criteria should include ranked or weighted attributes that will support effective
utilization of the tool by the user. Typical selection criteria are:

• Accomplishment of specified tool objectives

• Ease of use

• Ease of installation

• Minimum processing time

• Compatibility with other tools

• Low purchase or lease cost

• Documentation, Training, and Support availability

Most of these criteria need to be factored further to permit objective evaluation,
but this step may be left up to the individual who does the scoring. Together with
the criteria (most of which will normally be capable of a scalar evaluation),
constraints, which have been imposed by the preceding events or are generated at
this step, should be summarized.

Event 2: A3 – Identify Candidate Tools
This is the first event for which the Test Manager is responsible. The starting point
for preparing a listing of candidate tools is a comprehensive tool catalog. A
desirable but not mandatory practice is to prepare two lists:

• The first list contains all tools meeting the functional requirements without
considering the constraints. For the viable candidates, literature should be
requested from the supplier and examined for conformance with the given
constraints.

• The second list contains tools that meet both the functional requirements
and the constraints. If this list does not have an adequate number of entries,
relaxation of some constraints will have to be considered.

Event 2: A4 – User Review of Candidates
The user(s) reviews the list of candidate tools prepared by the Test Manager.
Because few users can be expected to be very knowledgeable in the software tools
area, specific questions may need to be raised by the Tool Manager, such as: "Will
this tool handle the present file format? Are tool commands consistent with those
of the editor? How much training will be required?”
Adequate time should be budgeted for this review and a due date for responses
should be indicated. Because the user views this as a far-term task, of lower
priority than many immediate obligations, considerable follow-up by the Tool
Manager will be required. If tools can be obtained for trial use, or if a
October 25, 2006 2-41

Guide to the 2006 CSTE CBOK
demonstration at another facility can be arranged, it will make this step much more
significant.

Event 2: A5 – Score Candidates
For each of the criteria previously identified, a numerical score is generated on the
basis of the following:

• Information obtained from a vendor's literature.

• Demonstration of the tool.

• The user's review.

• Observation in a working environment.

• Comments of prior users.

If weighting factors for the criteria are specified, the score for each criterion is
multiplied by the appropriate factor and the sum of the products represents the
overall tool score. Where only a ranking of the criteria was provided, the outcome
of the scoring may be simply a ranking of each candidate under each criteria
heading. Frequently, a single tool is recognized as clearly superior in this process.

Event 2: A6 – Select Tool
This decision is reserved for test management in order to provide review of the
scoring, and to permit additional factors that were not expressed in the criteria to
be taken into consideration. For example, a report might just have been received
from another organization to which the selected vendor did not provide adequate
service. If the selected tool did not score highest, the Tool Manager should have an
opportunity to review the tool characteristics thoroughly to avoid unexpected
installation difficulties.
The tool selection concludes the separate sequence for informal procurement for “
Event 2: B Acquisition Activities for Formal Procurement.” Continue with “Event
3: Procure Tool” on page 2-44.

Event 2: B Acquisition Activities for Formal Procurement

Event 2: B1 – Acquisition Plan
The plan generated here must include all elements mentioned under Event 2: A1,
plus:

• The constraints on the procurement process.

• The detailed responsibilities for all procurement documents (statement of
work, technical and administrative provisions in the request for proposal
(RFP), etc.).
2-42 October 25, 2006

Building the Test Environment
Event 2: B2 – Technical Requirements Document
The technical requirements document is an informal description of the tool
requirements and the constraints under which the tool has to operate. It will utilize
much of the material from the acquisition plan but should add enough detail to
support a meaningful review by the tool user.

Event 2: B3 – User Review of Requirements
The user reviews the technical requirements for the proposed procurement. As in
the case of Event 2: A4 – User Review of Candidates, the user may need to be
prompted with pertinent questions, and there should be close management follow-
up in order to get a timely response.

Event 2: B4 – RFP Generation
From the Technical Requirements Document and its user comments, the technical
portions of the RFP can be generated. Usually these include:

• Specification

This should include applicable documents, a definition of the operating
environment, and the quality assurance provisions.

• Statement of Work

This should state any applicable standards for the process by which the tool is
generated (e.g., configuration management of the tool), and documentation or test
reports to be furnished with the tool. Training and operational support
requirements are also identified in the Statement of Work.

• Proposal Evaluation Criteria and Format Requirements

Evaluation criteria are listed in the approximate order of importance. Restrictions
on proposal format (major headings, page count, and desired sample outputs) may
also be included.

Event 2: B5 – Solicitation of Proposals
Administrative and purchasing personnel carry out this activity. Capability lists of
potential sources are maintained by most purchasing organizations. Where the
software organization knows of potential bidders, their names should be made
known to the procurement office. When responses are received, they are screened
for compliance with major legal provisions of the RFP.

Event 2: B6 – Technical Evaluation should be Consistent
Each of the proposals received in response to the RFP is evaluated against the
criteria previously established. Failure to meet major technical requirements can
lead to outright disqualification of a proposal. Those deemed to be in the
“competitive range" are assigned point scores. These point scores are used together
with cost and schedule factors that are being separately evaluated by
administrative personnel.
October 25, 2006 2-43

Guide to the 2006 CSTE CBOK
Event 2: B7 – Source Selection
On the basis of the combined cost, schedule, and technical factors, a source for the
tool is selected. If this was not the highest-rated technical proposal, prudent
management will require additional reviews by test management and the Tool
Manager to determine that it is indeed acceptable.
The source selection concludes the separate sequence for formal procurement for
“2.3.1.1.3 Event 2: Tool Objectives.” Continue with 2.3.1.1.4 Event 3: Procure
Tool below.

2.3.1.1.4 Event 3: Procure Tool

In addition to determining whether the cost of the selected tool is within the approved budget,
the procurement process also:

• Considers the adequacy of licensing and other contractual provisions and compliance
with the "fine print" associated with all the organization’s procurements.

• Identifies the vendor's responsibility for furnishing the source program, meeting
specific test and performance requirements, and tool maintenance.

In informal procurement, a period of trial use may be considered if this has not already taken
place under one of the previous events.

If the acquisition plan indicates the need for outside training, the ability of the vendor to
supply the training and the cost advantages from combined procurement of tool and training
should be investigated. If substantial savings can be realized through simultaneous purchase
of tool and training, procurement may be held up until outside training requirements are
defined. See “2.3.1.1.7 Event 6: Training Plan” on page 2-45).

2.3.1.1.5 Event 4: Evaluation Plan

The evaluation plan is based on the goals identified in “2.3.1.1.3 Event 2: Tool Objectives”
and the tool objectives derived from these in “2.3.1.1.3 Event 2: Tool Objectives.” It describes
how the attainment of these objectives is to be evaluated for the specific tool selected. Typical
items to be covered in the plan are:

• Milestones for installation
• Dates
• Performance levels for the initial operational capability and for subsequent

enhancements
• Identify the reports and supporting data that address expected improvements in

throughput, response time, or turnaround time
• Assign responsibility for tests, reports, and other actions
• A topical outline of the evaluation report

The procedure for the acceptance test is a part of the evaluation plan, although in major tool
procurement it may be a separate document. It lists the detailed steps necessary to test the tool
in accordance with the procurement, provisions when it is received, to evaluate the interaction
2-44 October 25, 2006

Building the Test Environment
of the tool with the computer environment (e.g., adverse effects on throughput), and for
generating an acceptance report.

2.3.1.1.6 Event 5: Implementation Plan

The plan will describe the responsibilities and tasks for the implementation of the tool, and the
training that will be required. An experienced system programmer, familiar with the current
operating system, should do the implementation. Training in the operation and installation of
the selected tool in the form of review of documentation, visits to current users of the tool, or
training by the vendor must be arranged.

2.3.1.1.7 Event 6: Training Plan

The training plan should first consider the training inherently provided with the tool, (e.g.,
documentation, test cases, online diagnostics, Help.) These features may be supplemented by
standard training aids supplied by the vendor for Internet and in-house training such as audio
or videocassettes and lecturers.

Because of the expense, training sessions at other locations should be considered only when
none of the previous categories is available. The number of personnel to receive formal
training should also be specified in the plan, and adequacy of in-house facilities (number of
terminals, computer time, etc.) should be addressed. If training by the tool vendor is desired,
this should be identified as early as possible to permit training to be procured with the tool
(see “2.3.1.1.4 Event 3: Procure Tool” on page 2-44).

User involvement in the preparation of the training plan is highly desirable, and coordination
with the user is considered essential. The training plan is normally prepared by the Tool
Manager and approved by test management.

Portions of the plan should be furnished to procurement staff if outside personnel or facilities
are to be utilized.

2.3.1.1.8 Event 7: Tool Received

The tool is turned over by the procuring organization to the Tool Manger or systems
programmer.

2.3.1.1.9 Event 8: Acceptance Test

The Tool Manager and test staff test the tool. This is done as much as possible in an "as
received" condition with only those modifications made that are essential for bringing it up on
the host computer. A report on the test is issued. After approval by test management, it
constitutes the official acceptance of the test tool.

2.3.1.1.10 Event 9: Orientation

When it’s determined that the tool has been received in a satisfactory condition, test
management holds an orientation meeting for all personnel involved in the use of the tool and
October 25, 2006 2-45

Guide to the 2006 CSTE CBOK
tool products (reports or listings generated by the tool). The main purpose is to communicate
as directly as possible the objectives of the tool use, such as increased throughput or improved
legibility of listings.

Highlights of the evaluation plan should also be presented, and any changes in duties
associated with the introduction of the tool should be described. Personnel should be
reassured that allowance will be made for problems encountered during the introduction, and
the full benefits of the tool may not make themselves felt for some time.

2.3.1.1.11 Event 10: Modifications

The systems programmer and Tool Manager carry out this step in accordance with the
approved toolsmithing plan. It includes modifications of the following:

• The Tool
Typical tool modifications involve deletion of unused options, changes in prompts or
diagnostics, and other adaptations made for efficient use in the prevailing
environment. Documentation of the modifications is an essential part of this event.

• Documentation
Vendor literature for the tool is reviewed in detail and is tailored for the prevailing
computer environment and for the tool modifications that have been made. Deleting
sections that are not applicable can be just as useful as adding material that is required
for the specific programming environment. Unused options shall be clearly marked or
removed from the manuals. If there is some resident software for which the tool should
not be used (e.g., because of language incompatibility or conflicts in the operating
system interface), warning notices should be inserted into the tool manual.

• Operating system
In rare cases some modification of the computer proper may also be necessary
(channel assignments, etc.).

2.3.1.1.12 Event 11: Training

Training is a joint responsibility of the Tool Manager and the tool user. The former is
responsible for the content (in accordance with the approved training plan), and the latter
should have control over the length and scheduling of sessions.

Training is an excellent opportunity to motivate the user to utilize the tool. The tool user
should have the privilege of terminating steps in the training that are not helpful and extending
portions that are helpful and need greater depth. Training is not a one-time activity. Retraining
or training in the use of additional options after the introductory period is desirable. This also
provides an opportunity for users to talk about problems with the tool.

2.3.1.1.13 Event 12: Use in the Operating Environment

The first use of the tool in the operating environment should involve the most qualified test
personnel and minimal use of options. The first use should not be on a project with tight
2-46 October 25, 2006

Building the Test Environment
schedule constraints. Any difficulties resulting from this use must be resolved before
expanded service is initiated. If the first use is successful, use by additional personnel and use
of further options may commence.

User comments on training, first use of the tool, and use of extended capabilities are prepared
and furnished to the Tool Manager. Desired improvements in the user interface, speed or
format of response and utilization of computer resources are appropriate topics. Formal
comments may be solicited shortly after the initial use, after six months, and again after one
year.

2.3.1.1.14 Event 13: Evaluation Report

The Tool Manager prepares the evaluation report, using the outline generated in “2.3.1.1.5
Event 4: Evaluation Plan” on page 2-44. The report should include:

• User comments and observations of the systems programmer.
• Whether the general goals and tool objectives were met.
• Observations on the installation and use of the tool.
• Cooperation received from the vendor in installation or training.
• Any other "lessons learned.”
• Tool and host computer modifications.
• A section of comments useful to future users of the tool.

The report is approved by test management and preferably also by funding management.

2.3.1.1.15 Event 14: Determine if Goals Are Met

Funding management receives the evaluation report and determines whether the goals
established in “2.3.1.1.5 Event 4: Evaluation Plan” on page 2-44 have been met. This
determination shall be in writing and include:

• Attainment of technical objectives.
• Adherence to budget and other resource constraints.
• Timeliness of the effort.
• Cooperation from other departments.
• Recommendations for future tool acquisitions.

2.3.2 Classes of Test Tools
“2.3.1.1.13 Event 12: Use in the Operating Environment” in the Tool Development and
Acquisition Process involves using the tool in an operating environment. However, the
preceding events prepare the organization for using the tool effectively, and the latter events
assure that the appropriate tool has been selected.
October 25, 2006 2-47

Guide to the 2006 CSTE CBOK
There are literally hundreds of tools available for testers. Some are relatively simple and
available at no charge on the Internet; others are very expensive and require extensive training
and skills to be used effectively. Because tools change rapidly, older tools being deleted and
new ones being added, testers cannot be expected to know the totality of test tools available in
the marketplace.

While there are no generally accepted categories of test tools, experience has shown that the
most commonly used tools can be grouped into these eight areas:

• Automated Regression Testing Tools
Tools that can capture test conditions and results for testing new versions of the
software.

• Defect Management Tools
Tools that record defects uncovered by testers and then maintain information on those
defects until they have been successfully addressed.

• Performance/Load Testing Tools
Tools that can “stress” the software. The tools are looking for the ability of the
software to process large volumes of data without either losing data, returning data to
the users unprocessed, or have significant reductions in performance.

• Manual Tools
One of the most effective of all test tools is a simple checklist indicating either items
that testers should investigate, or to enable testers to ensure they have performed test
activities correctly. There are many manual tools such as decision tables, test scripts to
be used to enter test transactions and checklists for testers to use when performing
such testing techniques as reviews and inspections.

• Traceability Tools
One of the most frequently used traceability tools is to trace requirements from
inception of the project through operations.

• Code Coverage
Tools that can indicate the amount of code that has been executed during testing. Some
of these tools can also identify non-entrant code.

• Test Case Management Tools
This category includes test generators and tools that can manage data being processed
for online assistance.

• Common tools that are applicable to testing
Testers have access to a variety of work tools, many included with operating software
such as “Windows.” These include such things as word processing, spreadsheets,
computer graphics used for reporting and status checking, and tools that can measure
the reading difficulty of documentation.
2-48 October 25, 2006

Building the Test Environment
Most testing organizations agree that if the following three guidelines are adhered to tool
usage will be more effective and efficient.

• Guideline 1
Testers should not be permitted to use tools for which they have not received formal
training.

• Guideline 2
The use of test tools should be incorporated into test processes so that the use of tools
is mandatory, not optional.

• Guideline 3
Testers should have access to an individual in their organization, or the organization
that developed the tool, to answer questions or provide guidance on using the tool.

2.4 Testers Competency
Test competency is a direct responsibility of the individual and the organization that employs
that individual. However, the individual has the primary responsibility to ensure that his/her
competencies are adequate and current. For example, if a tester today was testing Cobol
programs, and that tester had no other skill sets than testing Cobol programs, the probability
of long-term employment in testing is minimal. However, if that individual maintains current
testing competencies by activities such as pursuing the CSTE designation, learning new
testing tools and techniques, that individual is prepared for new assignments, new job
opportunities and promotions.

Test competency is based on two criteria. The first is the skill sets possessed by that
individual; for example, skills in writing test plans and using specific test tools. The second is
performance; for example, how those skills are applied to real-world test situations. An
individual may possess the skills necessary to write a test plan but when assigned to a testing
project, can that individual actually write an effective and efficient test plan?

The certifications offered by the Software Certifications organization parallel these two
competency criteria. The initial certification such as the CSTE is focused on skill sets. The
advanced certifications such as the Certified Manger of Software Testing and the Certified
Innovator of Software Testing are focused on the performance competency of the individual.

Software testing organizations should develop a road map for testers to pursue to advance
their competencies. The road map will have two paths:

• Skill Sets
This path will define the totality of skills that will be needed by the testing
organization and the sequence in which those skills should be learned. For example, an
individual might learn how to prepare test data before they learn how to write test
plans.
October 25, 2006 2-49

Guide to the 2006 CSTE CBOK
• Performance Skills
This path must show individuals that they must be able to perform on the job, and the
sequence in which they must learn how to perform those tasks. For example, they must
learn how to create effective test data before they can learn how to write effective and
efficient plans.

The skill sets are evaluated primarily on academic standards. For example, “Have you gone to
and received a certificate from a course on a specific testing tool?” Evaluating performance is
usually based on results. For example, “Can you create X testing transactions within a
specified time period?”

Figure 2-4 Measuring the Competency of Software Testers is typical of how a software testing
organization may measure an individual tester’s competency. This type of chart is developed
by Human Resource organizations to be used in performance appraisals. Based on the
competency assessment in that performance appraisal, raises and promotions are determined.

Individuals should use their organization’s training paths to build their competencies for their
specific organization. However, individuals should also use the CSTE CBOK as what might
be necessary to obtain better positions and have greater software testing competencies.

Figure 2-4 Measuring the Competency of Software Testers
2-50 October 25, 2006

Managing the Test Project
oftware testing is a project with almost all the same attributes as a software
development project. Software testing involves project planning, project staffing,
scheduling and budgeting, communicating, assigning and monitoring work, and
ensuring that changes to the project plan are incorporated into the test plan.

3.1 Test Administration
Test administration is managing the affairs of software testing. It assures what is needed to test
effectively for a software project will be available for the testing assignment. Specifically this
section addresses:

• Test Planning – assesses the software application risks, and then develops a plan to
determine if the software minimizes those risks.

• Budgeting – the resources to accomplish the test objectives.
• Scheduling – dividing the test project into accountable pieces and establishing start

and completion dates.
• Staffing – obtain the testers to achieve the plan.
• Customization of the test process – determining whether or not the standard test

process is adequate for a specific test project, and if not, customizing the test process
for the project.

Test Administration 3-1
Test Supervision 3-11
Test Leadership 3-29
Managing Change 3-36

Skill
Category

3

S

October 25, 2006 3-1

Guide to the 2006 CSTE CBOK
Logically the test plan would be developed prior to the test schedule and budget. However,
testers may be assigned a budget and then build a test plan and schedule that can be
accomplished within the allocated budget. The discussion in this skill category will discuss
planning, scheduling and budgeting as independent topics, although they are all related.

The five key tasks for test project administration are the planning, budgeting, scheduling,
staffing, and customization of the test process if needed. The plan defines the steps of testing,
the schedule determines the date testing is to be completed, the budget determines the amount
of resources that can be used for testing and staffing, and the test process customization
assures the test process will accomplish the test objectives.

Because testing is part of a system development project its plan, budget, and schedule cannot
be developed independently of the overall software development plan, budget and schedule.
The build component and the test component of software development need to be integrated.
In addition, these plans, schedules and budgets may be dependent on available resources from
other organizational units, such as user participation.

Each of these five items should be developed by a process: processes for developing test
planning, budgeting, scheduling, staffing, and test process customization. The results from
those processes should be updated throughout the execution of the software testing tasks. As
conditions change so must the plan, budget, schedule, and test process change. These are
interrelated variables. Changing one has a direct impact on the other three.

3.1.1 Test Planning
Test planning is a major component of software testing. It is covered in detail in Skill
Category 4. That category provides the process for developing the test plan and provides a
standard for defining the components of a test plan.

3.1.2 Budgeting
There is no one correct way to develop a budget. Some IT organizations use judgment and
experience to build the budget; others use automated estimating tools to develop the budget.

The following discussion of budgeting represents some of the better budgeting processes, but
not necessarily the only budgeting processes. The tester needs to be familiar with the general
concept of budgeting and then use those processes available in their IT organization. Every
project is unique. Different factors play a role in making one project differ from another.
Among the factors that must be estimated are: size, requirements, expertise, and tools.

To a great degree, test management depends on estimation and judgment. By judgment we
mean, the expertise of the test manager or person responsible for the estimation. Internal
factors within the organization and external factors (such as economy and client requests)
always affect the project. This is where risk analysis and estimate meet. Estimation involves
risk at all levels. We can say, “The importance of estimation cannot be underestimated.”
3-2 October 25, 2006

Managing the Test Project
Factors that influence estimation include, but are not limited to:
• Requirements
• Past data
• Organization culture
• Selection of suitable estimation technique
• Own experience
• Resources available
• Tools at our disposal

Remember, by definition an estimate means something that can change; and it will. It is a
basis on which we can make decisions. For this reason the project manager must continually
monitor the project estimate and revise the estimate as necessary. The importance of
monitoring will vary depending on the project phase. Figure 3-1 Average Test Cost by SDLC
Phases shows the estimated testing costs by phase, which probably will change during test
execution.

Figure 3-1 Average Test Cost by SDLC Phases

Estimating the budget and schedule for testing involves determining what effort and time will
be needed to accomplish the testing goals as stated in the test plan. Accomplishing a testing
goal is the objective of testing. In software testing, we are trying to achieve a goal. The Project
Smart Web site (http://www.projectsmart.co.uk/smart_goals.html) has stated this very aptly.
According to them, all goals should be smart goals wherein SMART stands for:

Specific
Well defined; clear to anyone that has basic knowledge of the project

Measurable
October 25, 2006 3-3

Guide to the 2006 CSTE CBOK
Know if the goal is obtainable and how far away completion is; know when it has been
achieved

Agreed Upon
Agreement with all the stakeholders what the goals should be

Realistic
Within the availability of resources, knowledge and time

Time Frame
Enough time to achieve the goal; not too much time, which can affect project
performance

When you estimate or run a project, take a moment to consider whether your testing goals are
SMART goals. If they aren’t, use the techniques mentioned above to re-write them.

3.1.2.1 Budgeting Techniques

Budgeting techniques are techniques to estimate the cost of a project. The following
budgeting techniques are discussed below:

• Top-Down Estimation
• Expert Judgment
• Bottom-Up Estimation

3.1.2.1.1 Top-Down Estimation

The assumptions in the Top-Down Estimation approach are that software has its own
complexity and difficulty in design and implementation. Project management uses this
technique since they generate an overall estimate based on the initial knowledge. It is used at
the initial stages of the project and is based on similar projects. Past data plays an important
role in this form of estimation.

Preliminary estimates are required to determine the feasibility of a project and detailed
estimates are needed to help with project planning. The choice of the model will depend on
the purpose. There are several metrication methods and models in use. Size is a primary factor
in costing models. We will briefly discuss the major ones. It is important to note that all
models give the output based on the data input. Inaccurate or wrong inputs will give bad
estimates.

The following types of models are used to estimate cost:
• Cost Models

These models provide direct estimates of effort. They typically have a primary cost
factor such as lines of code (LOC) and a number of secondary adjustment factors.
Examples of cost models are Function Points and COCOMO.

• Constraint Models
3-4 October 25, 2006

Managing the Test Project
These models demonstrate the relationship over time between two or more parameters
of effort, duration, or resource. An example of a constraint model is the Putnam’s
SLIM model.

• Function Points Model
Function points (FP) measure the size in terms of the amount of functionality in a
system. Function points are computed first by calculating an unadjusted function point
count (UFC) for different categories. They are then adjusted based on complexity to
arrive at the Function Point. Function Points are useful when doing a feasibility
analysis. It is always a good practice to have more than one person do the estimation.
This way the organization can measure the subjectivity and also arrive at common
ground in the future.

• COCOMOII Model
COCOMOII is an enhancement over the original COCOMO (Constructive Cost
Model). The original COCOMO model is based on inputs relating to the size of the
system and a number of cost drivers that affect productivity. COCOMOII is useful for
a wider collection of techniques and technologies. It provides support for object-
oriented software, business software, software created via spiral or evolutionary
development models and software using COTS application utilities.

3.1.2.1.2 Expert Judgment

If someone has experience in certain types of projects or certain tools, their expertise can be
used to estimate the cost that will be incurred in implementing the project.

3.1.2.1.3 Bottom-Up Estimation

This cost estimate can be developed only when the project is defined as in a baseline. The
WBS (Work Breakdown Structure) must be defined and scope must be fixed. The tasks can
then be broken down to the lowest level and a cost attached to each. This can then be added up
to the top baselines thereby giving the cost estimate. It gets its name ‘bottom-up’ since it
works its way up from the bottom, which is the lowest level task.

At this level, each activity has a resource and skill level attached to it and dependencies have
been identified. Contingencies have also been addressed.

3.1.2.2 Tracking Budgeting Changes

A cost estimate is an ‘educated guess’ of the costs that will be incurred. A budget is the
accepted cost. A cost baseline is the comparison of the estimate versus actual cost. It is
necessary to have a cost estimate for the following reasons:

• It helps in monitoring the cost with the goal of preventing the project from going
beyond budget

• It helps to track variances allowing management to take appropriate action
• It helps in proving justification of costs incurred to the stakeholders
October 25, 2006 3-5

Guide to the 2006 CSTE CBOK
A cost baseline, once established, should not be changed unless approved as it is used to track
variances against the planned cost during the execution of the project.

3.1.3 Scheduling
A schedule is a calendar-based breakdown of tasks and deliverables. It helps the project
manager and project leader manage the project within the time frame and keep track of
current, as well as future problems. A WBS (Work Breakdown Structure) helps to define the
activities at a broader level, such as who will do the activities, but planning is not complete
until we attach a resource and time to each activity. In simple terms, scheduling answers these
questions:

• What tasks will be done?
• Who will do them?
• When will they do them?

A schedule requires constant update since teams and tasks undergo change. Status reports are
the major input to the schedule. Scheduling revolves around monitoring the work progress
versus work scheduled. A few advantages are:

• Once a schedule is made, it gives a clear idea to the team and the management of the
roles and responsibility for each task

• It propagates tracking
• It allows the project manager the opportunity to take corrective action

A Work Breakdown Structure (WBS) groups test project components into deliverable and
accountable pieces. As illustrated in Figure 3-2, it displays and defines the product to be
developed by planning, training, and other elements and relates them to each other and to the
product. The aim is to have measurable components for which people (team members, subject
matter experts and specialists) can be held accountable. It is created during the proposal stage.

Figure 3-2 Example of a Work Breakdown Structure
3-6 October 25, 2006

Managing the Test Project
The WBS defines the total project. It is a product-oriented, family tree composed of hardware
elements, software elements, and service elements. The WBS relates project elements or work
scope definitions to each other and to the end product. It is not an organization chart of
company personnel.

There is a misconception that a WBS should be broken down to the smallest level. In
actuality, it is only during subsequent detail planning that the WBS is broken down into
measurable components which will then be further broken down into smaller and achievable
components assigned to team members. As in budgeting, expert judgment is useful in
scheduling

3.1.4 Staffing
Ideally, staffing would be done by identifying the needed skills and then acquiring members
of the test project who possess those skills. It is not necessary for every member of the test
team to possess all the skills, but in total the team should have all the needed skills. In some IT
organizations, management assigns the testers and no determination is made as to whether the
team possesses all the needed skills. In that case, it is important for the test manager to
document the needed skills and the skills available by the team members. Gaps in needed
skills may be supplemented by such individuals assigned to the test project on a short-term
basis.

The recommended test project staffing matrix is illustrated in Table 3-1. This matrix shows
that the test project has identified the needed skills. In this case they need the planning, test
data generation skills, and skills in using tools X and Y. The matrix shows there are four
potential candidates for assignment to that project. Assume that only two are needed for
testing, the test manager would then attempt to get the two that in total had all the four needed
skills.

If the test team does not possess the necessary skills, it is the responsibility of the test manager
to teach those individuals the needed skills. This training can be on-the-job training, formal
classroom training, or e-learning training.
October 25, 2006 3-7

Guide to the 2006 CSTE CBOK
Table 3-1: Test Project Staffing Matrix

3.1.4.1 Test Team Approaches

The following four different approaches are used to build a test team:

1. Developers become the Test Team Approach

2. Independent IT Test Team Approach

3. Non-IT Test Team Approach

4. Combination Test Team Approach

3.1.4.1.1 Developers Become the Test Team Approach

The members of the project development team become the members of the test team. In most
instances, the systems development project leader is the test team project leader. However, it
is not necessary to have all of the development team members participate on the test team,
although there is no reason why they would not participate. It is important that one member of
the test team be primarily responsible for testing other member’s work. The objective of the
team is to establish a test process that is independent of the people who developed the
particular part of the project being tested.

The advantage of the developers test team approach is that it minimizes the cost of the test
team. The project is already responsible for testing, so using project members on the test team
is merely an alternate method for conducting the tests. Testing using the developers test team
approach not only trains the project people in good test methods, but also cross-trains them in
other parts of the project. The developers test team approach uses those people in testing who
are most knowledgeable about the project.

The disadvantage of the developers test team approach is the need for ensuring that the project
team allocates appropriate time for testing. In addition, the project team members may lack
team members who believe that the project solution is incorrect and thus find it difficult to
challenge the project assumptions.

Skills Needed

Staff Planning Test Data
Generation Tool X Tool Y

A X X
B X X X
C X X
D X X X
3-8 October 25, 2006

Managing the Test Project
3.1.4.1.2 Independent IT Test Team Approach

Testing performed by IT personnel independently of the project does not relieve the project
personnel of responsibility for the correctness of the application system. The independent
testing is designed to provide a different perspective to testing in order to provide extra
assurance of the correctness of processing. The independent testing normally occurs after the
project team has performed the testing they deem necessary (i.e., unit testing). Frequently, the
system development team verifies that the system structure is correct and the independent test
team verifies that the system satisfies user requirements.

Independent testing is normally performed by either information services quality assurance or
a professional testing group in the IT department. While the project team is involved in all
aspects of the development, the quality assurance professional test teams specialize in the
testing process. However, most individuals in these testing groups have had systems design
and programming experience.

The advantage of independent information services is the independent perspective they bring
to the test process. The group is comprised of information services professionals who have
specialized in the area of testing. In addition, these groups have testing experience in multiple
projects, and thus are better able to construct and execute tests than those individuals who
only test periodically.

The disadvantage of independent IT testing is the additional cost that may be required to
establish and administer a testing function. Also, the development team may place too much
reliance on the test team and thus fail to perform adequate testing themselves, resulting in
overburdening the professional testers. In addition, the competition between the test team and
the project team may result in a breakdown of cooperation, making it difficult for the test team
to function properly.

3.1.4.1.3 Non-IT Test Team Approach

Groups external to the information services department can perform testing. The three most
common groups that test application systems are users, auditors, and consultants. These
groups represent the organizational needs and test on behalf of the organization. They are
concerned with protecting the interest of the entire organization.

The advantage of a non-IT test team is that they provide an independent view and at the same
time can offer independence in assessment. Loyalty, or charter, to report unfavorable results to
only the information services department, does not restrict the non-IT group. The non-IT
group has greater ability to act and to cause action to occur once problems are detected than
does a group within an information services department.

The disadvantage of non-IT testing is the cost of the test. Generally, these groups are not
familiar with the application and must first learn the application and then learn how to test
within the organization. The non-IT group may encounter difficulties in testing due to lack of
knowledge of IT’s test environment and the project.
October 25, 2006 3-9

Guide to the 2006 CSTE CBOK
3.1.4.1.4 Combination Test Team Approach

Any or all of the above groups can participate on a test team. The combination team can be
drawn together to meet specific testing needs. For example, if the project had significant
financial implications, an auditor could be added to the test team; if it had communication
concerns a communication consultant could be added.

The advantage of drawing on multiple skills for the test team is to enable a multi-disciplined
approach to testing. In other words, the skills and backgrounds of individuals from different
disciplines can be drawn into the test process. For some of the test participants, particularly
users, it can be an educational experience to make them aware of both the system and the
potential pitfalls in an automated system. In addition, a combination test team has greater
clout in approving, disapproving, or modifying the application system based upon the test.

The disadvantage of the combination test team is the cost associated with assembling and
administering the test team. It also may pose some scheduling problems determining when the
tests will occur. Finally, the diverse backgrounds of the test team may make the determination
of a mutually acceptable test approach difficult.

3.1.5 Customization of the Test Process
Skill Category 2 discussed assessing the overall test process with software development
project goals and implementation process. This assessment is to assure that the test process
will accomplish the test objectives, or whether the test process will need some customization
to accomplish the test objectives. Some of the characteristics of software development that
may cause customization of the test process are:

• Release cycle schedules
• Software development methodology
• User schedules
• Project status reporting
• Interfacing with other projects
• Interfacing with enterprise-wide databases
• Assuring the same naming conventions/data definitions are used for testing as for

other projects

Test process customization can occur many ways, but ideally the customization process is
incorporated into the test processes, primarily the test planning process. If not incorporated
into the test process, customization should occur as a task for the test manager to perform.

The customization process may include any of the following:
• Adding new test tasks
• Deleting some test tasks currently in the test process
• Adding or deleting test tools
3-10 October 25, 2006

Managing the Test Project
• Supplementing skills of assigned testers to assure the tasks in the test process can be
executed correctly

3.2 Test Supervision
Supervision relates to the direction of involved parties, and oversight of work tasks to assure
that the test plan is completed in an effective and efficient manner. Supervision is a
combination of the supervisor possessing the skill sets needed to supervise, and the tasks that
contribute to successful supervision.

There are literally thousands of books written on how to supervise work. There is no one best
way on how to supervise a subordinate. However, most of the recommended approaches to
supervision include the following:

• Communication skills
The ability of the supervisor to effectively communicate the needed direction
information, and resolution of potential impediments to completing the testing tasks
effectively and efficiently.

• Negotiation and complaint resolution skills
Some specific skills needed to make a supervisor effective, like resolving complaints,
using good judgment, and knowing how to provide constructive criticism.

• Project relationships
Developing an effective working relationship with the test project stakeholders.

• Motivation, Mentoring, and Recognition
Encouraging individuals to do their best, supporting individuals in the performance of
their work tasks, and rewarding individuals for effectively completing those tasks.

3.2.1 Communication Skills
Most studies show that the single most important skill possessed by a supervisor is the ability
to communicate. Those supervisors who are effective communicators are almost always
effective supervisors.

There are four categories of communication skills that are important for supervisors:
• Written and oral communication
• Listening Skills
• Interviewing Skills
• Analyzing Skills
October 25, 2006 3-11

Guide to the 2006 CSTE CBOK
3.2.1.1 Written and Oral Communication

An important aspect of supervision is the ability to communicate with other parties. An
effective way to quickly improve the ability to communicate is to view every communication
opportunity as making a proposal to another person. The proposal can be made orally, or it can
be in a written document. The following discussion on making an oral proposal is much more
elaborate than would be required for a supervisor communicating assignments or information
to a subordinate, but the concepts are applicable to all oral and written communications.

Making a presentation is a marketing opportunity. Your customer is ready and eager to hear
your solution to their problem. Proper preparation and presentation will create the proper
environment for the acceptance and the successful implementation of your proposed solution.

Some general guidelines to follow as you make a presentation are:
• Emphasize that you are presenting the best solution to the customer's problems.
• Emphasize that your project team is well equipped to implement this solution.
• Sell the corporate experience of your project staff and yourself.
• Sell your personal management capabilities.
• Sell the technical expertise of the project staff and yourself.
• Sell your enthusiasm to do this project effectively, efficiently, and economically.

There are three main parts to the presentation:
• Preparing for the proposal
• Presenting the proposal
• Closing the proposal.

3.2.1.1.1 Preparing the Proposal

Preparation is very important for any proposal or oral presentation. Follow these
recommended steps when preparing your proposal.

1. Outline your proposal:
• The problem to be solved – A concise description of the customer's problem that will

be solved by the proposal.
• System proposal solution constraints - Any constraints that might have an impact on

the solution, such as time, people, or budget.
• The proposed solution - The solution to the customer's problem.
• Impact on people - How the system will affect people; the type of people needed to use

the system.
• Impact on cost - The cost versus benefits.
• How to approve the project (i.e., close) - What is necessary for approval to proceed

from this point?
3-12 October 25, 2006

Managing the Test Project
2. Prepare visual aids for the presentation. The visual aids lend themselves to a more infor-
mal discussion, provide the opportunity to switch back and forth between the visual aids,
and can be used to answer questions. Some guidelines on preparing visual aids are:
• Lay out your presentation, identifying key points to be covered first, and then develop

visual aids to support those points. Do not make the all-too-common mistake of
sketching out or selecting illustrations first, then trying to decide what point they
make.

• Use one visual aid for each major point in your presentation.
• Use pictorial illustrations wherever possible.
• Limit the text on each to no more than 25 words.
• Each visual aid must make one, and only one, point.
• Leave the details to your oral discussion and not the visual aid.
• Your presentation should expand on areas included on the visual aids.

3. Emphasize in your mind the three most important points you want to make in the presenta-
tion. Be sure they are well covered. Use the old philosophy of "tell them what you are
going to tell them, tell them, and then tell them what you have told them.” This should
focus on the three most important points of your presentation.

4. Rehearse your presentation in front of your colleagues. If the proposal is worth making, it
is worth rehearsing. You might want to rehearse several times to ensure that you can do it
effectively. Urge your colleagues to ask questions to ensure that you can back up your
facts.

5. Be sure you understand the alternatives that were considered for the solution. You should
present one proposal only, but be prepared to address other solutions and why you did not
accept them, as part of the questioning at the proposal meeting.

6. The presentation should not last more than one hour. If you are unable to cover the mate-
rial in one hour, then take a break and continue again. The ability to concentrate for more
than one hour is extremely limited.

7. It is better to say too little than too much. Generally, the presentation flows better if you
say too little and have the audience ask questions, than to say too much making them
bored. More sales are lost from saying too much than from saying too little.

3.2.1.1.2 Presenting the Proposal

If you are accustomed to speaking before a group, you know the ropes. On the other hand, if
you have not had the opportunity to speak before groups of people in the past, the following
hints might be useful:

• Start and finish your discussion on time.
• Make the contents of your discussion serve your customers' needs, not yours. Every

word you say should be for their benefit, not yours.
• When preparing your briefing and when actually giving the presentation, think in

broad concepts as opposed to specific details. If you have properly prepared, the
details will come automatically.
October 25, 2006 3-13

Guide to the 2006 CSTE CBOK
• Be enthusiastic and act enthusiastically. Move around the front of the room. Maintain
eye contact with your audience. Remember, enthusiasm is infectious.

• Use terms that your audience members will understand.
• Use terms that you understand. Do not use technical jargon just because your technical

gurus used it in the proposal. Don't be afraid to admit that your technical people
"handle those matters.” Just make sure that one of them is in the room to answer the
questions.

• Include examples to support all points covered. Remember, examples, not proof.
Customers like to hear, “This specific problem can be solved using such-and-such a
technique, as we discovered when implementing a similar system for so and so."

• Issue handouts summarizing your briefing, but only after you are done talking. Keep
their attention on you, not on handouts, during your presentation.

• If you feel a bit nervous, have someone else prepare a short (10-15 minutes) discussion
of some narrow aspect of the proposal (maintenance, a technical detail, installation of
equipment, etc.). After you have talked a while, introduce the topic with, "Mr. Smith
wrote this portion of the proposal and can explain the concepts much more eloquently
than I.” This will give you a breather to clear your throat, gather your wits, and dry
your sweaty palms.

• Always have a cup of coffee or a glass of water by your side. If someone asks you a
tough question take a sip of coffee or water while you collect your thoughts, then
answer.

• It's not a sin to not know the answer to a question. Simply tell the questioner that you
will get back to him or her later that day, or have someone else in the room answer.
Many proposal evaluation teams include technical people who are not happy until they
prove they know more than you do. Those people get their satisfaction either by
catching you in an outright error, or by getting you to admit that they thought of a
question that you could not answer. Guess which scenario they prefer.

• Finally, always end any briefing with impact. The last sentence you say is probably the
most important.

3.2.1.1.3 Closing the Proposal

An important part of making a proposal is the closing. The close is getting approval to proceed
according to the proposal. You should have prepared and included as part of the proposal the
documentation necessary to proceed.

The closing will normally occur at the end of the presentation. For example, at the conclusion
of the presentation, you might state to the highest-ranking customer in attendance, "If you will
sign this approval document, we can begin on the project tomorrow."

Be prepared for the close at any time during the presentation. For example, if you get a clue
from the customer the project is wanted, you might ask, "Do you have enough information to
make a decision on the project?" Again, many sales have been lost because of too much
information, rather than too little.
3-14 October 25, 2006

Managing the Test Project
Don't be concerned about objections to your proposal; these should be considered. Objections
are usually opportunities to close. For example, if the customer objects to it taking 18 months,
you might be able to counteroffer with having the first part of the project up and running in 12
months. You should have considered these objections in your preparation, and be prepared to
counteroffer during the presentation.

The purpose of the proposal from the producer perspective is to get agreement for more work.
Nothing else should be considered a desired conclusion to the proposal. Push hard for a
closing or you may never get one.

3.2.1.2 Listening Skills

Throughout school, students are taught the importance of speaking, reading, writing, and
arithmetic, but rarely is much emphasis placed on listening. The shift in society from
industrial production to information management emphasizes the need for good listening
skills. This is particularly true in the practice of software testing – oral communication (which
includes listening) is rated as the number-one skill for the tester.

Some facts about listening include:
• Many Fortune 500 companies complain about their workers' listening skills.
• Listening is the first language skill that we develop as children; however, it is rarely

taught as a skill. Thus, in learning to listen, we may pick up bad habits.
• Listening is the most frequently used form of communication.
• Listening is the major vehicle for learning in the classroom.
• Salespeople often lose sales because they believe talking is more important than

listening (thus, in ads a computer company emphasizes that they listen).

It is also important to understand why people do not listen. People do not listen for one or
more of the following reasons:

• They are impatient and have other stimuli to respond to, such as random thoughts
going through their mind.

• They are too busy rehearsing what they will say next, in response to someone.
• They are self-conscious about their communication ability.
• External stimuli, for example, an airplane flying overhead, diverts their attention.
• They lack the motivation and responsibility required of a good listener.
• The speaker’s topic is not of interest to them.

The listener must be aware of these detriments to good listening, so they can recognize them
and devote extra attention to listening.
October 25, 2006 3-15

Guide to the 2006 CSTE CBOK
3.2.1.3 The 3-Step Listening Process

The listening process involves three separate steps:

1. Hearing the speaker

2. Attending to the speaker

3. Understanding the speaker.

The practice of listening requires these three listening steps to occur concurrently. Mastering
each of these steps will help improve your listening abilities.

3.2.1.3.1 Step 1: Hearing the Speaker

Hearing the speaker requires an understanding of the five channels of communication
incorporated into speech. Much of listening occurs beyond merely hearing the words. Let's
look at the five channels through which a speaker delivers information to his/her audience:

• Information Channel - The speaker’s subject.
• Verbal Channel - The words used by the speaker.
• Vocal Channel - The tone of voice associated with the various words.
• Body Channel - The body movements and gestures associated with the information

being conveyed.
• Graphic Channel - The pictures, charts, etc. that the speaker uses to emphasize or

illustrate the material being discussed.

Speakers normally use the information, verbal, vocal, and body channels in speaking. In some
instances, they also use the graphic channel. Listening requires that there is a meeting of the
minds on the information channel. Speakers sometimes skip around to different subjects,
making it easy to lose the subject being covered on the information channel. In “Step 2:
Attending to the Speaker,” we discuss the importance of feedback to confirm the subject being
covered on the information channel.

The vocal and body channels impact the importance of the verbal channel. The verbal channel
includes the choice of words used to present information, but the vocal and body channels
modify or emphasize the importance of those words. For example, the words in the verbal
channel may be, "John says he can do it.” However, the tone of the vocal channel might
indicate that John cannot do it, or the use of a thumbs-down body channel signal will also
indicate that John cannot do it.

Hearing the speaker involves an awareness of all five channels, and listening to and watching
the speaker to be sure we are receiving what the speaker is saying through all five channels.
To master the hearing step, you must pay attention to all five channels. If you miss one or
more of the channels, you will not hear what the person is saying. For example, if you are only
paying partial attention to the speaker when the words, "John can do it" are stated, you may
hear that John can do it, while the speaker said that John could not do it.
3-16 October 25, 2006

Managing the Test Project
3.2.1.3.2 Step 2: Attending to the Speaker

Attending to the speaker is sometimes referred to as being an active listener. Devote your full
attention to the speaker to confirm that what you heard is what the speaker intended you to
hear. You must first understand yourself and your situation. You must evaluate your
motivation for wanting to listen to this speaker. If the subject is important to you, but the
speaker is boring, it will require significantly more effort on your part to be a good listener.

The most important part of attending to the speaker is establishing an active listening ability.
Active listening involves a lot of response and dynamics. Some people view the listening
process as a passive skill where you sit back and let the other person talk. This is fine for
hearing the speaker, but not for confirming what the speaker has said. Feedback is very
important to the listening process, particularly in this step. Feedback can be a nonverbal
response, such as nodding your head, or a verbal response such as a question or a statement of
confirmation.

It is very important to send the right type of feedback to the speaker. The wrong type of
feedback not only doesn’t confirm what the speaker said, but also can reduce or terminate the
listening process. It is very irritating to a speaker who is providing information to have the
listener stray from the subject. For example, the speaker might be describing a quality
problem, and the listener changes the subject and asks where the speaker is going to have
lunch that day.

Some suggestions to help in attending to the speaker are:
• Free your mind of all other thoughts and concentrate exclusively on the speaker's

communication.
• Maintain eye contact with the speaker for approximately 80 percent of the time.
• Provide continuous feedback to the speaker.
• Periodically restate what you heard the speaker say, and ask the speaker to confirm the

intent of the information spoken.
• Move periodically to the understanding step to ensure that the information passed has

been adequately understood.

3.2.1.3.3 Step 3 - Understanding the Speaker

There are five types of listening. While people can listen several different ways concurrently,
normally listening is limited to one of the five types. The type chosen will have an impact on
the ability to understand what the speaker is saying. When one has deciphered the information
channel (i.e., what the subject is) and related the importance of that subject to the audience,
listening must be adjusted to ensure that we get the message we need.

The five types of listening and their impact on understanding are:
• Type 1: Discriminative Listening

Directed at selecting specific pieces of information and not the entire communication.
For example, one may be listening to determine if an individual did a specific step in
October 25, 2006 3-17

Guide to the 2006 CSTE CBOK
the performance of a task. To get this, listen more to the nonverbal expressions rather
than the verbal channel.

• Type 2: Comprehensive Listening
Designed to get a complete message with minimal distortion. This type of listening
requires a lot of feedback and summarization to fully understand what the speaker is
communicating. This type of listening is normally done in fact gathering.

• Type 3: Therapeutic Listening
The listener is sympathetic to the speaker's point of view. During this type of listening,
the listener will show a lot of empathy for the speaker's situation. It is very helpful to
use this type of listening when you want to gain the speaker's confidence and
understand the reasons why a particular act was performed or event occurred, as
opposed to comprehensive listening where you want to find out what has happened.

• Type 4: Critical Listening
The listener is performing an analysis of what the speaker said. This is most important
when it is felt that the speaker is not in complete control of the situation, or does not
know the complete facts of a situation. Thus, the audience uses this type of
understanding to piece together what the speaker is saying with what has been learned
from other speakers or other investigation.

• Type 5: Appreciative or Enjoyment Listening
One automatically switches to this type of listening when it is perceived as a funny
situation or an explanatory example will be given of a situation. This listening type
helps understand real-world situations.

One must establish which type of understanding is wanted and then listen from that
perspective.

3.2.1.4 Interviewing Skills

A software tester will use interviewing skills for many different purposes. The obvious one is
interviewing an individual for the job of a software tester, or to be assigned to a specific
software project. However, interviewing skills are also used for gathering data for test
purposes. The tester may interview a user/customer to better understand how their job is
performed, the tester may need to interview project development personnel to understand the
structure and function of the software systems, and a tester may need to interview a subject
matter expert such as an auditor to better understand the attributes of an effective system of
internal control.

The primary purpose of interviewing is fact-finding. A second purpose is to convey
information to the individual being interviewed. Interviewing involves oral communication, it
involves listening skills, and it involves fact-finding. Oral communication and listening skills
have previously been discussed in this section.
3-18 October 25, 2006

Managing the Test Project
Fact-finding is a process of identifying facts which is a statement of a condition. In other
words, a fact is some attribute of a condition that is agreed by involved parties to be correct. A
fact could be the result of a test.

A finding is identifying a difference between what is and what should be. To obtain a finding
you must know what the condition of an event should be. It is for this reason we talk about
testable requirements which pre-define what the processing result should be.

If a processing result should be that individuals are paid time and a half over 40 hours of work,
and a test result showed that individuals were not paid time and a half over 40 hours, that
would be a fact. The finding would be the difference, that is, that people should have been
paid time and a half but they were not paid time and a half.

When documenting a finding it should include:
• A fact – tells why the difference between what is and what should be is significant.
• Cause – tells the reasons for the deviation. Identification is necessary as a basis for

corrective action.
• Significance – how important the difference is in the context of the testing assignment.

3.2.1.5 Analyzing Skills

The first question asked after receiving a finding is: “What should I do about it?” The answer
to that question is a recommendation. A recommendation suggests the action that should be
taken to resolve a finding.

Findings and recommendations are two important parts of communication. The finding states
what has happened, and the recommendation states what to do about it. Time spent carefully
constructing recommendations are normally rewarded by increased acceptance of the
recommendation.

Developing recommendations requires analysis. Unfortunately the effects of poor analysis are
not as apparent as those of poor grammar or spelling. Poor analysis, however, is more
destructive to the review process. Analysis relies on facts and inferences. The recipient of the
report has questions about how and what occurred. These are best answered by the facts, but
the question why, the most important question, must be answered by inference or by
conclusions based on facts.

The individual developing a recommendation is aware that his/her conclusion is a judgment
based on a preponderance of evidence and seldom is an absolute, inevitable determination.
Much of the frustration occurring in getting a recommendation accepted can be traced directly
to this awareness.

Analysis is an essential part of the software tester’s job. A simple recitation of facts, no matter
how solid the facts are, creates questions in the mind of the recipient. When recommendations
are made, the recipient asks other questions, such as, “How adequate are the criteria backing
the recommendation?” “Will the recommendation cause more problems, or cost more, than
the current method?” “How sound is the analysis?” “How effective is the recommendation?”
October 25, 2006 3-19

Guide to the 2006 CSTE CBOK
Sharing and exploring both facts and analysis helps to establish the value of the
recommendation for the recipient of the recommendation.

Recommendations are based upon findings using the analysis process. Analysis permits the
findings and the supporting background information to be subjected to a challenging process
in order to develop recommendations. The value of the recommendation is normally related to
the thoroughness of the analysis process.

The analysis process is illustrated in Figure 3-3. The figure shows that the problems plus the
analysis produce recommendations. The problems or findings are normally a combination of
facts, opinions, and circumstances. Analysis, on the other hand, is a scientific process used to
produce a result or recommendation.

Figure 3-3 The Analysis Process

There are four general methods used for analysis which are:
• Arrangements

The facts, opinions, and circumstances are arranged to enable relations and patterns to
be shown between the facts. The relationship can be used to demonstrate cause and
effect as well as correlations. For example, if the facts were arranged to show that
there was a direct correlation between extent of training and number of errors, a
recommendation could be built on that correlation.

A simple method to arrange and rearrange facts is to code them using a simple coding
method. Normally, any one fact will have several different codes. For example, an
error condition might be coded as follows:

• Input data entry error

• Computer system error
3-20 October 25, 2006

Managing the Test Project
• Accounts receivable error

The facts and opinions can then be arranged and rearranged in a variety of sequences
to show patterns and relationships between the information.

• Analogy
Using the analogy method, one situation is compared with or contrasted to another.
This makes heavy use of the reviewer’s judgment and experience. The reviewer,
drawing upon his/her experience, utilizes the similarity between situations in an effort
to capitalize on previous situations and recommendations which are applicable to the
current situation.

• Logic
The reviewer can use inductive or deductive logic to develop a recommendation.
Using inductive logic, the argument moves from facts to a generalization. The
generalization then becomes the situation that needs to be addressed by the
commendation. Using deductive logic, the main idea is stated and then supported by
the facts. Using this approach, the commendation is obvious and only needs to be
justified by the facts in the situation.

• Principles
The reviewer can rely upon good business practices and principles. These principles
dictate the best method to accomplish tasks. When it can be determined from the
analysis process that good businesses practice or principle has been violated, and thus
caused a problem, the recommendation is the reinstatement of the principle. For
example, if the problem is diagnosed as high maintenance costs and the analysis
process shows that the principle of “formal systems documentation” has not been
followed, the recommendation would be to document the system using a formal
documentation.

3.2.2 Negotiation and Complaint Resolution Skills
As is the case with many activities, negotiating a complaint to resolution is a skill that is
learned through practice. In many situations it is prudent to document the steps you take
toward resolution and you must be willing to take actions that are appropriate to every level of
the negotiation.

3.2.2.1 Negotiation

Conflict can be defined as a breakdown in the decision-making process. An acceptable
decision cannot be made among the alternate positions available. Understanding the root
cause of the conflict is the first step in resolving the conflict. Negotiation is the means by
which the conflict will be resolved. The sources of conflict are listed and defined in Table 3-2.
October 25, 2006 3-21

Guide to the 2006 CSTE CBOK
Table 3-2: Conflict in Project Environments

In determining the root cause of the conflict, a supervisor needs to use all of the
communication skills. These will help define the root cause of the conflict. Once the root
cause has been identified, a decision-making process to eliminate the problem can commence.
However when a conflict is interpersonal, it may be more difficult to find the root cause, and
thus more difficult to resolve the conflict. Conflict resolution is a subset of conflict
management. Conflicts are usually solved in one of these ways:

• Forcing
Conflict is resolved when one party is successful in achieving its own interests at the
expense of the other party’s interest through the use of high relative power. This is the
win-lose approach.

• Withdrawal
Conflict is resolved when one party attempts to satisfy the concerns of others by
neglecting its own interests or goals.

• Smoothing
An unassertive approach – Both parties neglect the concerns involved by sidestepping
the issue or postponing the conflict or choosing not to deal with it.

• Compromise
An intermediate approach – Partial satisfaction is sought for both parties through a
“middle ground” position that reflects mutual sacrifice. Compromise evokes thoughts
of giving up something, therefore earning the name “lose-lose.”

• Problem-solving
Cooperative mode – Attempts to satisfy the interests of both parties. In terms of
process, this is generally accomplished through identification of “interests” and
freeing the process from initial positions. Once interests are identified, the process

Sources of Conflict Definitions
Project Priorities Views of project participants differ over sequence of activities

and tasks.

Administrative Procedures Managerial and administration-oriented conflicts over how the
project will be managed.

Technical Opinions and
Performance Trade-Offs

Disagreements over technical issues, performance
specifications, technical trade-offs.

Human Resource Conflicts about staffing a project team with personnel from other
areas.

Cost Conflict over cost estimates from support areas regarding work
breakdown structures.

Schedule Disagreements about the timing, sequencing, and scheduling of
project-related tasks.

Personality Disagreements on interpersonal issues.
3-22 October 25, 2006

Managing the Test Project
moves into a phase of generating creative alternatives designed to satisfy interests
(criteria) identified.

The conflict resolution methods of withdrawal and smoothing may temporarily address
conflict but fails to resolve the root cause. If the conflict resolution approach is withdrawing,
one party loses and one party wins. If the conflict resolution is smoothing, both parties lose.

The conflict resolution methods of forcing, compromising and problem-solving resolve the
conflict and reach a decision. However, in forcing the decision, one party wins and another
party loses. Compromising only to provide resolution may mean that both parties lose. The
win-win conflict resolution process is problem-solving. Negotiations in this conflict
resolution approach will assure that the most important interests of both parties are achieved
so that each party feels they win.

3.2.2.2 Resolving Complaints

Research shows that complaints must be resolved within four minutes. Within that time, you
should be communicating the solution of the problem to the customer. In his book, Contact:
The First Four Minutes, Dr. Leonard Zunin, a human relations consultant, states that unless
you have satisfied your customer within four minutes, they will give up on you. They will
sense that you have not accepted the urgency of their problem and that you are not the one to
solve their problem.

If you make your customer's problem your problem – in other words, you sincerely want to
resolve his or her complaint – then you need to execute the following process.

3.2.2.3 The 4-Step Complaint-Resolution Process

3.2.2.3.1 Step 1: Get On Your Customer’s Wavelength

You cannot begin to resolve your customer's complaint until you show your customer your
concern for their problem. You need to:

• Get on the same physical wavelength. Establish a position for mutual discussion. If
your customer is standing, you stand. If you want your customer to sit, ask the
customer to sit first, and then you sit.

• Show interest in your customer's problem. Give your customer your undivided
attention. Comments to a secretary or receptionist, such as, "Do not interrupt us," will
show sincere interest.

• Physically display interest. Assume a body position, gestures, and tone of voice that
show concern to your customer.

• React positively to your customer's concern. Show empathy for your customer's
complaint. For example, if the customer indicates you have caused great
inconvenience to their staff, apologize.
October 25, 2006 3-23

Guide to the 2006 CSTE CBOK
3.2.2.3.2 Step 2: Get the Facts

You cannot deal with your customer's problem until you know what it is. Do not deal with the
symptoms; deal with the problem. An angry person is more likely to tell you symptoms than
the real problem. To find out the facts, you need to do the following:

• Ask probing questions. A few examples are:
“Give me an example of the problem.”,”Do you have any samples of defective
products?”, “Explain more about what you mean.”, “Where did you get that piece of
information?”

• Take detailed notes. Write down names, amounts in question, order numbers, dates or
times at which events happened, specific products and parts of products where
problems occurred.

• Observe feelings and attitudes. In many cases the problem may be more emotional
than factual. However, you will need to deal with the emotions. Find out how a person
feels about what has happened; find out what his colleagues or boss feels about the
problem.

• Listen carefully to what is being said. Try to listen through the words to find out what
the real problem is.

3.2.2.3.3 Step 3: Establish and Initiate an Action Program

Even if you believe that the complaint is not reasonable, you still need to take action. The
action will serve two purposes: it will determine the validity of the facts and it will pacify the
complainer. When taking action, you need to do the following:

• If an error has been made, admit it. Admit the error if you are responsible for the error.
Do not minimize the seriousness of the error if it is serious. Not only admit it, but also
apologize for it.

• Negotiate a satisfactory resolution with your customer. Only the customer knows what
is satisfactory. Even if the solution is to conduct an investigation, it is an appropriate
action if it is satisfactory to your customer.

• State the solution and get agreement from your customer. After you have agreed on
what action to take, repeat it back to your customer and confirm agreement.

• Take action. Whatever you agreed to do, do it, and do it immediately. Just as it is
important to begin communicating a solution within four minutes, it is equally
important to resolve the action quickly.

3.2.2.3.4 Step 4: Follow Up with Your Customer

When the action you agreed upon has been taken, follow up with your customer to determine
satisfaction. Just because you believe the problem has been solved, it is not logical to assume
that your customer also agrees. The problem may be a difference of opinion about the
solution. Words sometimes do not convey exactly what we mean. If your customer is happy
with the resolution, the complaint has been finished. If your customer is not happy, more work
has to be done, and you should go back to Step 2: Get the Facts, and try again.
3-24 October 25, 2006

Managing the Test Project
3.2.3 Judgment
Judgment is a decision made by an individual. In sports the individual making the judgment is
a referee, in law it is a judge. However, using judgment can apply to any activity. Judgment is
normally a decision based on three criteria which are:

• Facts
These are the indisputable evidence regarding a specific situation.

• Standards
What the facts in the situation should be. Having the facts and the standards, the
individual making the judgment at this point knows what has happened, and what
should have happened.

• Experience
An individual’s involvement in similar situations, and using that experience to select
the best decision which will have the minimum negative impact on the activity.
However, if the standard is an objective standard, for example an athlete steps out of
bounds then judgment reinforces the standard. However if the standard is subjective
such as judging artistic impression in ice skating, then experience will play a much
greater role in arriving at a decision.

3.2.4 Providing Constructive Criticism
In giving constructive criticism, you should incorporate the following tactics:

• Do it Privately
Criticism should be given on a one-on-one basis. Only the individual being criticized
should be aware that criticism is occurring. It is best done in a private location. Many
times it is more effective if it is done in a neutral location, for example, in a conference
room or while taking someone to lunch, rather than in the boss' office.

• Have the Facts
General statements of undesired performance are not very helpful. For example,
statements such as "That proposal is not clear, fix it" or "Your program does not make
best use of the language or technology" leave people feeling confused and helpless.
Before criticizing someone’s performance, have specific items that are causing the
deficiency or undesirable performance.

• Be Prepared to Help the Worker Improve His Performance
It is not good enough to ask the worker to "fix it.” You must be prepared to help fix it.
Be prepared to train the subordinate in the area of deficiency. For example, in a
proposal, indicate that a return-on-investment calculation was not made; or if a
program failed to use the language properly, state specifically how it should and
should not be used. You should not leave an individual feeling that they have
performed poorly or unsure as to how to correct that performance.
October 25, 2006 3-25

Guide to the 2006 CSTE CBOK
• Be Specific on Expectations
Be sure your subordinate knows exactly what you expect from him or her now and in
the future. Your expectations should be as clear as possible so there can be no
confusion. Again, in a proposal, indicate that you expect a return-on-investment
calculation included in all proposals. Most people will try to do what they are expected
to do—if they know what those expectations are.

• Follow a Specific Process in Giving Criticism
The specific process that is recommended is:

• State the positive first. Before criticizing indicate what you like about their
performance. Again, be as specific as possible in the things you like.

• Indicate the deficiencies with products or services produced by the individual.
Never criticize the individual, only the work performed by the individual. For
example, never indicate that an individual is disorganized; indicate that a report is
disorganized. People can accept criticism of their products and services; they have
great difficulty when you attack their personal work ethic.

• Get agreement that there is a problem. The individual being criticized must agree
there is a problem before proper corrective action can be taken. Avoid accepting
agreement just because you are the boss; probe the need for improvement with the
subordinate until you actually feel there is agreement that improvement can be
achieved. For example, if you believe a report or program is disorganized, get
agreement from the individual on specifically why it might be disorganized.

• Ask the subordinate for advice on how to improve their performance. Always try
to get the employee to propose what needs to be done. If the employee’s
suggestion is consistent with what you have decided is a realistic method of
improvement, you have finished the process.

• If the subordinate is unable to solve the problem, suggest the course of action that
you had determined before performing the actual criticism.

• Make a specific "contract" regarding what will happen after the session. Be very
specific in what you expect, when and where you expect it. If the employee is
uncertain how to do it, the "contract" should include your participation, as a
vehicle to ensure what will happen.

• One last recommendation for criticism:
Avoid making threats about what will happen if the performance does not change.
This will not cause any positive behavior change to occur and normally produces
negative behavior. Leave the individual with the assumption that he or she has the
capability for improvement, and that you know he or she will improve.

3.2.5 Project Relationships
The software tester is providing a service to those having a vested interest in the success of a
software project. What is important about the relationship with the stakeholders are:

• The project relationships are defined
3-26 October 25, 2006

Managing the Test Project
• The roles of each party and the relationships are defined
• The importance of the relationship to the success of the project is defined
• The influence that a party can have on software testing needs to be defined

An approach used by many organizations to document relationships is a project relationship
chart illustrated in Figure 3-4.

Figure 3-4 Project Relationship Chart

This chart is an example of a relationship chart and is constructed as follows:

1. Define the stakeholders
All those individuals who have a stake in the success of the project, and thus must have a
relationship to the project need to be defined. In our example, we defined the tester, the
user, the software developer, IT management and acceptance testers.

2. Indicate the influence one stakeholder has on another stakeholder
This chart uses a scale of “1”-to-“3” for influence:

• 1 meaning a stakeholder has a significant influence over another stakeholder
• 2 meaning a major influence
• 3 meaning a minor influence

Note that the lines show the direction of influence and the significance of the influence.
October 25, 2006 3-27

Guide to the 2006 CSTE CBOK
The purpose of this project relationship chart is to be assured that the tester has clearly
identified which relationships are important to the success of software testing, and to be
assured that the relationships will be developed and maintained during the software testing
project.

3.2.6 Motivation, Mentoring, and Recognition
An important aspect of a supervisor’s job is to motivate, mentor, and recognize the testers in
his or her organization.

3.2.6.1 Motivation

Motivation has sometimes been defined as getting individuals to do work tasks they do not
want to do or to perform those work tasks in a more efficient or effective manner.

Experience has shown that the motivation approach that works best is positive motivation. In
other words don’t attempt to motivate by fear or threats such as “no raises” or “termination.”

Different people are motivated by different things. IBM at one time had a policy of
supervisors asking their subordinates how they would like to be rewarded for a successful
project. It is important to recognize that what motivates people is highly individualized.

The four most common motivators are:

1. Personal challenge – A job task which will challenge the individual’s competency and
capabilities.

2. Respect – Treating the individual as a professional.

3. Rewards – Some tangible thing that an individual will receive if they meet specific goals/
objectives.

4. Recognition – Publicizing among peers and management the value contributed by the
individual.

3.2.6.2 Mentoring

Mentoring is helping or supporting an individual in a non-supervisory capacity. Mentors can
be peers, subordinates, or superiors. What is important is that the mentor does not have a
managerial relationship to perform the task of mentoring.

Mentoring can occur in any of the following three areas:
• Career counseling – Discussing career opportunities and assisting individuals in

accomplishing their career objectives.
• Work tasks – Helping individuals achieve work tasks by either imparting the necessary

skills or working with an individual in completing a job task.
3-28 October 25, 2006

Managing the Test Project
• Professional advancement – Helping an individual achieve professional goals such as
becoming a certified software tester (CSTE).

The only benefit a mentor receives for becoming a mentor is the satisfaction of helping
another person succeed.

3.2.6.3 Recognition

Employees are recognized at the end of each pay period by being given a paycheck. However,
motivation of employees can be increased by other recognition means. People like to be
recognized for the contribution they make to a project.

The only key concept in this part of supervision is that recognition is important. However,
recognition should not be a significant monetary value because obtaining that recognition may
cause individuals to circumvent controls and good practices.

Some of the recognitions that have been used successfully within software testing are:
• Recognition by an IT manager at a formal IT meeting
• Group luncheons/group celebrations
• Tokens of appreciation such as a coupon for dinner out or a movie
• Time off if completing a task involved an excess of work hours
• Lunch with the boss

3.3 Test Leadership
All test managers are part manager and part leader. Most software test managers will spend
most of their time managing and only a part of the time leading. However as testing moves
into new areas such as testing to determine whether user success criteria have been achieved,
the software test manager becomes more of a leader than a manager.

In discussing leadership, we will address these areas:
• Chairing meetings
• Team building
• Quality Management Organizational Structure
• Code of ethics

3.3.1 Chairing Meetings
Many IT staff members spend almost one half of their day in meetings. Meetings can be both
productive and non-productive depending on how they are organized, run and meeting
October 25, 2006 3-29

Guide to the 2006 CSTE CBOK
decisions implemented. The software project manager in chairing meetings must be more of a
leader than a manager.

The following guidelines on conducting meetings are common to most of the books and
manuals on how to run an effective meeting. These guidelines are:

• Specific objectives to accomplish at the meeting must be defined
• Those having a stake in the potential decisions need to be represented at the meeting
• An agenda for the meeting, plus any background data, must be distributed to the

attendees prior to the meeting allowing enough time for the individuals to prepare for
the meeting discussions

• Rules for running the meeting need to be established such as Robert’s Rules of Order
• The individual chairing the meeting must assure that all present have an equal

opportunity to express their opinions
• A consensus process should be used to develop conclusions, actions to be taken, as a

result of the meeting
• Specific responsibilities should be assigned to complete the actions
• Minutes of the meeting should be disseminated to the attendees within a reasonable

period of time after the meeting concludes

3.3.2 Team Building
Much has been written about organization’s loyalty to its employees and employee loyalty to
organizations. R.M. Kanter stated that, “New loyalty is not to the boss or to the company, but
to projects that actualize the mission and offer challenge, growth, and credit for results.” What
this tells the project leader is that team building needs to focus on the challenge, growth and
credit an individual can achieve from working on a specific project.

This loyalty concept helps differentiate the challenge of the software project manager versus
the traditional project manager. In projects where large portions of the project team are
implementers rather than professionals, loyalty may be more to the supervisor or company.
Implementers have different motivations and loyalties than do many IT professionals.

There are a myriad of books on team building. The objective of this discussion is not to
duplicate what is available, but to focus on components of team building that are directed
more at software teams, than traditional implementation teams. These components are: team
development, team member interaction, team ethics, and team rewards.

3.3.2.1 Team Development

There are seven guidelines that are helpful in developing compatibility and motivation of a
software project team:
3-30 October 25, 2006

Managing the Test Project
1. Communicate the vision, objectives, and goals of the project.
A software professional wants to know what the project is trying to accomplish. The
vision indicates why the project is undertaken, the goals and objectives indicate what the
project is to achieve. For example, the vision of a bank commercial loan software project
might be to increase profitability. This specific objective might be to provide the loan
officer the information needed to make a good loan decision.

2. Define roles and responsibilities of team members.
Software projects, unlike non-software projects, have roles which are heavily people
dependent and project scope dependent. It’s important for professional staff to have those
roles and responsibilities clearly defined. The staffing matrix described in an earlier part
of this skill category would define those roles and responsibilities.

3. Empower team members to manage their responsibilities.
Empowerment is a major motivator for professional people. Many of the agile concepts
relate to empowerment. In other words, enable people to perform the tasks in the most
efficient and effective manner. This helps eliminate barriers that increase costs and help
project schedule.

4. Hold team members accountable for their assigned responsibilities in the team process.
Team members need to have their work tasks well defined and then be held accountable
for completing those work tasks. Managerial practices indicate that this process works
best when individuals accept responsibility for performing tasks. Thus, having the Project
Manager work individually with team members to assign team tasks they agree to
perform, and then hold those individuals accountable for completing those tasks is an
effective managerial practice.

5. Ensure that all the required skills are present on the team.
Projects cannot be completed successfully if the team members lack the skills to complete
the project. It is not necessary for every team member to have all the needed skills, but the
team in total needs the skills. The staffing matrix helps assure that the appropriate skills
exist within the project team.

6. Provide the necessary technical and team training.
If the team lacks technical and team skills, the project manager should provide that
training. Technical skills include the skills necessary to design and build the software,
team skills to cover such skills as consensus building and conflict resolution.

7. Award successes and celebrate achievements.
Establishing goals and objectives provides the basis for rewards and celebrations. While
it’s appropriate to reward and celebrate individual achievements, the team building
necessitates team goals and team celebrations. These can be centered around milestones
accomplished, as well as scoring high on customer satisfaction surveys.

3.3.2.2 Team Member Interaction

The following guidelines have proven effective in building an effective and cohesive team:
October 25, 2006 3-31

Guide to the 2006 CSTE CBOK
• Know communication and work preference styles of staff and assure that the team
complements those communication and work preference styles.

• Set clear, measurable work requirement standards.
• Delegate authority to staff members that empowers them to perform the tasks in the

manner they deem most effective and efficient.
• Exact responsibility and accountability for team members for completing their work

tasks in an effective efficient manner with high quality work products.
• Give immediate and objective feedback to team members on the performance of their

individual and team tasks.
• Communicate, communicate, communicate! Be certain that all team members know

about any event that may impact team performance.

3.3.2.3 Team Ethics

The accounting and other corporate scandals during the past few years have undermined the
public’s confidence in corporations to act in an ethical manner, and to report truthful
accounting data. In the U.S. these scandals resulted in the passage of the Sarbanes-Oxley Act
which made unethical and improper accounting a criminal act and subjected the corporate
management to jail sentences. Corporate ethics at all levels of an organization are important.

The following six attributes are associated with ethical team behavior:

1. Customer relations that are truthful and fair to all parties
Ethical customer relations means treating customer/user personnel with integrity; not
promising un-achievable results; and informing customer/users of problems that could
have a negative impact on delivery or software performance; and striving to fully
understand the user’s true processing needs.

2. Protecting company property
The team should not undertake any action that would have a negative impact on the
protection of company property or subject that property to loss.

3. Compliance with company policies
The team should be knowledgeable in company policies, considerate of those policies
when making team decisions and taking only those actions that meet both the letter and
intent of company policies.

4. Integrity of information
Team should strive to ensure that information they produce is reliable and valid, and that
the information is conveyed to the appropriate stakeholders on a timely basis.

5. Attendance
Except for valid reasons, the team should be in attendance during normal work hours, be
prompt for meetings, and during work hours devote their effort to performing work tasks.

6. Redefine standards of quality
3-32 October 25, 2006

Managing the Test Project
The team should be knowledgeable in the quality standards for team deliverables, work in
a manner that is conducive to meeting those quality standards, and if they cannot be met,
inform the appropriate stakeholders of the lack of quality of team deliverables.

3.3.2.4 Team Rewards

Over the years, organizations have focused their reward system on individual performance.
However, focusing only on individual rewards may undermine team cooperation and
performance. If teams are the means by which work is performed, and software project
development teams are the means for building software, then team rewards need to be
incorporated into the organization’s reward system.

There is no generally accepted approach for rewarding teams. The following reward systems
have proven effective in organizations.

• Team celebrations
At the conclusion of meeting team milestones and objectives, the team celebrates as a
group at events such as luncheons, sporting activities, and other off-site events.

• Team financial rewards
Teams are given a cash reward for meeting an objective or milestone and then the team
splits the rewards amongst themselves in any manner in which the team determines
appropriate.

• Team recognition
Management recognizes the work of the team and recognizes that performance in such
rewards as special parking spaces, lunch with the boss, time off with pay, and
announcements in a variety of forms to the team’s peers of the team’s
accomplishments.

3.3.3 Quality Management Organizational Structure
Until approximately 25 years ago almost all organizational structures were hierarchical.
Direction came from the top down. The quality revolution significantly impacted the typical
hierarchical structure. The structure was flattened, employees were empowered to make more
decisions and new approaches to management were introduced.

The ability to become a leader is partially dependent upon whether the organization is a
traditional hierarchical management approach, or the new quality management philosophy.
The new quality management philosophy encourages leadership; the traditional hierarchical
approach to management encourages managers.

Most managers practice traditional management. They have been taught to control their
organization and employees, using an “I’ll tell you what to do, and you’ll do it” mentality.
Many managers look at the short-term because their commitment to the organization is short
range.
October 25, 2006 3-33

Guide to the 2006 CSTE CBOK
The key differences in philosophy between traditional management and quality management
environments are illustrated in Table 3-3.

Table 3-3: Traditional versus Quality Management Philosophy

The culture change required to build a quality management environment is significant.
Management must change its philosophy, practices, and assumptions about work and people.
The biggest mistake usually made when implementing a quality management environment is
underestimating the cultural changes that must occur and the time required for accomplishing
these changes. It is usually felt that only a few control charts are needed, and little effort is
made to change the culture of the organization.

The programs needed to change from a traditional to quality management culture must be
customized for an organization and its current culture. Table 3-4 illustrates cultural changes
that can be made.

Traditional Management Philosophy Quality Management Philosophy
Controls each result Use the process

Who made the error? What allowed the error?

Correct the error Reduce variation and prevent the error

Employees are the problem Refine the process

Management accountable to their manager Management accountable to the customer

Competition between organizations Teamwork

Motivation from fear of failure Motivation from within (self)

Management of outputs (results)—focusing on
detection of defects

Management of process inputs—methods or
sources of variation that focus on preventing
defects

Fire fighting Continuous process improvement

Accomplishment from meeting quotas, the
monthly or quarterly bottom line

Accomplishment from long-term impact of
improving processes
3-34 October 25, 2006

Managing the Test Project
Table 3-4: Organizational Changes From Traditional Culture to a Quality Management
Culture

3.3.4 Code of Ethics
Members of professional organizations have a responsibility to accept the standards of
conduct that the organization represents. Those certified must maintain high standards of
conduct in order to effectively discharge their responsibility.

Category Traditional Culture Quality Management Culture
Mission Maximum return on investment (ROI),

management by objectives (MBO)
Ethical behavior and customer
satisfaction, climate for continuous
improvement, ROI as a measure of
performance

Customer
Requirements

Incomplete or ambiguous understanding
of customer requirements

Uses a systematic approach to seek
out, understand and satisfy both
internal and external customer
requirements

Suppliers Undirected relationship Partnership

Objectives Orientation to short-term objectives and
actions with limited long-term
perspective

Deliberate balance of long-term goals
with successive short-term objectives

Improvement Acceptance of process variability and
subsequent corrective action as the norm

Understanding and continually
improving the process

Problem
Solving

Unstructured individualistic problem-
solving and decision-making

Predominantly participative and
interdisciplinary problem-solving and
decision-making based on substantive
data

Jobs and
People

Functional, narrow scope, management
controlled

Management and employee
involvement, work teams, integrated
functions

Management
Style

Management style with uncertain
objectives that instills fear of failure

Open style with clear and consistent
objectives, encouraging group-derived
continuous improvement

Role of
Manager

Plan, organize, assign, control and
enforce

Communicate, consult, delegate,
coach, mentor, remove barriers, and
establish trust

Rewards &
Recognition

Pay by job, few team incentives Individual and group recognition and
rewards, negotiated criteria

Measurement Orientation toward data gathering for
problem identification

Data used to understand and
continuously improve processes
October 25, 2006 3-35

Guide to the 2006 CSTE CBOK
3.3.4.1 Responsibility

Acceptance of any certification designation is a voluntary action. By acceptance, those
certified assume an obligation of self-discipline beyond the requirements of laws and
regulations.

The standards of conduct set forth in the code of ethics provide basic principles in the practice
of IT quality assurance. Those certified should realize that their individual judgment is
required in the application of these principles.

3.4 Managing Change
Once a test plan has been developed, it should be implemented. A test plan should be viewed
as a contract between the testers and the stakeholders in the software system. If the test plan is
executed as stated the test should be viewed as successful by the testers.

A test plan should also be viewed as a document that needs to be continually updated as
circumstances change. When users make changes to the software system, the test plan needs
to be changed. When circumstances surrounding the execution of the test plan changes, the
test plan should change. For example, if the developers are late in getting the software to the
testers, there may be time constraint problems. Thus the scope of testing may need to be
changed because of the late delivery of the software components to the testers.

There are three test management activities that should be incorporated to ensure currentness
and effectiveness of the test plan:

• Software Configuration Management
• Software Change Management
• Software Version Control

Each of these will be discussed individually.

3.4.1 Software Configuration Management
Software Configuration Management (CM) is a key component of the infrastructure for any
software development organization. The ability to maintain control over the changes made to
all project artifacts is critical to the success of a project. The more complex an application is,
the more important it is to implement change to both the application and its supporting
artifacts in a controlled manner.

Most organizations understand the importance of managing source code and the changes
made to it, but all project artifacts need to be managed; from requirements and models, to test
cases and test data. For example, if a requirement is changed or added during the project after
the requirements have been baselined, the tests designed and built to validate the requirement
3-36 October 25, 2006

Managing the Test Project
must also be updated. The appropriate version of the tests must be executed for the updated
code, or incorrect results will be obtained.

For large projects, the Configuration Manager is often a full-time member of the project team.
This person provides and supports the overall CM infrastructure and environment for the
project team. Smaller efforts might not be able to support a full-time Configuration Manager,
and might share a resource with other projects, or assign the role to someone on the project
team in addition to their other responsibilities.

The CM function ensures that the CM environment facilitates product baselines, review,
change, and defect tracking. Responsibilities also include writing the CM plan and reporting
change request-based progress statistics. The CM function supports product development
activities so that developers and integrators have appropriate workspaces to build and test
their work, and that all artifacts are available as required.

The list below illustrates the types of project artifacts that must be managed and controlled in
the CM environment:

• Source code
• Requirements
• Analysis models
• Design models
• Test cases and procedures
• Automated test scripts
• User documentation, including manuals and online Help
• Hardware and software configuration settings
• Other artifacts as needed

Multiple tools are available on the market to help teams manage project artifacts. Mainframe
tools for source control like Change Man are typically used in conjunction with tools that
support analysis and design artifacts created in a PC-based environment. A single tool, such as
PVCS or Clear Case, can usually support client/server, Intranet, and Internet applications. If
the application is implemented in an environment with multiple operating systems, e.g.,
UNIX and Windows NT, then the tool selected must support both environments.

3.4.2 Software Change Management
Managing software change is a process. The process is the primary responsibility of the
software development staff. They must assure that the change requests are documented, that
they are tracked through approval or rejection, and then incorporated into the developmental
process. Many software development project teams group changes to be implemented into a
new version of the system. This grouping normally reduces the costs associated with
incorporating changes into the software requirements during development.
October 25, 2006 3-37

Guide to the 2006 CSTE CBOK
The testers need to know two aspects of change:

1. The characteristics of the change so that modification to the test plan and test data can be
made to assure the right functionality and structure are tested.

2. The version in which that change will be implemented.

Without effective communication between the development team and the test team regarding
changes, test effort may be wasted testing the wrong functionality and structure.

3.4.3 Software Version Control
Once dynamic testing begins, the project team must ensure that the appropriate versions of the
software components are being tested. The time and effort devoted to testing are wasted if
either the incorrect components, or the wrong version of the correct components, have been
migrated to the test environment. The Configuration Manager must develop both migration
and back-out procedures to support this process. These processes can be either manual or
automated. Often, the CM tool selected will support the creation of automated build
procedures that reduce the level of risk associated with migration.

3.4.3.1 Example

For discussion purposes, let’s assume that you are working on a large, client/server, and
iterative development project. The application architecture consists of a Windows NT Intranet
Web Server, a Sun Solaris Application Server, a Sun Solaris Data Server, and a legacy
application on the mainframe. The architecture alone has introduced a high level of risk into
the project because of the multiple points of failure, and the multiple platforms and operating
systems have added an additional amount of risk. To speed up development of the application,
the project team has selected to employ an iterative development approach that will result in
four iterative “builds” of the application. Each build is given a new release number, and
integrates additional functionality with that delivered in the previous releases.

The development environment in place to support this project consists of the following:
• Four development servers, one for each of the development iterations.
• An Integration Test environment, where integration work is completed for each of the

builds.
• A Test environment, where the test team conducts testing on each build.
• A Production environment, where users access and use the production version of the

application.
• A Production Support environment, where the support team investigates reported

problems and tests emergency fixes prior to moving them into production.

The first challenge for the CM function is to keep the environments configured appropriately.
For example, the Production Support environment must be set up exactly as the Production
environment, and must contain the same release version of the application components that
3-38 October 25, 2006

Managing the Test Project
are running in Production. Emergency fixes must be applied to the version of the component
running in production – not necessarily the latest version of the component, which might be
vastly different from the production version if it is being enhanced for one of the future
releases. If there is a problem with the new release migrated to production, the back-out
procedures must be utilized to revert the environment back to the previous release of the
software.

The Test environment configurations must also mirror the Production environment. This is
critical if the test is to be successful at predicting the applications performance in the
Production environment. Once the environment is configured correctly, the release that is
ready for test must be migrated into the environment. Any defects that are identified can be
corrected in the next “build” or release. If a release is either built incorrectly, or contains
defects that prevent the continuation of testing, the back-out procedures can be utilized here as
well.

Once a stable CM infrastructure is in place, the benefits of iterative development are easier to
achieve. Without it, the development may be faster, but may also be more costly due to the
management overhead associated with the build process.
October 25, 2006 3-39

Guide to the 2006 CSTE CBOK
This page intentionally left blank.
3-40 October 25, 2006

Test Planning

esters need the skills to plan tests, including the selection of techniques and methods to
be used to validate the product against its approved requirements and design. Test
planning assesses the software application risks, and then develops a plan to determine
if the software minimizes those risks. Testers must understand the development

methods and environment to effectively plan for testing. The objective of this skill category is
to explain the concept of risk, as well as the new and increased risks occurring within the
computer environment. The tester must understand the new and increased risks in order to
evaluate the controls in computer applications. Also explained is how you determine the
magnitude of a risk so that it can be determined how many resources can be economically
allocated to reduce that risk. The test plan should be focused on the identified risks.

4.1 Risk Concepts and Vocabulary
Understanding the definitions of the following terms will aid in comprehending the material
in this category:

Risk Concepts and Vocabulary 4-1
Risks Associated with Software
Development 4-4

Risks Associated with Software Testing 4-16
Risk Analysis 4-19
Risk Management 4-24
Prerequisites to Test Planning 4-27
Create the Test Plan 4-29

Skill
Category

4

T

October 25, 2006 4-1

Guide to the 2006 CSTE CBOK
Test Case Test cases are how the testers validate that a software function,
such as deducting a payroll tax, or a structural attribute of
software, such as code complexity meets the software
specifications (i.e., expected results).

Test Data Test data is information used to build a test case.

Test Script Test scripts are an online entry of test cases in which the
sequence of entering test cases and the structure of the online
entry system must be validated, in addition to the expected
results from a single test case.

The following definitions are helpful when discussing all of the factors with risk and risk
analysis.

Risk Risk is the potential loss to an organization, as for example, the
risk resulting from the misuse of its computer. This may involve
unauthorized disclosure, unauthorized modification, and/or loss
of information resources, as well as the authorized but incorrect
use of a computer. Risk can be measured by performing risk
analysis.

Risk Analysis Risk analysis is an analysis of an organization’s information
resources, its existing controls, and its remaining organization
and computer system vulnerabilities. It combines the loss
potential for each resource or combination of resources with an
estimated rate of occurrence to establish a potential level of
damage in dollars or other assets.

Threat A threat is something capable of exploiting vulnerability in the
security of a computer system or application. Threats include
both hazards and events that can trigger flaws.

Vulnerability Vulnerability is a design, implementation, or operations flaw
that may be exploited by a threat; the flaw causes the computer
system or application to operate in a fashion different from its
published specifications and to result in destruction or misuse
of equipment or data.

Control Control is anything that tends to cause the reduction of risk.
Control can accomplish this by reducing harmful effects or by
reducing the frequency of occurrence.

The risk is turned into a loss by threat. A threat is the trigger that causes the risk to become a
loss. For example, if fire is a risk, then a can of gasoline in the house, or young children
playing with matches, are threats that can cause the fire to occur. While it is difficult to deal
with risks, one can deal very specifically with threats.

Threats are reduced or eliminated by controls. Thus, control can be identified as anything that
tends to cause the reduction of risk. In our fire situation, if we removed the can of gasoline
4-2 October 25, 2006

Test Planning
from the home or stopped the young children from playing with matches, we would have
eliminated the threat and thus, reduced the probability that the risk of fire would be realized.

If our controls are inadequate to reduce the risk, we have vulnerability. Vulnerability,
therefore, can be defined as a flaw in the system of control that will enable a threat to be
exploited. For example, if our controls stated that no one should leave gasoline in the home,
but did not inform our repair people of the control, they would produce a threat if they brought
gasoline into the home. Thus, we would say that we had vulnerability in our control system.

The process of evaluating risks, threats, controls, and vulnerabilities is frequently called risk
analysis. This is a task that the tester performs when he/she approaches the test planning from
a risk perspective. Note that today many testers go through a formal risk analysis process
because of the importance of correctly performing software processing tasks in a
computerized business environment.

We will further explore the concepts of risk and risk analysis. The objective is to understand
the importance of risk analysis in the test process. We will then review many of the new and
increased risks associated with today’s automated technology. This approach is designed to
produce insight into the changing nature of the test process. As you review these risks, think
how many of them might be possible in a manual environment, how many are unique to a
computer environment, and which ones might be more severe in a computer environment.

Risk analysis attempts to identify all the risks and then quantify the severity of the risks. A
risk is the potential for loss or damage to an organization from materialized threats. Risk can
be measured to a large extent by performing a risk analysis process. A threat, as we have seen,
is a possible damaging event. If it occurs, it exploits vulnerability in the security of a
computer-based organization.

Risks, which are ever present in a computerized environment, are generated by a variety of
threats. Some of these threats are physical – such as fire, water damage, earthquake, and
hurricane. Other threats are people-oriented – such as errors, omissions, intentional acts to
disrupt system integrity, and fraud. These risks cannot be eliminated, but controls can reduce
the probability of the risk turning into a damaging event. A damaging event is the
materialization of a risk to an organization’s assets.

Testers should evaluate the software being tested to identify its vulnerability to materialization
of risk. Vulnerability is a weakness that may be exploited by a threat to cause destruction or
misuse of its assets or resources. In examining vulnerabilities, the tester also assesses the
strength of the software controls that reduce the risk or vulnerability to an acceptable level.

The risks in a computerized environment include both the risks that would be present in
manual processing and some risks that are unique or increased in a computerized
environment. The tester must:

• Identify these risks
• Estimate the severity of the risk
• Develop tests to substantiate the impact of the risk on the application
October 25, 2006 4-3

Guide to the 2006 CSTE CBOK
For example, if the tester felt that erroneous processing was a very high risk for a specific
application, then the tester should devise tests to substantiate the correctness or incorrectness
of processing. The processing of a sample of transactions to determine whether or not the
application had processed the transactions correctly could do this.

4.2 Risks Associated with Software Development
Each software system has a unique set of risks. Some of those risks are associated with the
software functions, and other risks are associated with the process that develops the software.
The risks associated with development should be assessed for each software system during
development.

The risks associated with software development are listed below and then individually
described:

• Improper use of technology
• Repetition of errors
• Cascading of errors
• Illogical processing
• Inability to translate user needs into technical requirements
• Inability to control technology
• Incorrect entry of data
• Concentration of data
• Inability to react quickly
• Inability to substantiate processing
• Concentration of responsibilities
• Erroneous or falsified input data
• Misuse by authorized end users
• Uncontrolled system access
• Ineffective security and privacy practices for the application
• Procedural errors during operations
• Program errors
• Operating system flaws
• Communications system failure

4.2.1 Improper Use of Technology
Computer technology provides systems analysts and programmers with a variety of
processing capabilities. This technology must be matched to the needs of the user to optimize
4-4 October 25, 2006

Test Planning
the implementation of those needs. A mismatch of technology and needs can result in an
unnecessary expenditure of organizational resources.

One of the more common misuses of technology is the introduction of new technology prior
to the clear establishment of its need. For example, many organizations introduce web sites
without clearly establishing the need for that technology. Experience has shown that the early
users of a new technology frequently consume large amounts of resources during the process
of learning how to use that technology.

Some of the types of conditions that lead to the improper use of technology are:
• Systems analysts and systems programmers improperly skilled in the use of

technology
• Early user of new hardware technology
• Early user of new software technology
• Minimal planning for the installation of new hardware and software technology

4.2.2 Repetition of Errors
In a manual-processing environment, errors are made individually. Thus, a person might
process one item correctly, make an error on the next, process the next twenty correctly, and
then make another error. In automated systems, the rules are applied consistently. Thus, if the
rules are correct, processing is always correct, but if the rules are erroneous, processing will
always be erroneous.

Errors can result from application program problems, hardware failures, and failures in
vendor-supplied software. For example, a wrong percentage may have been entered for FICA
deductions; thus, every employee for that pay period will have the wrong amount deducted for
FICA purposes.

The conditions that cause repetition of errors include:
• Inadequate checks on entry of master information
• Insufficient program testing
• Failure to monitor the results of processing

4.2.3 Cascading of Errors
The cascading of errors is the domino effect of errors throughout an application system. An
error in one part of the program or application triggers a second (yet unrelated) error in
another part of the application system. This second error may trigger a third error, and so on.

Cascading of errors is frequently associated with making changes to application systems. A
change is made and tested in the program in which the change occurs. However, some
October 25, 2006 4-5

Guide to the 2006 CSTE CBOK
condition has been altered as a result of the change, which causes an error to occur in another
part of the application system.

Cascading of errors can occur between applications. This risk intensifies as applications
become more integrated. For example, a system that is accepting orders may be tied through a
series of applications to a system that replenishes inventory based on orders. Thus, an
insignificant error in the order-entry program can “cascade” through a series of applications –
resulting in a very serious error in the inventory replenishment program.

The types of conditions that lead to cascading of errors include:
• Inadequately tested applications
• Failure to communicate the type and date of changes being implemented
• Limited testing of program changes

4.2.4 Illogical Processing
Illogical processing is the performance of an automated event that would be highly unlikely in
a manual-processing environment. For example a payroll check being produced for a clerical
individual for over $1 million. This is possible in an automated system as a result of
programming or hardware errors, but highly unlikely in a manual system.

Computerized applications do not have human oversight comparable to that incorporated into
manual systems. In addition, fewer people have a good understanding of the processing logic
of computerized applications. Thus, in some instances illogical processing may not be readily
recognizable.

The conditions that can result in illogical processing are:
• Failure to check for unusually large amounts on output documents
• Fields that are either too small or too large
• Failure to scan output documents

4.2.5 Inability to Translate User Needs into Technical
Requirements

One of the major failures of system development has been a communication failure between
users and project personnel. In many organizations, users cannot adequately express their
needs in terms that facilitate the preparation of computerized applications. Likewise, the
technical computer people are often unable to appreciate the concerns and requirements of
their users.

This needs satisfaction risk is a complex risk. Exposures include failure to implement needs
because users were unaware of technical capabilities; improperly implemented needs because
the technical personnel did not understand user requirements; users accepting improperly
4-6 October 25, 2006

Test Planning
implemented needs because they are unsure how to specify changes; and the building of
redundant manual systems to compensate for weaknesses in computerized applications.

The conditions that can lead to the inability to translate user needs into technical requirements
include:

• Users without technical IT skills
• Technical people without sufficient understanding of user requirements
• Users’ inability to specify requirements in sufficient detail
• Multi-user systems with no user “in charge” of the system

4.2.6 Inability to Control Technology
Controls are needed over the technological environment. The controls ensure that the proper
version of the proper program is in production at the right time; that the proper files are
mounted; that operators perform the proper instructions; that adequate procedures are
developed to prevent, detect, and correct problems occurring in the operating environment;
and that the proper data is maintained and retrievable when needed.

The types of conditions that result in uncontrolled technology include:
• Selection of vendor-offered hardware and software without consulting how to control

them
• Too many control trade-offs for operational efficiency
• Inadequate restart and recovery procedures
• Inadequate control over different versions of programs

4.2.7 Incorrect Entry of Data
In computerized applications, there is a mechanical step required to convert input data into
machine-readable format. In the process of conducting this task, errors can occur. Data that
was properly prepared and authorized may be entered into computerized applications
incorrectly. Much of the data entered today is entered by customers who are not employees.
Some of the devices used by customers are unknown to the software developers. The data
originator manually transcribes the input information and during this process, errors are made.

In the newer technology, data can be originated and entered at the same time. For example,
scanners enter data directly into the computer system. However, errors can still occur during
this process.

Newer methods of data entry include optical scanners and process control computers. The
latter monitor such items as production machinery, automatic cash dispensers and point-of-
sale equipment. These are all mechanical devices and thus, subject to failure.

The types of conditions that can cause incorrect entry of data include:
October 25, 2006 4-7

Guide to the 2006 CSTE CBOK
• Human errors in keying data
• Mechanical failure of hardware devices
• Misinterpretation of characters or meaning of manually recorded input
• Misunderstanding of data entry procedures

4.2.8 Concentration of Data
Computerized applications concentrate data in a format that is easy to access. In manual
systems, data is voluminous and stored in many places. It is difficult for an unauthorized
individual to spend much time undetected browsing through file cabinets or other manual
storage areas.

But, using computerized media, unauthorized individuals can browse by using computer
programs. This may be difficult to detect without adequate safeguards. In addition, the data
can be copied quickly without leaving any visible trail or destroying the original data. Thus,
the owners of the data may not be aware that the data has been compromised.

Database technology increases the risk of data manipulation and compromise. The more data
stored in a single place, the greater the value of that information to an unauthorized individual.
For example, the information about an individual in the payroll application is restricted to
current pay information, but when that data is coupled with personnel history, not only is
current pay information available, but also pay history, individual skills, years of employment,
progression of employment and perhaps performance evaluations.

The concentration of data increases the problems of greater reliance on a single piece of data
and reliance on a single computer file. If the fact entered is erroneous, the more applications
that rely on that piece of data, the greater the impact of the error. In addition, the more
applications that use the concentrated data, the greater the impact when the data is unavailable
because of problems with hardware or software.

The types of conditions that can create problems attributable to the concentration of data in
computerized applications include:

• Inadequate access controls enabling unauthorized access to data
• Erroneous data and their impact on multiple users of the data
• Impact of hardware and software failures that make the data available to multiple users

4.2.9 Inability to React Quickly
Much of the value of computerized applications is the ability to satisfy user needs on a timely
basis. Some of these needs are predetermined and reports are prepared on a regular basis to
meet these needs. Other needs occur periodically requiring special actions to satisfy them. If
the computerized application is unable to satisfy these special needs on a timely basis,
redundant systems may be built for that purpose.
4-8 October 25, 2006

Test Planning
One of the measures of success of a computerized application is the speed with which special
requests can be satisfied. Some of the newer client-server applications with a query language
can satisfy some requests within a very short time. On the other hand, some of the older batch-
oriented applications may take several days or weeks to satisfy a special request. In some
instances, the structuring of the application system is an inhibiting factor in satisfying
requests. For example, if a user wanted all of the supporting information for a supply
requisition in a batched system, the cost and difficulty of satisfying that request may be
prohibitive. The reason is that the requisition could be spread over many weeks of processing
– owing to back orders, returned shipments, and shipping errors. The evidence supporting the
transaction may be spread over many different files and the cost of processing those files may
be exorbitant.

The types of conditions that can cause computerized applications to be unable to react quickly
include:

• The structure of the computer files is inconsistent with the information requested
• The general-purpose extract programs are not available to satisfy the desired request
• Computer time is unavailable to satisfy the request
• The cost of processing exceeds the value of the information requested

4.2.10 Inability to Substantiate Processing
Computerized applications should contain the capability to substantiate processing. This
substantiation includes both the ability to reconstruct the processing of a single transaction
and the ability to reconstruct control totals. Computerized applications should be able to
produce all the source transactions that support a control total, and substantiate that any source
document is contained in a control area.

Application systems need to substantiate processing for the purposes of correcting errors and
proving the correctness of processing. When errors occur, computer personnel need to
pinpoint the cause of those errors so they can be corrected. Computerized application
customers, other users, and control-oriented personnel, such as auditors, frequently want to
verify the correctness of processing.

The types of conditions that may result in the inability to substantiate processing include:
• Evidence is not retained long enough
• The cost of substantiating processing exceeds the benefits derived from the process
• The evidence from intermediate processing is not retained

4.2.11 Concentration of Responsibilities
The computerization of an application tends to concentrate the responsibilities of many people
into the automated application. Responsibilities that had been segregated for control purposes
among many people may be concentrated into a single application system. In addition, a
October 25, 2006 4-9

Guide to the 2006 CSTE CBOK
single application system may concentrate responsibilities from many departments within an
organization.

The responsibilities in a computerized environment may be concentrated in both the
application system and computer-oriented personnel. For example, the database administrator
may absorb data control responsibilities from many areas in the organization. A single
computer system project leader may have the processing responsibility for many areas in the
organization. New methods of separation of duties must be substituted for the previous
segregation of duties among people.

The types of conditions that cause the concentration of responsibilities in a computerized
environment include:

• The establishment of a data processing programming and systems group to develop
computerized applications for an organization.

• Establishment of large databases
• Client-server systems
• Web-based systems

4.2.12 Erroneous or Falsified Input Data
Erroneous or falsified input data is the simplest and most common cause of undesirable
performance by an applications system. Vulnerabilities occur wherever data is collected,
manually processed, or prepared for entry to the computer.

The types of conditions that cause erroneous or falsified input data include:
• Unreasonable or inconsistent source data values may not be detected
• Keying errors may not be detected
• Incomplete or poorly formatted transactions may be accepted and treated as if they

were complete transactions
• Records in one format may be interpreted according to a different format
• An employee may fraudulently add, delete, or modify data (e.g., payment vouchers or

claims) to obtain benefits (e.g., checks or negotiable coupons) for himself
• Lack of document counts and other controls over source data or input transactions may

allow some of the data or transactions to be lost without detection – or allow extra
records to be added

• Records about the personnel (e.g., a record of a personnel action) may be modified
during entry

• Data that arrives at the last minute (or under some other special or emergency
condition) may not be verified prior to processing

• Transactions in which errors have been detected may be corrected without verification
of the full record
4-10 October 25, 2006

Test Planning
4.2.13 Misuse by Authorized End Users
End users are the people served by the IT system. The system is designed for their use, but
they can also misuse it for undesirable purposes. It is often very difficult to determine whether
their use of the system is in accordance with the legitimate performance of their job.

The types of conditions where misuse occurs by authorized end users are:
• An employee may convert information to an unauthorized use; for example, she or he

may sell privileged data about an individual to a prospective employer, credit agency,
insurance company, or competitor; or may use statistics for stock market transactions
before their public release

• A user whose job requires access to individual records in a database may manage to
compile a complete listing of the database and then make unauthorized use of it (e.g.,
sell a listing of employees’ home addresses as a mailing list)

• Unauthorized altering of information may be accomplished by an authorized end user
(e.g., theft of services)

• An authorized user may use the system for personal benefit (e.g., theft of services)
• A supervisor may manage to approve and enter a fraudulent transaction
• A disgruntled or terminated employee may destroy or modify records – possibly in

such a way that backup records are also corrupted and useless
• An authorized user may accept a bribe to modify or obtain information.

4.2.14 Uncontrolled System Access
Organizations expose themselves to unnecessary risk if they fail to establish controls over
who can enter the IT area, who can use the IT systems, and who can access the information
contained in the system. Such uncontrolled access can lead to:

• Data or programs may be stolen from the computer room or other storage areas
• IT facilities may be destroyed or damaged by either intruders or employees
• Individuals may not be adequately identified before they are allowed to enter the IT

area
• Unauthorized persons may not adequately protect remote terminals from use
• An unauthorized user may gain access to the system
• Passwords may be inadvertently revealed to unauthorized individuals. A user may

write his/her password in some convenient place, or the password may be obtained
from discarded printouts, or by observing the user as they type it.

• A user may leave a logged-in terminal unattended, allowing an unauthorized person to
use it

• A terminated employee may retain access to an IT system because his name and
password are not immediately deleted from authorization tables and control lists
October 25, 2006 4-11

Guide to the 2006 CSTE CBOK
• An unauthorized individual may gain access to the system for his own purposes (e.g.,
theft of computer services, or data, or programs, modification of data, alteration of
programs, sabotage, and denial of services)

• Repeated attempts by the same user or terminal to gain unauthorized access to the
system or to a file may go undetected

4.2.15 Ineffective Security and Privacy Practices for the
Application

Inadequate manual checks and controls to ensure correct processing by the IT system or
negligence by those responsible for carrying out these checks can result in many
vulnerabilities:

• Poorly defined criteria for authorized access may result in employees not knowing
what information they, or others, are permitted to access

• The person responsible for security or privacy may fail to restrict user access to only
those processes and data that are needed to accomplish assigned tasks

• Large fund disbursements, unusual price changes, and unanticipated inventory usage
may not be reviewed for correctness

• Repeated payments to the same party may go unnoticed because there is no review
• The application staff may carelessly handle sensitive data, by the mail service, or by

other personnel within the organization
• Post-processing reports analyzing system operations may not be reviewed to detect

security or privacy violations
• Inadvertent modification or destruction of files may occur when trainees are allowed

to work on live data
• Appropriate action may not be pursued when a security variance is reported to the

system security officer or to the perpetrating individual’s supervisor; in fact,
procedures covering such occurrences may not exist

4.2.16 Procedural Errors during Operations
Both errors and intentional acts committed by the operations staff may result in improper
operational procedures and lapsed controls, as well as losses in storage media and output.

4.2.16.1 Procedures and Controls
• Files may be destroyed during database reorganization or during release of disk space
• Operators may ignore operational procedures – for example, allowing programmers to

operate computer equipment
• Job control language parameters may be erroneous
4-12 October 25, 2006

Test Planning
• An installation manager may circumvent operational controls to obtain information
• Careless or incorrect restarting after shutdown may cause the state of a transaction

update to be unknown
• Hardware maintenance may be performed while production data is online and the

equipment undergoing maintenance is not isolated
• An operator may perform unauthorized acts for personal gain (e.g., make extra copies

of competitive bidding reports, print copies of unemployment checks, and delete a
record from journal file)

• Operations staff may sabotage the computer (e.g., drop pieces of metal into a terminal)
• The wrong version of a program may be executed
• A program may be executed twice using the same transactions
• An operator may bypass required controls
• Supervision of operations personnel may not be adequate during nighttime shifts
• Because of incorrectly learned procedures, an operator may alter or erase master files

4.2.16.2 Storage Media Handling
• Inadvertently or intentionally mislabeled storage media are erased. In a case where

they contain backup files, the erasure may not be noticed until it is needed
• Backup files with missing or mislabeled expiration dates may be erased.
• Temporary files created during a job step, for use in subsequent steps, may be

erroneously released or modified through inadequate protection of the files or because
of an abnormal termination

• Storage media containing sensitive information may not get adequate protection
because the operations staff is not advised of the nature of the information content

• Output may be sent to the wrong individual or terminal
• Improperly operating procedures in post processing tasks may result in loss of output
• Surplus output material (e.g., duplicates of output data, used carbon paper) may not be

disposed of properly

4.2.17 Program Errors
Application programs should be developed in an environment that requires and supports
complete, correct, and consistent program design, good programming practices, adequate
testing, review, documentation, and proper maintenance procedures. Although programs
developed in such an environment will still contain undetected errors, programs not developed
in this manner will probably contain many errors. Additionally, programmers can deliberately
modify programs to produce undesirable side effects, or they can misuse the programs they
are in charge of:

• Records may be deleted from sensitive files without a guarantee that the deleted
records can be reconstructed.
October 25, 2006 4-13

Guide to the 2006 CSTE CBOK
• Programmers may insert special provisions in programs that manipulate data
concerning themselves (e.g., payroll programmer may alter own payroll records).

• Program changes may not be tested adequately before being used in a production run.
• Changes to a program may result in new errors because of unanticipated interactions

between program modules.
• Program acceptance tests may fail to detect errors that occur for only unusual

combinations of input (e.g., a program that is supposed to reject all except a specified
range of values, actually accepts an additional value.)

• Programs, the content of which should be safeguarded, may not be identified and
protected.

• Test data with associated output, or documentation for certified programs may not be
retained for future use.

• Documentation for vital programs may not be safeguarded.
• Programmers may fail to keep a change log, or to maintain backup copies or to

formalize record-keeping activities.
• An employee may steal programs he or she is maintaining and use them for personal

gain (e.g., for sale to a commercial organization, or to hold another organization for
extortion).

• Poor program design may result in a critical data value being initialized to zero. An
error may occur when the program is modified to change a data value but only change
it in one place.

• Production data may be disclosed or destroyed when used during testing.
• Errors may result when the programmer misunderstands requests for changes to the

program.
• Programs may contain routines not compatible with their intended purpose, which can

disable or bypass security protection mechanisms. For example, a programmer who
anticipates being fired inserts a code into a program that will cause vital system files to
be deleted as soon as his or her name no longer appears in the payroll file.

• Inadequate documentation or labeling may result in the wrong version of a program
being modified.

4.2.18 Operating System Flaws
Design and implementation errors, system generation and maintenance problems, and
deliberate penetrations resulting in modifications to the operating system can produce
undesirable effects in the application system. Flaws in the operating system are often difficult
to prevent and detect:

• User jobs may be permitted to read or write outside assigned storage area.
• Inconsistencies may be introduced into data because of simultaneous processing of the

same file by two jobs.
4-14 October 25, 2006

Test Planning
• An operating system design or implementation error may allow a user to disable
controls or to access all system information.

• An operating system may not protect a copy of information as thoroughly as it protects
the original.

• Unauthorized modifications to the operating system may allow a data entry clerk to
enter programs and thus subvert the system.

• An operating system crash may expose valuable information, such as password lists or
authorization tables.

• Maintenance personnel may bypass security controls while performing maintenance
work. At such times the system is vulnerable to errors or intentional acts of the
maintenance personnel, or anyone else who might be on the system and discover the
opening (e.g., micro coded sections of the operating system may be tampered with or
sensitive information from online files may be disclosed).

• An operating system may fail to maintain an unbroken audit trail.
• When restarting after a system crash, the operating system may fail to ascertain that all

terminal locations previously occupied are still occupied by the same individuals.
• A user may be able to get into a monitor or supervisory mode.
• The operating system may fail to erase all scratch space assigned to a job after the

normal or abnormal termination of the job.
• Files may be allowed to be read or written prior to being opened by the operating

system.

4.2.19 Communications System Failure
Information being routed from one location to another over communication lines is vulnerable
to accidental failures and to intentional interception and modification by unauthorized parties.

4.2.19.1 Accidental Failures
• Undetected communications errors may result in incorrect or modified data.
• Information may be accidentally misdirected to the wrong terminal.
• Communication nodes may leave unprotected fragments of messages in memory

during unanticipated interruptions in processing.
• Communication protocol may fail to positively identify the transmitter or receiver of a

message.

4.2.19.2 Intentional Acts
• Unauthorized individuals may monitor communication lines
• Data or programs may be stolen
• Programs in the network that switch computers may be modified to compromise

security
October 25, 2006 4-15

Guide to the 2006 CSTE CBOK
• Data may be deliberately changed by an individual’s tapping the line (requires some
sophistication, but is applicable to financial data).

• An unauthorized user may “take over” a computer communication port as an
authorized user disconnects from it. Many systems cannot detect the change. This is
particularly true in much of the currently available communication protocols.

• If encryption (i.e., use of codes) is used, keys may be stolen
• A user may be “spoofed” (i.e., tricked) into providing sensitive data
• False messages may be inserted into the system
• True messages may be deleted from the system
• Messages may be recorded and replayed into the system

4.3 Risks Associated with Software Testing
Testing is inherently a risk-based activity. Most companies would not pay to add testing to the
cost of the project if there was not a cost associated with the risk of failure. Exhaustive testing
is impractical for most applications under development. Exceptions include applications that
support very high risk processes, such as air traffic control, nuclear power generation station
operations, defense systems, and so on. The project team must design a test strategy that
utilizes a balance of testing techniques to cover a representative sample of the system in order
to minimize risk while still delivering the application to production in a timely manner.

It is the test manager’s responsibility to determine how to apply the test methodology to
achieve the greatest level of confidence in the application under development. Risk is a major
driver in the test planning activity. When conducting risk analysis, two major components are
taken into consideration:

• The probability that the negative event will occur
• The potential loss or impact associated with the event

The test manager must determine the appropriate amount of testing to perform based upon the
risks associated with the application. These risks can arise from the newness and reliability of
the technology being used, the nature of the application, or from the priority of the business
functions under test. The amount of testing that should be performed is directly related to the
amount of risk involved.

Understanding the risk-based nature of testing is also the key to dealing with the chronic
problem of inadequate test resources. Risk must be used as the basis for allocating the test
time that is available, and for helping to make the selection of what to test and how to allocate
resources.

The test manager is also responsible for identification of potential risks that might impact
testing. Some of the primary testing risks include:

• Not Enough Training/Lack of Test Competency
4-16 October 25, 2006

Test Planning
The majority of IT personnel have not been formally trained in testing, and only about
half of full-time independent testing personnel have been trained in testing techniques.
This causes a great deal of misunderstanding and misapplication of testing techniques.

• Us versus Them Mentality
This common problem arises when developers and testers are on opposite sides of the
testing issue. Each feels that it is “out to get” the other. Often, the political infighting
takes up energy, sidetracks the project, and accomplishes little except to negatively
impact relationships.

• Lack of Test Tools
IT management may have the attitude that test tools are a luxury. Manual testing can
be an overwhelming task. Trying to test effectively without tools is like trying to dig a
trench with a spoon.

• Lack of Management Understanding and Support of Testing
Support for testing must come from the top, otherwise staff will not take the job
seriously and testers’ morale will suffer. Management support goes beyond financial
provisions; management must also make the tough calls to deliver the software on
time with defects or take a little longer and do the job right.

• Lack of Customer and User Involvement
Users and customers may be shut out of the testing process, or perhaps they don’t want
to be involved. Users and customers play one of the most critical roles in testing;
making sure the software works from a business perspective.

• Not Enough Schedule or Budget for Testing
This is a common complaint. The challenge is to prioritize the plan to test the right
things in the given time.

• Over Reliance on Independent Testers
Sometimes called the “throw it over the wall” syndrome, developers know that
independent testers will check their work, so they focus on coding and let the testers
do the testing. Unfortunately, this results in higher defect levels and longer testing
times.

• Rapid Change
In some technologies, especially Rapid Application Development (RAD), the software
is created and modified faster than the testers can test it. This highlights the need for
automation, but also for version and release management.

• Testers are in a Lose-Lose Situation
On the one hand, if the testers report too many defects, they are blamed for delaying
the project. Conversely, if the testers do not find the critical defects, they are blamed
for poor quality.

• Having to Say “No”
October 25, 2006 4-17

Guide to the 2006 CSTE CBOK
Having to say, “No, the software is not ready for production,” is the single toughest
dilemma for testers. Nobody on the project likes to hear that and frequently testers
succumb to the pressures of schedule and cost.

• Test Environment
The work environment is not conducive to effective and efficient testing.

• New technology
The new focus on client/server, Intranet, and Internet applications has introduced even
more risk to the test process. These multi-tiered systems are more complex than
traditional mainframe systems, and therefore have a higher level of risk associated
with their testing and implementation. Security, performance, availability, complex
component integration, and a team new to the technology are just a few of these new
risk factors.

• New developmental processes
Along with these new delivery platforms come new methods for software
development. Project teams have moved away from traditional “waterfall” methods,
and follow a much more iterative approach to development and delivery. An integral
part of this iterative approach is that testing activities are more integrated across the
development cycle than before. Traditional system testing is not just conducted at the
end of development, but may be conducted multiple times throughout the project for
major components, and then completed once all development is complete.

Based on the risk assessment of the risks associated with the test process, changes to the test
process may be needed. For example, if the testers lack training in the test process, that
training should be provided prior to testing. If the training cannot occur then extra supervision
would be required. If inadequate test resources are provided and the scheduled test time is not
sufficient, the number of tests may need to be reduced.

Risk analysis will determine the risks associated with the software being tested and
performing the test process. Risk analysis should determine the magnitude of the risks, and
prioritize them in importance. Test planning will then consider those risks in developing the
Test Plan.

4.3.1 Premature Release Risk
Premature release is defined as releasing the software into production under the following
conditions:

• The requirements were implemented incorrectly
• The test plan has not been completed
• Defects uncovered in testing have not been corrected

Some IT organizations at a high maturity level have what is called a “defect expectation.”
This means that testers expect a certain quantity of defects based on the history of software
4-18 October 25, 2006

Test Planning
developed using the software methodology. If testers fail to uncover the expected defect
frequency they should be concerned about releasing the software.

The customer/user of software should expect operational problems if the software is released
without completing the project or completing testing. These risks include the risks defined as
software risks. The decision that the customer/user must make is, “Is the risk associated with
premature release of software less than the risk of not releasing the software?”

In premature release of software the testers should include in their report the most probable
outcomes associated with premature release. For example if they could not test requirements
A, B and C, the test report should indicate that the functioning of those requirements has not
been validated and the user should be alert to potential incorrect processing associated with
those three requirements.

4.4 Risk Analysis
The objective of performing risk analysis as part of test planning is to help allocate limited test
resources to those software components that pose the greatest risk to the organization. Testing
is a process designed to minimize software risks. To make software testing most effective it is
important to assure all the high risks associated with the software, will be tested first.

The decision the testers need to make is where to allocate test resources. Figure 4-1 provides
an illustration of where to allocate test resources.

Figure 4-1 Illustrations of the Need for Software Testing
October 25, 2006 4-19

Guide to the 2006 CSTE CBOK
Case A shows that the risk of loss is much less than the cost of testing for that risk. For
example, names on the master file may be misspelled but the impact of that defect is minimal,
while testing to check that every name on a master file is correct could be expensive. On the
other hand, case B shows that the cost of testing is much less than the potential loss. In that
case, testing should occur. When the risk of loss and the cost of testing are close to the same
dollar amount, a decision on how much testing should occur is a risk decision.

4.4.1 Risk Analysis Process
Performing risk analysis during test planning is a four-step process as follows:

1. Form the risk analysis team

2. Identify risks

3. Estimate the magnitude of the risk

4. Select testing priorities

4.4.1.1 Form the Risk Analysis Team

The key to a successful risk analysis is the establishment of the correct risk team, whose
responsibility will be to identify risks and prioritize the use of test resources. The objective is
to reduce the risks to an acceptable level.

The risk team may be part of the requirements team, or part of the test team, or it may be a
team specifically selected for the purpose of completing risk analysis. The team should be
comprised of three to six members and at a minimum possess the following skills:

• Knowledge of the user application
• Understanding of risk concepts
• Ability to identify controls
• Familiarity with both application and information services risks
• Understanding of information services concepts and systems design
• Understanding of computer operations procedures

The candidates included on the risk team should, at a minimum, include someone from the
user area and any or all of the following:

• Software testing
• Risk consultant
• Project leader

4.4.1.2 Identify Risks

The objective of the risk team is first to identify the application-oriented, not environmental,
risks associated with the application system. For example, the risks that relate to all
4-20 October 25, 2006

Test Planning
applications equally (i.e., environmental risks) need not be identified unless they have some
special relevance to the applicants. The risk team can use one of the following two methods of
risk identification:

• Risk analysis scenario
In this method, the risk team “brainstorms” the potential application risks using their
experience, judgment, and knowledge of the application area. It is important to have the
synergistic effect of a group so that group members can challenge one another to develop
a complete list of risks that are realistic for the application.
• Risk checklist
The risk team is provided with a list of the more common risks that occur in automated
applications. From this list, the team selects those risks that are applicable to the
application. In this method, the team needs fewer skills because the risk list provides the
stimuli for the process, and the objective of the team is to determine which of the risks on
the list are applicable to the application.

4.4.1.3 Estimate the Magnitude of the Risk

The magnitude of a risk can be determined by any of the following means:
• Intuition and Judgment
In this process, one or more individuals state they believe the risk is of a certain
magnitude. The more respect awarded the individual proposing risk magnitude using this
method, the greater the probability that it will be accepted. Often the risk will be
categorized as high, medium or low.
• Consensus
A team or group of people agrees to the severity of magnitude of a risk. The magnitude
can be expressed in severity such as high, medium, or low, or an economic magnitude can
be placed upon the risk. Normally, in instances where the loss associated with the risk is
very high, it is generally not necessary to put a dollar value to the risk – the sheer
magnitude of the risk makes the testing cost low in comparison.
• Risk Formula
The risk formula can be used to calculate the magnitude of the risk. Using this process, the
probability or frequency of an event occurring must be determined, and the loss per
frequency must be determined. For example, if a type X risk occurs and the loss per
occurrence is $500, then the loss associated with the risk is $500.
• Annual Loss Expectation (ALE) Estimation
This process is a variation of the risk formula. However, while the risk formula usually
requires the collection of operational data, the estimation process is a combination of
consensus method and risk formula method. Also, it develops an annual estimate of loss.
The premise behind the risk formula is that, in many cases, the benefits either greatly
exceed the cost (see Figure 4-1 Illustrations of the Need for Software Testing on
page 4-19) or the cost greatly exceeds the benefits. In these cases, estimations or
approximations lead to an easy decision. However, if the range of estimated cost overlap
October 25, 2006 4-21

Guide to the 2006 CSTE CBOK
the range of estimated benefits, then additional investigation must be done. In the risk
formula example above we would multiply the occurrences of loss per year, for example
100 times the loss ($500) to get an annual loss expectation of $50,000.
• A Process for Estimating the Annual Loss Expectation (ALE)
The following six tasks should be used to estimate ALE.

1. Make a preliminary assessment of the loss.

• Estimate worst-case loss.
• Use structured techniques for estimation of loss. Rather than select a specific

dollar loss, we select a loss based on a multiple of 5, as shown in Figure 4-2. For
example, if we thought our loss might be around $500 we would select the closest
value of $625.

Figure 4-2 Range of Values Based on Multiples of 5 Example

2. Make a preliminary assessment of frequency using a frequency table of multiples of
five as in Figure 4-3.
4-22 October 25, 2006

Test Planning
Figure 4-3 Range of Frequencies of Occurrence Based on Multiples of 5 Example

3. Calculate an ALE using the loss and frequency tables in Figure 4-2 and Figure 4-3.

4. Narrow the ALE by:
• Using multiple opinions to establish most likely ALE.
• Rank intangible elements (see Figure 4-4 Preliminary Evaluation of Intangible

Factors.)
• Assign monetary values to intangibles.
• Accumulate additional evidence, if needed.
October 25, 2006 4-23

Guide to the 2006 CSTE CBOK
Figure 4-4 Preliminary Evaluation of Intangible Factors

5. Make a post-analysis challenge of the decision.

6. Document the decision reached.

4.4.1.4 Select Testing Priorities

The risk team needs to rank the risks as an input to the test planning process. Risks are
normally ranked by the severity of the risk. However, other considerations may impact the
prioritization such as:

• Compliance required to laws and regulations
• Impact on competitiveness
• Impact on ethics, values and image

4.5 Risk Management
Risk management is a totality of activities that are used to minimize both the frequency and
the impact associated with risks. The first part of risk management is to understand, identify
4-24 October 25, 2006

Test Planning
and determine the magnitude of risks. This was discussed in the previous section of this skill
category.

The next component of risk management is determining risk appetite. Risk appetite defines
the amount of loss management is willing to accept for a given risk. Risk appetite in a bank’s
credit card processing activity is the amount of losses they’re willing to accept associated with
credit card processing. Let us assume that the risk appetite is one percent of charges made to
credit cards.

To manage a risk appetite of credit card losses of 1% the bank will first monitor to determine
the actual losses. If the loss is less than 1% the bank may decide that they are losing potential
business and issue many more credit cards. If the loss exceeds 1% the bank may reduce the
credit limit on credit cards and/or terminate credit cards with individuals whose accounts are
not current.

There are two activities associated with risk management which are:
• Risk Reduction Methods
• Contingency Planning

4.5.1 Risk Reduction Methods
The formula for quantifying risk also explains how to control or minimize risk. The formula to
quantify risk is to multiply the frequency of an undesirable occurrence times the loss
associated with that occurrence. For example, if ten customers a day terminated their business
at a web site and the average customer places $50 orders, then the loss associated with this
“unfriendly web site” would be 10 x $50, or $500.

Once the variables and the loss expectation formula have been defined, controls can then be
identified to minimize that risk. This formula can also be used to calculate the cost/benefit of
controls.

There are two means to reduce the frequency of occurrence of unfavorable events. As
illustrated in Figure 4-5 How to Minimize Loss Due to Risk, these are:

• Reduce the opportunity for error
• Identify the error prior to loss.

Using a web site example, you could reduce the opportunity for customers to leave the web
site by designing the web site so that any customer need can be identified in “three clicks” or
less. To implement the other means, to identify the error prior to loss, you could track a
customer as they move through the web site to determine if they are making too many clicks.
If they make too many, transfer the customer to a web site operator who could correctly assist
the customer.
October 25, 2006 4-25

Guide to the 2006 CSTE CBOK
Figure 4-5 How to Minimize Loss Due to Risk

The loss per occurrence associated with an unfavorable event can likewise be reduced in two
ways. The loss can be minimized, or an attempt can be made to recover the loss. Offering a
customer the opportunity to talk directly to an individual might minimize the potential loss. If
the customer’s e-mail address can be captured, a follow-up message could go to the customer
in an attempt to reestablish the relationship with that customer, and thus, recovering the loss of
a sale.

When the estimated loss has been calculated, it can be compared against the cost of
controlling that risk. When both the value of the loss has been estimated, and the cost of the
controls has been estimated, the simple cost/benefit analysis can be performed to determine if
it is economical to implement the controls. Obviously if the controls cost more than the
estimated loss, the controls are not cost beneficial; on the other hand, if the controls are
significantly less than the estimated loss, there is a good business case for building the
controls.

4.5.2 Contingency Planning
Action plans should be established for activation when a loss is known to occur for a given
risk. Using a non-IT example, organizations should predefine the actions to be taken should a
fire occur. Actions of the plan would include evacuating the employees from the building.
4-26 October 25, 2006

Test Planning
All IT organizations should have plans for many contingencies. For example if computer
operations terminate there is normally a plan to restart operations. If the computer site is lost
due to fire or other causes there are often off-site data storage areas to enable processing to be
reconstructed. For damage to the operation center there might be other facilities available for
continuing operations.

What many IT organizations fail to do is develop contingency plans for the processing events
occurring in the software system. For example if a computer is not operational, how are orders
accepted. Stating that the computer is non-operational and that customers should call back is
not an acceptable contingency plan.

The role of testers is to evaluate the adequacy of the contingency plans associated with risk.
This should be a part of the test plan and the testing process.

4.6 Prerequisites to Test Planning
If test planning is viewed as a process, or a workbench, there are entrance criteria to the test
planning process. The following entrance criteria are prerequisites to test planning:

• Test Objectives
• Acceptance Criteria
• Assumptions
• People Issues
• Constraints

4.6.1 Test Objectives
The test objectives include testing to assure that the software development project objectives
are met; and testing to achieve the mission of the software testing group. Testing the
functional and structural objectives of the software is accomplished to meet the quality
definition category for “meeting requirements.” Testing to accomplish the needs of the users
would fall in the quality definition category “fit for use.”

4.6.2 Acceptance Criteria
One of the major challenges the IT organization faces is communication. How can IT and the
user of the software successfully communicate the characteristics of the desired software
system? Many developmental methods are used to gather the software requirements such as
joint application development. The purpose of these techniques is to facilitate communication
between the IT organization and the users.
October 25, 2006 4-27

Guide to the 2006 CSTE CBOK
Another method of communicating is to have the user define the acceptance criteria for the
software project. For example they might define the tasks that a data entry clerk must execute
to process an incoming order. Testing that the functionality has been correctly installed would
be included in the test plan. However the user might want to qualify that criterion stating that
the functionality should be easy to use by data entry clerks with a certain pay grade or a
certain level of education. In another example, the end user might specify that a certain level
of accuracy is desired in order entry. You can assume this was a success or acceptance criteria
by organizations like McDonald’s when they converted their order entry equipment to a
device that showed pictures of what could be ordered such as hamburgers, as opposed to
having the order entry person enter the amount of the item.

4.6.3 Assumptions
In developing any type of plan certain assumptions exist. For example if a software system
required a newly developed piece of hardware, an assumption could be that the hardware
would be available on a specific date. The test plan would then be constructed based on that
assumption. It is important that assumptions be documented for two reasons. The first is to
assure that they are effectively incorporated into the test plan. The second is so that they can
be monitored should the event included in the assumption not occur. For example hardware
that was supposed to be available on a certain date, will not be available until three months
later. This could significantly change the sequence and type of testing that occurs.

4.6.4 People Issues
People issues tend to be both political and personal. The people issues include: who should
run the project, who can make decisions, and which organizational group has authority to
decide requirements. Another possible issue is hearing “it’s been tried before and didn’t
work.” It is important to resolve these people issues prior to starting development.

Some organizations divide people into four categories when attempting to identify issues.
These categories are:

• People who will make the software system happen
• People who will hope the software system happens
• People who will let the software system happen
• People who will attempt to make the software system not happen

If the stakeholders are divided among these four categories, issues are frequently apparent.
For example, if two different business units want to make the software system happen, a
decision would have to be made as to which would have primary responsibility and which
would have secondary responsibility. If both want to have primary responsibility, conflict will
occur.
4-28 October 25, 2006

Test Planning
4.6.5 Constraints
It has frequently been said that only “exhaustive testing” will uncover all defects. It is also
said that exhaustive testing is neither practical nor economical. Thus without exhaustive
testing there are constraints placed on the testers.

The obvious constraints are test staff size, test schedule and budget. Other constraints can
include: inability to access user databases for test purposes; limited access to hardware
facilities for test purposes; minimal user involvement in development of the test plan and
testing activities.

Because constraints restrict the ability of testers to test effectively and efficiently, the
constraints must be documented and integrated into the test plan. It is also important that the
end users of the software understand the constraints placed on testers and how those
constraints may impact the role and responsibility of software testers in testing their software
system.

4.7 Create the Test Plan
Some insight into the importance of test planning:

“The act of designing tests is one of the most effective error prevention
mechanisms known…

The thought process that must take place to create useful tests can discover and
eliminate problems at every stage of development.”
 Boris Beizer

There is no one right way to plan tests. However, because of the importance of the test plan
and the overall testing process the material in this section will provide tasks that are
commonly followed to create a test plan. This section will also include “How-to” information
in order to help understand the components of a software test plan. It is important to note that
the material presented, while considered to be a “good practice,” is not the only way to create
a test plan; other planning processes can be equally effective.

The test plan describes how testing will be accomplished. Its creation is essential to effective
testing, and should take about one-third of the total test effort. If the plan is developed
carefully, test execution, analysis, and reporting will flow smoothly. The time you spend will
prove worthwhile with effective results.
October 25, 2006 4-29

Guide to the 2006 CSTE CBOK
The test plan should be an evolving document. As the developmental effort changes in scope,
the test plan must change accordingly. It is important to keep the test plan current and to
follow it. It is the execution of the test plan that management must rely on to assure that
testing is effective. Also from this plan the testers ascertain the status of the test effort and
base opinions on the results of the test effort.

The test plan should provide background information on the software being tested, test
objectives and risks, and specific tests to be performed. Properly constructed, the test plan is a
contract between the testers, and the project team and users describing the role of testing in the
project. Thus, status reports and final reports will be based on that contract, which is the status
of the planned test activities.

Test planning should begin at the same time requirements definition starts. The plan will be
detailed in parallel with application requirements. During the analysis stage of the project, the
test plan defines and communicates test requirements and the amount of testing needed so that
accurate test estimates can be made and incorporated into the project plan.

The tests in the test plan should be repeatable, controllable, and ensure adequate test coverage
when executed:

• Repeatable
Once the necessary tests are documented, anyone on the test team should be able to
execute the tests. If the test must be executed multiple times, the plan ensures that all
of the critical elements are tested correctly. Parts or the entire plan can be executed for
any necessary regression testing.

• Controllable
Knowing what test data is required, when testing should be run, and what the expected
results are all documented to control the testing process.

• Coverage
Based on the risks and priorities associated with the elements of the system, the test
plan is designed to ensure that adequate test coverage is built into the test. The plan
can be reviewed by the appropriate parties to ensure that all are in agreement that the
correct amount and types of tests are planned.

The following tasks are provided to help understand what is necessary to develop a good test
plan:

• Understand the characteristics of the software being developed
• Build the test plan
• Write the test plan
4-30 October 25, 2006

Test Planning
4.7.1 Understand the Characteristics of the Software being
Developed

Minimizing technological, business and test risks describe the broad objectives of testing.
These are the risks and concerns that the testers need to be evaluating to assure the test
objectives identified by the risks have been achieved. For example, if reliability is a risk for a
specific project and up-time was a reliability measure, then the testers would need to evaluate
the system’s capability to meet that up-time objective.

The test team should investigate the project characteristics in order to evaluate the potential
magnitude of the risk. During that investigation, the testers should at least do the following:

1. Define what it means to meet the project objectives.
These are the objectives to be accomplished by the project team.

2. Understand the core business areas and processes.
All information systems are not created equal. Systems that support mission-critical
business processes are clearly more important than systems that support mission-support
functions (usually administrative), although these, too, are necessary functions. Focusing
on core business areas and processes is essential to the task of assessing the impact of the
problem and for establishing the priorities for the program.

3. Assess the severity of potential failures.
This must be done for each core business area and its associated processes.

4. Identify the components for the system.
• Links to core business areas or processes
• Platform languages, and database management systems
• Operating system software and utilities
• Telecommunications
• Internal and external interfaces
• Owners
• Availability and adequacy of source code and associated documentation

5. Assure requirements are testable.
Effective testing cannot occur if requirements cannot be tested to determine if
requirements are implemented correctly.

6. Address implementation schedule issues.
• Implementation checkpoints
• Meetings
• Identification and selection of conversion facilities
• Time needed to put converted systems into production
• The conversion of backup and archival data

7. Address interface and data exchange issues.
October 25, 2006 4-31

Guide to the 2006 CSTE CBOK
• Development of a model showing the internal and external dependency links among
core business areas, processes, and information systems

• Notification of all outside data exchange entities
• Data bridges and filters
• Contingency plans if no data is received from an external source
• Validation process for incoming external data
• Contingency plans for invalid data

8. Evaluate contingency plans for this system and activities.
These should be realistic contingency plans, including the development and activation of
manual or contract procedures, to ensure the continuity of core business processes.

9. Identify vulnerable parts of the system and processes operating outside the information
resource management area.
Include telephone and network switching equipment and building infrastructure systems.
Develop a separate plan for their testing.

4.7.2 Build the Test Plan
The development of an effective test plan involves the following tasks that are described
below.

• Set test objectives
• Develop the text matrix
• Define test administration

4.7.2.1 Set Test Objectives

Test objectives need to be defined and agreed upon by the test team. These objectives must be
measurable and the means for measuring defined. In addition, the objectives must be
prioritized.

Test objectives should restate the project objectives from the project plan. In fact, the test plan
objectives should determine whether those project plan objectives have been achieved. If the
project plan does not have clearly stated objectives, then the testers must develop their own
by:

• Setting objectives to minimize the project risks
• Brainstorming to identify project objectives
• Relating objectives to the testing policy, if established

The testers must have the objectives confirmed as the project objectives by the project team.

When defining test objectives, ten or fewer test objectives are a general guideline; too many
distract the tester’s focus. To define test objectives testers need to:
4-32 October 25, 2006

Test Planning
• Define each objective so that you can reference it by a number.
• Write the test objectives in a measurable statement, to focus testers on accomplishing

the objective.
• Assign a priority to the objectives, such as:

• High – The most important objectives to be accomplished during testing.
• Average – Objectives to be accomplished only after the high-priority test

objectives have been accomplished.
• Low – The least important of the test objectives.

Note: Establish priorities so that approximately one-third are High, one-third are Average,
and one-third are Low.
• Define the acceptance criteria for each objective. This should state quantitatively how

the testers would determine whether the objective has been accomplished. The more
specific the criteria, the easier it will be for the testers to follow through.

During the test planning process there will be a decomposition of test objectives into test
cases. At the conclusion of testing, the results of testing can be consolidated upward to
determine whether or not the test objective has been accomplished.

4.7.2.2 Develop the Test Matrix

The test matrix is the key component of the test plan. It lists which software functions must be
tested and the available tests. It shows “how” the software will be tested using checkmarks to
indicate which tests are applicable to which functions. The test matrix is also a test “proof.” It
proves that each testable function has at least one test, and that each test is designed to test a
specific function.

An example of a test matrix is illustrated in Table 4-1. It shows four functions in a payroll
system, with three tests to validate them. Since payroll is a batch system where data is entered
all at one time, test data is also batched using various dates. The parallel test is run when
posting to the general ledger, and all changes are verified through a code inspection.
October 25, 2006 4-33

Guide to the 2006 CSTE CBOK
Table 4-1: Payroll System Test Matrix Example

To develop a software test matrix, follow these steps. Each step is discussed below with
examples.

• Define tests as required
• Define conceptual test cases to be entered as a test script
• Define verification tests
• Prepare the software test matrix

4.7.2.2.1 Define Tests as Required

A test case identified at the test plan level might “validate that all dating in a software function
is correct.” During execution, each date-related instruction in a software function would
require a test case. (It is not necessary for test cases at the test planning level to be very
detailed.)

Each test case should be named and numbered. Numbering is important both to control tests
and to roll test results back to the high-level test described in the test plan.

Figure 4-6 shows an example of a hypothetical test to validate the inputs for a payroll
application. Although all the detail may not be known because the data validation routines
may not have been specified at this point, there is enough information to enable a group to
prepare the data validation test cases. The test case(s) should validate that all invalid
conditions will be rejected, and all valid conditions accepted.

 Test Used to Test Function
Software
Function

Desk
Check

Parallel
Test Code Inspection Validate

Input
Payroll Deduction
Calculation √ √

Gross Pay √ √

Tax Deduction √ √

General Ledger
Changes √
4-34 October 25, 2006

Test Planning
Figure 4-6 Simple Hypothetical Test for a Payroll Application

4.7.2.2.2 Define Conceptual Test Cases to be Entered as a Test Script

A conceptual test script is a high-level description of the test objectives, not the specific test
cases that will be entered during online testing. From the test planning perspective, it is
unimportant whether the individual items will be manually prepared, or generated and
controlled using a software tool.

The example given for entering a batch test to validate date-related processing is also
appropriate for test scripts. The primary differences are the sequence in which the events must
occur and the source or location of the origin of the online event.

Software Project: Payroll Application

Name of Test: Validate Input

Test Objective

Exercise data validation routines.

Test Input

Prepare the following types of input data for each input field:
• "Valid data
• "Invalid data
• "Range of codes
• "Validation of legitimate values and tables

Test Procedures

Create input transactions that contain the conditions described in test input. Run the entire test
deck until all conditions are correctly processed.

Acceptance Criteria

Software will reject all invalid conditions and accept all valid conditions.

Test Controls

Run the entire test run each time the test is conducted. Rerun the test until all specified output
criteria have been achieved.

Software or Structure Attribute Tested

The data validation function
October 25, 2006 4-35

Guide to the 2006 CSTE CBOK
Table 4-2 shows an example of developing test scripts for the data-validation function of a
data entry software project. It lists two scripting events, the evaluation criteria, and comments
that would be helpful in developing these tests.

Table 4-2: Test Script Example for a Data Validation Function

4.7.2.2.3 Define Verification Tests

Verification is a static test performed on a document developed by the team responsible for
creating software. Generally, for large complex documents, the verification process is a
review; for smaller documents, the verification process comprises inspections. Other
verification methods include:

• Static analyzers incorporated into the compilers
• Independent static analyzers
• Walkthroughs
• Confirmation in which a third-party attests to the accuracy of the document

Verification tests normally relate to a specific software project, but because of the
extensiveness of testing, a single verification test may be applicable to many software
projects. For example, it may be determined that each source code listing that is changed will
be inspected prior to the unit test.

4.7.2.2.4 Prepare the Software Test Matrix

The objective of this matrix, as shown in Table 4-3, is to illustrate how to document which test
cases test which software function and which structural attribute.

Software Project: Order Entry
Software Module: Validate Input

Sequence Source Script Event Evaluation
Criteria Comments

1 Data Entry
Clerk

The data entry clerk enters
an invalid customer order.

The customer
number should be
rejected as invalid.

A help routine
would help to locate
the proper customer
number.

2 Data Entry
Clerk

The data entry clerk enters
a correct order into the
system for one or more
invalid company products.

The system should,
first, confirm that
the information
entered is legal and
for legitimate
values, and second,
ask the clerk to
verify that all the
information has
been entered
correctly.

This tests the entry
of valid and invalid
orders through the
data validation
routines.
4-36 October 25, 2006

Test Planning
Table 4-3: Software Test Matrix Example

The vertical axis of the matrix lists the software function or software attributes of the system.
The horizontal axis lists the test cases to be conducted on those software attributes. The
intersection of the vertical and horizontal axes indicates expected test results. A check mark
can be used to indicate the test showed the correct results.

4.7.2.3 Define Test Administration

The administrative component of the test plan identifies the schedule, milestones, and
resources needed to execute the test plan as illustrated in Table 4-4, “Test Administrative
Worksheet Example” and a representative worksheet in Figure 4-7 Administrative Worksheet
for an Administrative Checkpoint. This cannot be undertaken until the technical part, that is,
the test matrix has been completed.

Prior to developing the test plan, the test team has to be organized. This initial test team is
responsible for developing the test plan and then defining the administrative resources needed
to complete the plan. Thus, part of the plan will be executed as the plan is being developed;
that part is the creation of the test plan, which itself consumes resources.

The test plan, like the implementation plan, is a dynamic document, meaning it changes as the
implementation plan changes and the test plan is being executed. The test plan must be viewed
as a “contract” in which any modifications must be incorporated.

The following is the type of information normally included for each administrative checkpoint
in the test plan.

Software Function / Structural Attribute
Test Cases 1 2 3 4 5 6 7 8 9 10
Test A

Test B

Test C

Test D

Test E

Test F
October 25, 2006 4-37

Guide to the 2006 CSTE CBOK
Table 4-4: Test Administrative Worksheet Example

Software Project The name or number that uniquely identifies the project or system that will
be tested for compliance.

Project The name of the project being tested.

Checkpoint for
Administration

The name of the systems development checkpoint documents. If the
checkpoint document has not been completed, the name of the
checkpoint. Testing can be extremely difficult to perform at this checkpoint.

Schedule

The dates on which the following items need to be started and completed:
Plan
Train test group
Obtain data
Test execution
Test Report(s)

Budget The test resources allocated at this milestone, including both execution
and test analysis and reporting.

Resources
The resources needed for this checkpoint, including:
Equipment (computers and other hardware for testing)
Software and test personnel (staff to be involved in this milestone test,
designated by name or job function)

Testing Materials

Materials needed by the test team to perform the test at this checkpoint,
including:
System documentation (specific products and documents needed to
perform the test at this point)
Software to be tested (names of the programs and subsystems to be
tested at this point)
Test input (files or data used for test purposes)
Test documentation (any test documents needed to conduct a test at this
point)
Test tools (software or test tools needed to conduct the test at this point)

Test Training
It is essential that the test team be taught how to perform training. They
may need specific training in the use of test tools and test materials, the
performance of specific tests, and the analysis of test results.
4-38 October 25, 2006

Test Planning
Figure 4-7 Administrative Worksheet for an Administrative Checkpoint

4.7.2.4 State Test Plan General Information

The general information is designed to provide background and reference data on testing.
Because of the scope of this testing, in many organizations this background information will
be necessary to acquaint testers with the project.

The general information about the test project normally includes the following information:
• Software Project

The name or number that uniquely identifies the project or system that will be tested
for compliance.

• Summary
A one or two paragraph overview of what is to be tested and how the testing will be
performed.

• Pretest Background
October 25, 2006 4-39

Guide to the 2006 CSTE CBOK
Summary of any previous test experiences that might prove helpful with testing. The
assumption is, if there were problems in the past, they will probably continue;
however, if there were a few problems with test tools, the test team can expect to use
these tools effectively.

• Test Environment
The computer center or facilities used to test the application. In a single computer
center installation, this subsection is minimal. If the software is used in multiple
installations, the test environments may need to be described extensively.

• Test Constraints
Certain types of testing may not be practical or possible during testing. For example,
in banking systems in which the software ties to the Fed Wire system, it is not possible
to test software with that facility. In other cases, the software cannot yet interface
directly with production databases, and therefore the test cannot provide assurance that
some of these interfaces work. List all known constraints.

• References
Any documents, policies, procedures, or regulations applicable to the software being
tested or the test procedures. It is also advisable to provide a brief description of why
the reference is being given and how it might be used during the testing process.

• When to Stop
What type of test results or events should cause testing to be stopped and the software
returned to the implementation team for more work.

4.7.2.4.1 Define Test Milestones

Test milestones are designed to indicate the start and completion date of each test. These tests
are derived from the test plan. The start and completion milestones should be listed as
numbers. If you prefer, these may be days or dates. For example, milestone 1 could just be
week 1 or day 1, or November 18. The tests from the test matrix are then listed.

Note that organizations that have scheduling software should include the person responsible
for performing that test, as the assignment becomes known.

4.7.3 Write the Test Plan
The test plan may be as formal or informal a document as the organization’s culture dictates.
When a test team has completed testing, they have basically completed the test plan. If a
formal test plan is required, the information from the various forms that were completed
above can be used to complete a plan as shown in Figure 4-8. If an informal test plan is
required, the various forms that were completed above are adequate. Generally, if the test
team is small, the completed forms are more than adequate. As the test team grows in size, it is
generally better to formalize the test plan.
4-40 October 25, 2006

Test Planning
4.7.3.1 Guidelines to Writing the Test Plan

Test planning can be one of the most challenging aspects of testing. The following guidelines
can help make the job a little easier.

• Start early
Even though you might not have all of the details at hand, you can complete a great
deal of the planning effort by starting on the general and working toward the specific.
By starting early, you can also identify resource needs and plan for them before other
areas of the project subsume them.

• Keep the Test Plan flexible
Make it easy to add test cases, test data, and so on. The test plan itself should be
changeable, but subject to change control.

• Review the Test Plan frequently
Other people’s observations and input greatly facilitate achieving a comprehensive test
plan. The test plan should be subject to quality control just like any other project
deliverable.

• Keep the Test Plan concise and readable
The test plan does not need to be large and complicated. In fact, the more concise and
readable it is, the more useful it will be. Remember, the test plan is intended to be a
communication document. The details should be kept in a separate reference
document.

• Calculate the planning effort
You can count on roughly one-third of the testing effort being spent on each of the
following test activities: planning, execution, and evaluation.

• Spend the time to do a complete Test Plan
The better the test plan, the easier it will be to execute the tests.

4.7.3.2 Test Plan Standard

There is no one universally accepted standard for test planning. However, there is great
consistency between the different organizations that have defined a test plan standard. This
section will begin with a discussion of what is normally contained in a test plan, and then
provide an example of a test plan standard that is consistent with the test plan standards
provided by major standard-setting bodies such as the Institute of Electrical and Electronics
Engineers (IEEE) and the National Institute of Standards in Technology (NIST) a part of the
U.S. government.

Test Plans and their formats vary from company to company, but the best examples contain
most of the elements discussed here. The Table of Contents of a test plan might contain the
following:

• Test Scope
October 25, 2006 4-41

Guide to the 2006 CSTE CBOK
• Test Objectives
• Assumptions
• Risk Analysis
• Test Design
• Roles & Responsibilities
• Test Schedule & Resources
• Test Data Management
• Test Environment
• Communication Approach
• Test Tools

4.7.3.2.1 Test Scope
• This section answers two equally important questions: “What will be covered in the

test?” and “What will not be covered in the test?” The answers to either of these
questions might include:

• Specific functional or structural requirements
• System interfaces
• Infrastructure components (e.g., network stability)
• Supplemental deliverables, such as application documentation

4.7.3.2.2 Test Objectives

A test objective is simply a testing “goal.” It is a statement of what the tester is expected to
accomplish or validate during a specific testing activity. Test objectives:

• Guide the development of test cases, procedures, and test data.
• Enable the tester and project managers to gauge testing progress and success.
• Enhance communication both within and outside of the project team by helping to

define the scope of the testing effort.

Each objective should include a high-level description of the expected test results in
measurable terms, and should be prioritized. In cases where test time is cut short, test cases
supporting the highest priority objectives would be executed first.

4.7.3.2.3 Assumptions

These assumptions document test prerequisites, which if not met, could have a negative
impact on the test. The test plan should communicate the risk that is introduced if these
expectations are not met. Examples of assumptions include:

• Skill level of test resources
• Test budget
• State of the application at the start of testing
• Tools available
4-42 October 25, 2006

Test Planning
• Availability of test equipment

Entrance and exit criteria for each stage of testing could be documented here.

4.7.3.2.4 Risk Analysis

Although the test manager should work with the project team to identify risks to the project,
this section of the plan documents test risks and their possible impact on the test effort. Some
teams may incorporate these risks into project risk documentation if available. Risks that
could impact testing include:

• Availability of downstream application test resources to perform system integration or
regression testing

• Implementation of new test automation tools
• Sequence and increments of code delivery
• New technology

4.7.3.2.5 Test Design

The test design details the following:
• The types of tests that must be conducted
• The stages of testing that are required (e.g., Unit, Integration, System, Performance,

and Usability)
• Outlines the sequence and timing of tests

4.7.3.2.6 Roles & Responsibilities

This section of the test plan defines who is responsible for each stage or type of testing. A
responsibility matrix is an effective means of documenting these assignments. Note that
although the Test Manager usually writes the test plan, it does not just include information on
tests that the test team will execute.

4.7.3.2.7 Test Schedule & Planned Resources

The test schedule section includes the following:
• Major test activities
• Sequence of tests
• Dependence on other project activities
• Initial estimates for each activity

The plan should not be maintained separately, but incorporated into the overall Project Plan.
Test resource planning includes:

• People, tools, and facilities
• An analysis of skill sets so that training requirements can be identified
October 25, 2006 4-43

Guide to the 2006 CSTE CBOK
4.7.3.2.8 Test Data Management

This section of the plan defines the data required for testing, as well as the infrastructure
requirements to manage test data. It includes:

• Methods for preparing test data
• Backup and rollback procedures
• High-level data requirements, data sources, and methods for preparation (production

extract or test data generation)
• Whether data conditioning or conversion will be required
• Data security issues

4.7.3.2.9 Test Environment

Environment requirements for each stage and type of testing should be outlined in this section
of the plan, for example:

• Unit testing may be conducted in the development environment, while separate
environments may be needed for integration and system testing

• Procedures for configuration management, release, and version control should be
outlined

• Requirements for hardware and software configurations
• The location of individual test events
• The defect tracking mechanisms to be used

4.7.3.2.10 Communication Approach

In the complex, matrix environment required for testing in most companies, various
communication mechanisms are required. These avenues should include

• Formal and informal meetings
• Working sessions
• Processes, such as defect tracking
• Tools, such as issue and defect tracking, electronic bulletin boards, notes databases,

and Intranet sites
• Techniques, such as escalation procedures or the use of white boards for posting

current state of testing (e.g., test environment down)
• Miscellaneous items such as project contact lists, meeting audiences, and frequency of

defect reporting

4.7.3.2.11 Tools

Any tools that will be needed to support the testing process should be included here. Tools are
usually used for:

• Workplan development
• Test planning and management
4-44 October 25, 2006

Test Planning
• Configuration management
• Test script development
• Test data conditioning
• Test execution
• Automated test tools
• Stress/load testing
• Results verification
• Defect tracking

The information outlined here cannot usually all be completed at once, but is captured in
greater levels of detail as the project progresses through the life cycle.

A four-part test plan standard is provided in Figure 4-8 and Figure 4-9 as an example.
October 25, 2006 4-45

Guide to the 2006 CSTE CBOK
This page intentionally left blank.

Figure 4-8 Example of a System test Plan
4-46 October 25, 2006

Test Planning
Figure 4-9 Example of a System test Plan (continued)
October 25, 2006 4-47

Guide to the 2006 CSTE CBOK
This page intentionally left blank.
4-48 October 25, 2006

Executing the Test Plan
he test plan should be executed as designed. If the plan cannot be executed as
designed it should be changed, or notations made as to what aspects of the plan were
not performed. Testing according to the test plan should commence when the project
commences and conclude when the software is no longer in operation. Portions of the

test plan can be performed while the test plan is being written. To carry out the test plan,
testers require many skills including designing test cases and test scripts, proper and efficient
use of test tools, execute tests, recording test results, and managing defects.

5.1 Test Case Design
The test objectives established in the test plan should be decomposed into individual test cases
and test scripts. In Skill Category 4 the test plan included a test matrix that correlates a
specific software function to the tests that will be executed to validate that the software
function works as specified.

To create this test matrix, begin the process with high-level test objectives. These are
decomposed into lower and lower objectives until functional and structural test objectives are
defined individually. At that point, test cases and scripts can be prepared to validate those
individual structural and functional conditions.

Test Case Design 5-1
Test Coverage 5-26
Performing Tests 5-27
Recording Test Results 5-32
Defect Management 5-37

Skill
Category

5

T

October 25, 2006 5-1

Guide to the 2006 CSTE CBOK
When the objectives have been decomposed, or decomposed to a level that the test case can be
developed, a set of conditions can be created which will not only test the software during
development, but can test changes during the operational state of the software.

You can design and prepare the following types of test cases:
• Functional
• Structural
• Erroneous
• Stress
• Scripts
• Use Cases

5.1.1 Functional Test Cases
Functional analysis seeks to verify, without execution, that the code faithfully implements the
specification. Various approaches are possible. In proof of correctness, a formal proof is
constructed to verify that a program correctly implements its intended function. In safety
analysis, potentially dangerous behavior is identified and steps are taken to ensure such
behavior is never manifested. Functional analysis is mentioned here for completeness, but a
discussion of it is outside the scope of this section.

5.1.1.1 Design Specific Tests for Testing Code

Program testing is functional when test data is developed from documents that specify a
module’s intended behavior. These documents include, but are not limited to, the actual
specification and the high-and-low-level design of the code to be tested. The goal is to test the
specified behavior for each software feature, including the input and output.

5.1.1.2 Functional Testing Independent of the Specification Technique

Specifications detail the assumptions that may be made about a given software unit. They
must describe the interface through which access to the unit is given, as well as the behavior
once such access is given. The interface of a unit includes the features of its inputs, its outputs,
and their related value specifications. The behavior of a module always includes the
function(s) to be computed (its semantics), and sometimes the runtime characteristics, such as
its space and time complexity. Functional testing derives test data from the features of the
specification.

5.1.1.3 Functional Testing Based on the Interface

Functional testing based on the interface of a software module selects test data based on the
features of the interfaces. Three types of functional testing are:
5-2 October 25, 2006

Executing the Test Plan
• Input Testing
In external testing, test data is chosen to cover the extremes of the input. Similarly,
midrange testing selects data from the interior values. The motivation is inductive – it
is hoped that conclusions about the entire input can be drawn from the behavior
elicited by some of its representative members. For structured input, combinations of
extreme points for each component are chosen. This procedure can generate a large
quantity of data.

• Equivalence Partitioning
Specifications frequently partition the set of all possible inputs into classes that receive
equivalent treatment. Such partitioning is called equivalence partitioning. A result of
equivalence partitioning is the identification of a finite set of functions and their
associated input and output results. Input constraints and error conditions can also
result from this partitioning. Once these partitions have been developed, both external
and midrange testing are applicable to the resulting input.

• Syntax Checking
Every program tested must assure its input can handle incorrectly formatted data.
Verifying this feature is called syntax checking. One means of accomplishing this is to
execute the program using a broad spectrum of test data. By describing the data with
documentation language, instances of the input language can be generated using
algorithms from automata theory.

5.1.1.4 Functional Testing Based on the Function to be Computed

Equivalence partitioning results in the identification of a finite set of functions and their
associated input and output results. Test data can be developed based on the known
characteristics of these functions. Consider, for example, a function to be computed that has
fixed points, that is, certain of its input values are mapped into themselves by the function.
Testing the computation at these fixed points is possible, even in the absence of a complete
specification. Knowledge of the function is essential in order to ensure adequate coverage of
the output results.

• Special-Value Testing
Selecting test data on the basis of features of the function to be computed is called
special-value testing. This procedure is particularly applicable to mathematical
computations. Properties of the function to be computed can aid in selecting points
that will indicate the accuracy of the computed solution.

• Output Result Coverage
For each function determined by equivalence partitioning there is an associated output
result. Selecting points that will cause the extremes of each of the output results to be
achieved performs output result coverage. This ensures that modules have been
checked for maximum and minimum output conditions and that all categories of error
messages have, if possible, been produced. In general, constructing such test data
October 25, 2006 5-3

Guide to the 2006 CSTE CBOK
requires knowledge of the function to be computed and, hence, expertise in the
application area.

5.1.1.5 Functional Testing Dependent on the Specification Technique

The specification technique employed can aid in testing. An executable specification can be
used as an oracle and, in some cases, as a test generator. Structural properties of a
specification can guide the testing process. If the specification falls within certain limited
classes, properties of those classes can guide the selection of test data.

• Algebraic
In algebraic specifications, properties of a data abstraction are expressed by means of
axioms or rewrite rules. In one system, testing checks the consistency of an algebraic
specification with an implementation. Each axiom is compiled into a procedure, which
is then associated with a set of test points. A driver program supplies each of these
points to the procedure of its respected axiom. The procedure, in turn, indicates
whether the axiom is satisfied. Structural coverage of both the implementation and the
specification is computed.

• Axiomatic
Despite the potential for widespread use of predicate calculus as a specification
language, little has been published about deriving test data from such specifications. A
relationship between predicate calculus specifications and path testing has been
explored.

• State Machines
Many programs can be specified as state machines, thus providing an additional means
of selecting test data. Since the equivalence problem of two finite automata is
decidable, testing can be used to decide whether a program that simulates a finite
automation with a bounded number of nodes is equivalent to the one specified. This
result can be used to test those features of programs that can be specified by finite
automata, for example, the control flow of a transaction-processing system.

• Decision Tables
Decision tables are a concise method of representing an equivalence partitioning. The
rows of a decision table specify all the conditions that the input may satisfy. The
columns specify different sets of actions that may occur. Entries in the table indicate
whether the actions should be performed if a condition is satisfied. Typical entries are,
“Yes,” “No,” or “Don’t care.” Each row of the table suggests significant test data.
Cause-effect graphs provide a systematic means of translating English specifications
into decision tables, from which test data can be generated.
5-4 October 25, 2006

Executing the Test Plan
5.1.2 Structural Test Cases
In structural program testing and analysis, test data is developed or evaluated from the source
code. The goal is to ensure that various characteristics of the program are adequately covered.

5.1.2.1 Structural Analysis

In structural analysis, programs are analyzed without being executed. The techniques
resemble those used in compiler construction. The goal here is to identify fault-prone code, to
discover anomalous circumstances, and to generate test data to cover specific characteristics
of the program’s structure.

• Complexity Measures
As resources available for testing are always limited, it is necessary to allocate these
resources efficiently. It is intuitively appealing to suggest that the more complex the
code, the more thoroughly it should be tested. Evidence from large projects seems to
indicate that a small percentage of the code typically contains the largest number of
errors. Various complexity measures have been proposed, investigated, and analyzed.

• Data Flow Analysis
A program can be represented as a flow graph annotated with information about
variable definitions, references, and indefiniteness. From this representation,
information about data flow can be deduced for use in code optimization, anomaly
detection, and test data generation. Data flow anomalies are flow conditions that
deserve further investigation as they may indicate problems. Examples include:
defining a variable twice with no intervening reference, referencing a variable that is
undefined, and un-defining a variable that has not been referenced since its last
definition. Data flow analysis can also be used in test data generation, exploiting the
relationship between points where variables are defined and points where they are
used.

• Symbolic Execution
A symbolic execution system accepts three inputs: a program to be interpreted;
symbolic input for the program; and the path to follow. It produces two outputs: the
symbolic output that describes the computation of the selected path, and the path
condition for that path. The specification of the path can be either interactive or pre-
selected. The symbolic output can be used to prove the program correct with respect to
its specification and the path condition can be used for generating test data to exercise
the desired path. Structured data types cause difficulties, however, since it is
sometimes impossible to deduce what component is being modified in the presence of
symbolic values.

5.1.2.2 Structural Testing

Structural testing is a dynamic technique in which test data selection and evaluation are driven
by the goal of covering various characteristics of the code during testing. Assessing such
October 25, 2006 5-5

Guide to the 2006 CSTE CBOK
coverage involves the instrumentation of the code to keep track of which characteristics of the
program text are actually exercised during testing. The inexpensive cost of such
instrumentation has been a prime motivation for adopting this technique. More importantly,
structural testing addresses the fact that only the program text reveals the detailed decisions of
the programmer. For example, for the sake of efficiency, a programmer might choose to
implement a special case that appears nowhere in the specification. The corresponding code
will be tested only by chance using functional testing, whereas use of a structural coverage
measure such as statement coverage should indicate the need for test data for this case.
Structural coverage measures for a rough hierarchy, with a higher level being more costly to
perform and analyze, but being more beneficial, as described below.

• Statement Testing
Statement testing requires that every statement in the program be executed. While it is
obvious that achieving 100 percent statement coverage does not ensure a correct
program, it is equally obvious that anything less means that there is code in the
program that has never been executed!

• Branch Testing
Achieving 100 percent statement coverage does not ensure that each branch in the
program flow graph has been executed. For example, executing an “if…then”
statement, (no “else”) when the tested condition is true, tests only one of two branches
in the flow graph. Branch testing seeks to ensure that every branch has been executed.
Branch coverage can be checked by probes inserted at points in the program that
represent arcs from branch points in the flow graph. This instrumentation suffices for
statement coverage as well.

• Conditional Testing
In conditional testing, each clause in every condition is forced to take on each of its
possible values in combination with those of other clauses. Conditional testing thus
subsumes branch testing; and therefore, inherits the same problems as branch testing.
Instrumentation for conditional testing can be accomplished by breaking compound
conditional statements into simple conditions and nesting the resulting “if” statements.

• Expression Testing
Expression testing requires that every expression assume a variety of values during a
test in such a way that no expression can be replaced by a simpler expression and still
pass the test. If one assumes that every statement contains an expression and that
conditional expressions form a proper subset of all the program expressions, then this
form of testing properly subsumes all the previously mentioned techniques.
Expression testing does require significant run-time support for the instrumentation.

• Path Testing
In path testing, data is selected to ensure that all paths of the program have been
executed. In practice, of course, such coverage is impossible to achieve for a variety of
reasons. First, any program with an indefinite loop contains an infinite number of
paths, one for each iteration of the loop. Thus, no finite set of data will execute all
paths. The second difficulty is the infeasible path problem: it is undecided whether an
5-6 October 25, 2006

Executing the Test Plan
arbitrary path in an arbitrary program is executable. Attempting to generate data for
such infeasible paths is futile, but it cannot be avoided. Third, it is undecided whether
an arbitrary program will halt for an arbitrary input. It is therefore impossible to decide
whether a path is finite for a given input.

In response to these difficulties, several simplifying approaches have been proposed.
Infinitely many paths can be partitioned into a finite set of equivalence classes based on
characteristics of the loops. Boundary and interior testing require executing loops zero times,
one time, and if possible, the maximum number of times. Linear sequence code and jump
criteria specify a hierarchy of successively more complex path coverage.

Path coverage does not imply condition coverage or expression coverage since an expression
may appear on multiple paths, but some sub-expressions may never assume more than one
value. For example, in “if a / b then S1 else S2;” b may be false and yet each path may still be
executed.

5.1.3 Erroneous Test Cases
Testing is necessitated by the potential presence of errors in the programming process.
Techniques that focus on assessing the presence or absence of errors in the programming
process are called error-oriented. There are three broad categories of such techniques:
statistical assessment, error-based testing, and fault-based testing. These are stated in order of
increasing specificity of what is wrong with the program without reference to the number of
remaining faults.

Error-based testing attempts to show the absence of certain errors in the programming
process. Fault-based testing attempts to show the absence of certain faults in the code. Since
errors in the programming process are reflected as faults in the code, both techniques
demonstrate the absence of faults. They differ, however, in their starting point: Error–based
testing begins with the programming process, identifies potential errors in that process, and
then asks how those errors are reflected as faults. It then seeks to demonstrate the absence of
those reflected faults. Fault-based testing begins with finding potential faults in the code
regardless of what error in the programming process caused them.

5.1.3.1 Statistical Methods

Statistical testing employs statistical techniques to determine the operational reliability of the
program. Its primary concern is how faults in the program affect its failure rate in its actual
operating environment. A program is subjected to test data that statistically models the
operating environment, and failure data is collected. From the data, a reliability estimate of the
program’s failure rate is computed. This method can be used in an incremental development
environment. A statistical method for testing paths that compute algebraic functions has also
been developed. There has been a prevailing sentiment that statistical testing is a futile
activity, since it is not directed toward finding errors. However, studies suggest it is a viable
October 25, 2006 5-7

Guide to the 2006 CSTE CBOK
alternative to structural testing. Combining statistical testing with an oracle appears to
represent an effective trade-off of computer resources for human time.

5.1.3.2 Error-Based Testing

Error-based testing seeks to demonstrate that certain errors have not been committed in the
programming process. Error-based testing can be driven by histories of programmer errors,
measures of software complexity, knowledge of error-prone syntactic constructs, or even error
guessing. Some of the more methodical techniques are described below.

• Fault Estimation
Fault seeding is a statistical method used to assess the number and characteristics of
the faults remaining in a program. Harlan Mills originally proposed this technique, and
called it error seeding. First, faults are seeded into a program. Then the program is
tested and the number of faults discovered is used to estimate the number of faults yet
undiscovered. A difficulty with this technique is that the faults seeded must be
representative of the yet-undiscovered faults in the program. Techniques for predicting
the quantity of remaining faults can also be based on a reliability model.

• Input Testing
The input of a program can be partitioned according to which inputs cause each path to
be executed. These partitions are called paths. Faults that cause an input to be
associated with the wrong path are called input faults. Other faults are called
computation faults. The goal of input testing is to discover input faults by ensuring that
test data limits the range of undetected faults.

• Perturbation Testing
Perturbation testing attempts to decide what constitutes a sufficient set of paths to test.
Faults are modeled as a vector space, and characterization theorems describe when
sufficient paths have been tested to discover both computation and input errors.
Additional paths need not be tested if they cannot reduce the dimensionality of the
error space.

• Fault-Based Testing
Fault-based testing aims at demonstrating that certain prescribed faults are not in the
code. It functions well in the role of test data evaluation. Test data that does not
succeed in discovering the prescribed faults is not considered adequate. Fault-based
testing methods differ in both extent and breadth. One with local extent demonstrates
that a fault has a local effect on computation; it is possible that this local effect will not
produce a program failure. A method with global extent demonstrates that a fault will
cause a program failure. Breadth is determined by whether the technique handles a
finite or an infinite class of faults. Extent and breadth are orthogonal, as evidenced by
the techniques described below.

• Local Extent, Finite Breadth
Input-output pairs of data are encoded as a comment in a procedure, as a partial
specification of the function to be computed by that procedure. The procedure is then
5-8 October 25, 2006

Executing the Test Plan
executed for each of the input values and checked for the output values. The test is
considered adequate only if each computational or logical expression in the procedure
is determined by the test; i.e., no expression can be replaced by a simpler expression
and still pass the test. Simpler is defined in a way that allows only a finite number of
substitutions. Thus, as the procedure is executed, each possible substitution is
evaluated on the data state presented to the expression. Those that do not evaluate the
same as the original expression are rejected. The system allows methods of specifying
the extent to be analyzed.

• Global Extent, Finite Breadth
In mutation testing, test data adequacy is judged by demonstrating that interjected
faults are caught. A program with interjected faults is called a mutant, and is produced
by applying a mutation operator. Such an operator changes a single expression in the
program to another expression, selected from a finite class of expressions. For
example, a constant might be incremented by one, decremented by one, or replaced by
zero, yielding one of three mutants. Applying the mutation operators at each point in a
program where they are applicable forms a finite, albeit large, set of mutants. The test
data is judged adequate only if each mutant in this set is either functionally equivalent
to the original program or computes different output than the original program.
Inadequacy of the test data implies that certain faults can be introduced into the code
and go undetected by the test data.

Mutation testing is based on two hypotheses. The competent programmer hypothesis
says that a competent programmer will write code that is close to being correct. The
correct program, if not the current one, can be produced by some straightforward
syntactic changes to the code. The coupling effect hypothesis says that test data that
reveals simple faults will uncover complex faults as well. Thus, only single mutants
need be eliminated, and combinatory effects of multiple mutants need not be
considered. Studies formally characterize the competent programmer hypothesis as a
function of the probability of the test set’s being reliable, and show that under this
characterization, the hypothesis does not hold. Empirical justification of the coupling
effect has been attempted, but theoretical analysis has shown that it does not hold,
even for simple programs.

• Local Extent, Infinite Breadth
Rules for recognizing error-sensitive data are described for each primitive language
construct. Satisfaction of a rule for a given construct during testing means that all
alternate forms of that construct have been distinguished. This has an obvious
advantage over mutation testing – elimination of all mutants without generating a
single one! Some rules even allow for infinitely many mutants. Of course, since this
method is of local extent, some of the mutants eliminated may indeed be the correct
programs.

• Global Extent, Infinite Breadth
We can define a fault-based method based on symbolic execution that permits
elimination of infinitely many faults through evidence of global failures. Symbolic
faults are inserted into the code, which is then executed on real or symbolic data.
October 25, 2006 5-9

Guide to the 2006 CSTE CBOK
Program output is then an expression in terms of the symbolic faults. It thus reflects
how a fault at a given location will impact the program’s output. This expression can
be used to determine actual faults that could not have been substituted for the symbolic
fault and remain undetected by the test.

5.1.4 Stress Test Cases
Stress or volume testing needs a tool that supplements test data. The objective is to verify that
the system can perform properly when stressed, or when internal program or system
limitations have been exceeded. This may require that large volumes of test cases be entered
during testing. Stressing can be done with large volumes of data on a test file; however, a tool
will be needed to test using a script.

The types of internal limitations that can be evaluated with volume testing include:
• Internal accumulation of information, such as tables.
• Number of line items in an event, such as the number of items that can be included

within an order.
• Size of accumulation fields.
• Data-related limitations, such as leap year, decade change, switching calendar years,

etc.
• Field size limitations, such as number of characters allocated for people’s names.
• Number of accounting entities, such as number of business locations, state/country in

which business is performed, etc.

The concept of stress testing is as old as the processing of data in information systems. What
is necessary to make the concept work is a systematic method of identifying limitations. The
recommended steps for determining program and system limitations follow.

1. Identify input data used by the program.
A preferred method to identify limitations is to evaluate the data. Each data field is
reviewed to determine if it poses a system limitation. This is an easier method than
attempting to evaluate the programs. The method is also helpful in differentiating between
system and program limitations. It also has the advantage that data may only need to be
evaluated once, rather than evaluating numerous individual programs.
All of the data entering an application system should be identified. Those data elements
not used by the applications, but merely accessible to it, should be deleted, resulting in a
list of input data used by the application system.

2. Identify data created by the program.
Data generated by application systems should be identified. These would be data elements
that are not inputted into the system but are included in internal or output data records.
Knowing the input data and the output data, it is a relatively simple process to identify
newly created data elements.

3. Challenge each data element for potential limitations.
5-10 October 25, 2006

Executing the Test Plan
A key step in determining program/system limitations is in the challenge process. The
individual using stress test tools should ask the following questions about each data
element:

• Can the data value in a field entering the system exceed the size of this data
element? (If so, a limitation is identified.)

• Is the value in a data field accumulated? (If so, a limitation is identified.)
• Is data temporarily stored in the computer? (If so, a limitation is identified.)
• Is the information in a data element(s) stored in the program until a following

transaction is entered? (If so, a limitation is identified.)
• If a data element represents an accounting entity, for example, the number of sales

financial accounts, etc., does the number used to identify the accounting entity in
itself provide a future limitation, such as using a one-character field to identify
sales districts? (If so, a limitation is identified.)

4. Document limitations.
All of the limitations identified in Step 3 should be documented. This forms the basis for
stress testing. Each of these limitations must now be evaluated to determine the extent of
testing on those limitations.

5. Perform stress testing.
The testing to be performed follows the same nine steps outlined in the test file process.
The limitations documented in Step 4 become the test conditions that need to be identified
in Step 2.

5.1.5 Test Scripts
Test scripts are an on-line entry of test cases in which the sequence of entering test cases and
the structure of the on-line entry system must be validated, in addition to the expected results
from a single test case.

The following tasks are needed to develop, use, and maintain test scripts:
• Determine testing levels
• Develop the scripts
• Execute the scripts
• Analyze the results
• Maintain the scripts

5.1.5.1 Determine Testing Levels
• Unit Scripting – Develop a script to test a specific unit or module.
• Pseudo-concurrency Scripting – Develop scripts to test when there are two or more

users accessing the same file at the same time.
• Integration Scripting – Determine that various modules can be properly linked.
October 25, 2006 5-11

Guide to the 2006 CSTE CBOK
• Regression Scripting – Determine that the unchanged portions of systems remain
unchanged when the system is changed. (Note: This is usually performed with the
information captured on a capture/playback software system that enables the capture
of transactions as they are entered via terminal, and then repeats them as the scripts are
reused. There are many of these on the market, although they are aimed primarily at
the IBM mainframe.)

• Stress and Performance Scripting – Determine whether the system will perform
correctly when it is stressed to its capacity. This validates the performance of the
software when stressed by large numbers of transactions.

The testers need to determine which, or all, of these five levels of scripting to include in the
script.

5.1.5.2 Develop the Scripts

This task, too, is normally done using the capture and playback tool. The script is a complete
series of related terminal actions. The development of a script involves a number of
considerations, as follows:

• Script components • Input
• Programs to be tested • Files involved
• On-line operating environment • Output
• Manual entry of script transactions • Date setup
• Secured initialization • File restores
• Password entry • Update
• Automated entry of script transactions • Edits of transactions
• Inquiry during processing • External considerations
• Stress and performance test • Program libraries
• File states and contents • Screen initialization
• Operating environment • Security considerations
• Complete scripts • Start and stop considerations
• Start; usually begins with a clear screen • Start; begins with a transaction code
• Scripts; end with a clear screen • Script contents
• Sign-on • Setup
• Menu navigation • Function
• Exit • Sign-off
• Clear screen • Changing passwords
• Regrouping • Single-user identifications
• Sources of scripting transactions • Entry of scripts
• Operations initialization of files • Timing dependencies
• Inquiry versus update • Unit versus regression test
5-12 October 25, 2006

Executing the Test Plan
• Three steps: setup (external), test (script), and reset (external)
• Application program interface (API) communications
• Navigation of transactions through the system
• User identification and security rules
• Iterative/vary arrival rate; three steps: setup (external), test (script), and collect

performance data

The following is needed for script development:
• Test Item – a unique item identified of the test condition.
• Entered by – Who will enter the script.
• Sequence – The sequence in which the actions are to be entered.
• Action – The action or scripted item to be entered.
• Expected Result – The result expected from entering the action.
• Operator Instructions – What the operator is to do if the proper result is received, or if

an improper result is returned.

Table 5-1summarizes the script development strategies. The table shows for the five levels of
testing using scripts described above, which level is best suited for single transaction tests,
and which is best suited for testing multiple transactions. The table also shows for each level
whether testing occurs from a single terminal or from multiple terminals.

• Organization of scripts • Unit test organization
• Single functions (transactions) • Single terminal
• Separate inquiry from update • Self-maintaining
• Pseudo-concurrent test • Integration test (string testing)
• Multiple functions (transactions) • Regression test
• Special considerations • Multiple terminals
• Single versus multiple terminals • Date and time dependencies
October 25, 2006 5-13

Guide to the 2006 CSTE CBOK
Table 5-1: Script Development Strategies

5.1.5.3 Execute the Script

The script can be executed manually or by using the capture and playback tools. Use caution
when you use scripting extensively unless a software tool drives the script. Some of the
considerations to incorporate into script execution are:

• Environmental setup
• Program libraries
• File states and contents
• Date and time
• Security
• Multiple terminal arrival modes
• Think time
• Serial (cross-terminal) dependencies
• Pseudo-concurrent
• Processing options
• Stall detection
• Synchronization
• Rate
• Arrival rate

5.1.5.4 Analyze the Results

After executing the test script, the results must be analyzed. However, much of this should
have been done during the execution of the script, using the operator instructions provided.
Note: if a capture and playback software tool is used, analysis will be more extensive after
execution. The result analysis should include the following:

• System components
• Outputs (screens)
• File content at conclusion of testing
• Status of logs

Test Level Single
Transaction

Multiple
Transactions

Single
Terminal

Multiple
Terminals

Unit X X

Concurrent X X

Integration X X

Regression X X

Stress X X
5-14 October 25, 2006

Executing the Test Plan
• Performance data (stress results)
• On-screen outputs
• Individual screen outputs
• Multiple screen outputs
• Order of outputs processing
• Compliance of screens to specifications
• Ability to process actions
• Ability to browse through data

The main checking will be the actual results against the expected results. The preceding list
highlights some of the specific considerations included.

5.1.5.5 Maintain Scripts

Once developed, scripts need to be maintained so that they can be used throughout
development and maintenance. The areas to incorporate into the script maintenance procedure
are:

• Programs
• Files
• Screens
• Insert (transactions)
• Delete
• Arrange
• Field
• Changed (length, content)
• New
• Moved
• Expand test cases

Use Table 5-2, “Test Condition Script Checklist” to determine the completeness of the scripts.
If the script does not address items in the checklist, you should consider extending the script.
A “No” response indicates that you have not included a test condition of that type, and you
may want to indicate the reason for not including this test condition. The following questions
are prefaced with “Does the script include…”:
October 25, 2006 5-15

Guide to the 2006 CSTE CBOK
Table 5-2: Test Condition Script Checklist

Does the Script Include? … Yes No If No, Why Not?
Unit testing

Pseudo-concurrency testing

Integration testing

Regression testing

Stress testing

Manual entries of transactions for:

Date setup

Secured initialization

File restores

Password entry

Updates

Automated entries of scripts include
the appropriate navigation through
the system

References to the program libraries

Various file states

Initialization of screens

The operating environment

Security considerations

Sign-on and setup procedures

Sign-off and clear screen
procedures

All items on the menu

Changing user identification

Changing passwords

Use of the prompting routines

Multiple terminal processing

Time and date dependencies

Single-function transactions

Multiple-function transactions

Inquiry

Update

Deletion
5-16 October 25, 2006

Executing the Test Plan
The output from this workbench is a description of the results of the scripting test, which
might include:

• Performance and problems in manual entry
• Performance and problems in the data entry process
• Performance and problems associated with the hardware, menu navigation, sign-on

and sign-off procedures
• Problems with quality characteristics such as ease of use and security
• Capability of the on-line system to perform in accordance with specifications.

Several characteristics of scripting are different from batch test data development. These
differences are:

• Data entry procedures required
The test procedures take on greater significance in scripting. The person using the
script needs to know in detail how to enter the transaction via the terminal. This may
be more complex than simply creating a test condition.

• Use of software packages
Scripting is a very difficult and complex task to do manually, particularly when the
script has to be repeated multiple times. Therefore, most testers use a capture/playback
type of software package.

• Sequencing of events
Scripts require the sequencing of transactions. In batch systems, sequencing is
frequently handled by sorting during systems execution; however, with scripts, the
sequence must be predefined.

• Stop procedures
Batch testing continues until the batch is complete or processing abnormally
terminates. Scripting may be able to continue, but the results would be meaningless;
therefore, the script has to indicate when to stop, or if specific conditions occur, where
to go in the script to resume testing.

5.1.6 Use Cases
Incomplete, incorrect, and missing test cases can cause incomplete and erroneous test results.
Flawed test results causes rework, at a minimum, and at worst, a flawed system to be

Multiple-terminal testing

Single-terminal testing

Single-transaction testing

Multiple-transactions testing

Does the Script Include? … Yes No If No, Why Not?
October 25, 2006 5-17

Guide to the 2006 CSTE CBOK
developed. There is a need to ensure that all required test cases are identified so that all system
functionality requirements are tested.

A use case is a description of how a user (or another system) uses the system being designed
to perform a given task. A system is described by the sum of its use cases. Each instance or
scenario of a use case will correspond to one test case. Incorporating the use case technique
into the development life cycle will address the effects of incomplete, incorrect, and missing
test cases. Use cases are an easy-to-use approach that is applicable to both conventional and
object-oriented system development.

Use cases provide a powerful means of communication between customer, developers, testers,
and other project personnel. Test cases can be developed with system users and designers as
the use cases are being developed. Having the test case developed at the earliest possible stage
of the project provides a baseline for the early planning of acceptance testing. Another
advantage to having test cases early on is that, if a packaged software solution is indicated,
then the customer can use them to evaluate purchased software earlier in the development
cycle. Using the use case approach will ensure not only meeting requirements, but also
expectations.

5.1.6.1 Build a System Boundary Diagram

A system boundary diagram depicts the interfaces between the software being tested and the
individuals, systems, and other interfaces. These interfaces or external agents in this work
practice will be referred to as “actors.” The purpose of the system boundary diagram is to
establish the scope of the system and to identify the actors (i.e., the interfaces) that need to be
developed.

An example of a system boundary diagram for an automated teller machine (ATM) for an
organization called “Best Bank” is illustrated in Figure 5-1.

Figure 5-1 System Boundary Diagram for an ATM Example
5-18 October 25, 2006

Executing the Test Plan
For that software, each system boundary needs to be defined. System boundaries can include:
• Individuals/groups that manually interface with the software
• Other systems that interface with the software
• Libraries
• Objects within object-oriented systems

Each system boundary should be described. For each boundary an actor must be identified.

Two aspects of actor definition are required. The first is the actor description, and the second
is the name of an individual or group who can play the role of the actor (i.e., represent that
boundary interface). For example, in Figure 5-1 the security alarm system is identified as an
interface. The actor is the security alarm company. The name of a person in the security alarm
company or the name of someone who can represent the security alarm company must be
identified. Note that in some instances the actor and the individual may be the same, such as
the ATM system administrator listed in Figure 5-1.

5.1.6.2 Define Use Cases

An individual use case consists of:
• Preconditions that set the stage for the series of events that should occur for the use

case
• Results that state the expected outcomes of the above process
• Sequential narrative of the execution of the use case

Use cases are used to:
• Manage (and trace) requirements
• Identify classes and objects (OO)
• Design and code (Non-OO)
• Develop application documentation
• Develop training
• Develop test cases

The use case is defined by the actor. The actor represents the system boundary interface and
prepares all of the use cases for that system boundary interface. Note that this can be done by
a single individual or a team of individuals.

The information about each use case that needs to be determined for defining the case follows:
• Use Case Name or ID

A short phrase in business terms or identifier that identifies and describes the use case.

• Actor
Anything that needs to exchange information with the system. Often it is a role played
by the user of the system or it could be another system.
October 25, 2006 5-19

Guide to the 2006 CSTE CBOK
• Objective
A description of what a use case accomplishes given a defined set of conditions.

• Preconditions
The entrance criteria or state that the system must be in for the use case to execute.

• Results
The expected completion criteria of the use case.

• Detailed Description
• The sequence of steps (performed by the actor) necessary to execute the use case.
• The model (system) response of each step.
• This is the basic course of events that support the precondition and results.
• The description is from a user’s (“black-box”) point of view and does not include

details about the events of the internal system.
• Exceptions

• Errors or deviations that may occur that cause the actor to deviate from the basic
course.

• Alternative Courses
• A deviation from the step-by-step event so the Detailed Description that generally

inserts extra steps or omits steps.
• These are valid events, but are not the basic course of events.

5.1.6.3 Develop Test Cases

A test case is a set of test inputs, execution conditions, and expected results developed for a
particular test objective. There should be a one-to-one relationship between use case
definitions and test cases. There needs to be at least two test cases for each use case: one for
successful execution of the use case and one for an unsuccessful execution of a test case.
However, there may be numerous test cases for each use case.

Additional test cases are derived from the exceptions and alternative course of the use case.
Note that additional detail may need to be added to support the actual testing of all the
possible scenarios of the use case.

The use case description is the input to the test case worksheet. The actor who prepared the
use case description also prepares the test case worksheet. There will be at least two test
conditions for each use case description and normally many more. The actor tries to determine
all of the possible scenarios that occur for each use case. To build a use case, the following
needs to be determined:
5-20 October 25, 2006

Executing the Test Plan
5.1.6.4 Test Objective

The specific objective of the test case. The test objective is related to the use case definition
that details the description action.

• Test Condition
One of the possible scenarios as a result of the action being tested from the use case
description worksheet.

• Operator Action
The detailed steps that the operator performing the test condition performs to execute
the test condition.

• Input Specifications
The input that is necessary in order for the test case to be executed.

• Output Specifications
The results expected from performing the operator actions on the input specified

• Pass or Fail
The results of executing the test.

• Comments
Guidance from the actor to the individual who will actually perform the test.

At the conclusion of use case testing, a decision must be made on each acceptance criterion as
to whether it has been achieved.

5.1.7 Building Test Cases
Testers and users have been using test cases since the inception of computer programming.
The concept of test data is a simple one – creating representative processing conditions using
test cases. The complex part of creating test data is determining which processing events to
make test cases. Experience shows that it is uneconomical to test all conditions in an
application system. Experience further shows that most testing exercises less than one-half of
the computer instructions. Therefore, optimizing testing through selecting the most important
processing events is the key aspect of building test cases.

Several of the test tools are structured methods for designing test cases. For example,
correctness proof, data flow analysis, and control flow analysis are all designed to develop
extensive sets of test cases, as is exhaustive testing. Unfortunately, all of these tools, while
extremely effective, require large amounts of time and effort to implement. Few organizations
allocate sufficient budgets for this type of testing. In addition, many IT personnel are not
trained in the use of these test tools.

Test cases can be built as follows:
• Built manually
October 25, 2006 5-21

Guide to the 2006 CSTE CBOK
• Created by a test case generator
• Extracted from a production file

5.1.8 Process for Building Test Cases
The recommended process for the creation and use of test cases is a nine-step process as
follows:

1. Identify test resources.
Testing using test cases can be as extensive or limited a process as desired. Unfortunately,
many programmers approach the creation of test data from a “we’ll do the best job
possible” perspective and then begin developing test transactions. When time expires,
testing is complete. The recommended approach suggests that the amount of resources
allocated for the test data test tool is determined and then a process developed that
optimizes that time.

2. Identify conditions to be tested.
A testing matrix is recommended as the basis for identifying conditions to test. As these
matrices cascade through the developmental process, they identify all possible test
conditions. If the matrix concept is not used, then the possible test conditions should be
identified during the use of this test tool. These should be general test conditions, such as
in a payroll application to test the FICA deductions.

3. Rank test conditions.
If resources are limited, the maximum use of those resources will be obtained by testing
the most important test conditions. The objective of ranking is to identify high-priority test
conditions that should be tested first.
Ranking does not mean that low-ranked test conditions will not be tested. Ranking can be
used for two purposes: first, to determine which conditions should be tested first; and
second, and equally as important, to determine the amount of resources allocated to each
of the test conditions. For example, if testing the FICA deduction was a relatively low-
ranked condition, only one test transaction might be created to test that condition, while
for the higher ranked test conditions several test transactions may be created.

4. Select conditions for testing.
Based on the ranking, the conditions to be tested should be selected. At this point, the
conditions should be very specific. For example, “testing FICA” is a reasonable condition
to identify and rank, but for creating specific test conditions it is too general. Three test
situations might be identified – such as employees whose year-to-date earnings exceed the
maximum FICA deduction; an employee whose current-period earnings will exceed the
difference between the year-to-date earnings and the maximum deduction; and an
employee whose year-to-date earnings are more than one pay period amount below the
maximum FICA deductions. Each test situation should be documented in a testing matrix.
This is a detailed version of the testing matrix that was started during the requirements
phase.
5-22 October 25, 2006

Executing the Test Plan
5. Determine correct results of processing.
The correct processing results for each test situation should be determined. A unique
number should identify each test situation, and then a log made of the correct results for
each test condition. If a system is available to automatically check each test situation,
special forms may be needed as this information may need to be converted to machine-
readable media.
The correct time to determine the correct processing results is before the test transactions
have been created. This step helps determine the reasonableness and usefulness of test
transactions. The process can also show if there are ways to extend the effectiveness of
test transactions, and whether the same condition has been tested by another transaction.

6. Create test cases.
Each test situation needs to be converted into a format suitable for testing. In some
instances, this requires the creation of a test case and master information to be stored by
the program for the purpose of processing the test case. The method of creating the
machine-readable transaction will vary based on the application and the test rules
available in the information systems department.
The most common methods of creating test cases include:

• Key entry
• Test data generator
• Preparation of an input form which will be given to user personnel to enter

7. Document test conditions.
Both the test situations and the results of testing should be documented.

8. Conduct test.
The executable system should be run, using the test conditions. Depending on the extent
of the test, it can be run under a test condition or in a simulated production environment.

9. Verify and correct.
The results of testing should be verified and any necessary corrections to the programs
performed. Problems detected as a result of testing can be attributable not only to system
defects, but to test data defects. The individual conducting the test should be aware of both
situations.

5.1.9 Example of Creating Test Cases for a Payroll Application
This example shows a test case development approach of an automated payroll system. First,
all available documentation was reviewed for the manual and automated parts of each system.
To understand the manual operations, the test team interviewed payroll supervisors and clerks,
reviewed laws and regulations relating to pay and leave, and familiarized themselves with
standard payroll operating procedures. For the automated part of each system they
interviewed system designers and programmers and reviewed system and program
documentation and operating procedures.
October 25, 2006 5-23

Guide to the 2006 CSTE CBOK
After acquiring a working knowledge of each system, they decided to test computer programs
used to update payroll master records and those used to calculate biweekly pay and leave
entitlements. Although they were concerned primarily with these particular programs, they
decided that other programs used in the normal biweekly payroll processing cycle (such as
programs for producing pay and leave history reports, leave records, and savings bond
reports) should also be tested to see how they would handle test data.

They then designed a test file of simulated pay and leave transactions to test the effectiveness
of internal controls, compliance with applicable laws and regulations, and the adequacy of
standard payroll operating procedures. The test file included transactions made up of both
valid and invalid data. These transactions were based on specified procedures and regulations
and were designed to check the effectiveness of internal controls in each installation’s payroll
processing. They used one transaction for each master record chosen.

The best method of obtaining suitable payroll master records for the test, they decided, would
be to use copies of actual master records, supplemented with simulated records tailored for
test conditions not found in the copied records.

Accordingly, they obtained a duplicate of the payroll master file and had a section of it printed
in readable copy. From this printout, they selected a specific master record to go with each test
transaction. When none of the copied records appearing on the printout fit the specifics of a
particular transaction, they made up a simulated master record by preparing source documents
and processing them with the program used by each installation to add records for new
employees to its master file. They then added the simulated records to the copied records to
create the test master file. The test team then recorded their comparisons of the predetermined
results with the actual results.

Examples of test cases for the payroll example are illustrated in Figure 5-2.
5-24 October 25, 2006

Executing the Test Plan
Figure 5-2 Example of Test Case for a Payroll System
October 25, 2006 5-25

Guide to the 2006 CSTE CBOK
5.2 Test Coverage
Based upon the risk, and criticality associated with the application under test, the project team
should establish a coverage goal during test planning. The coverage goal defines the amount
of code that must be executed by the tests for the application. In those cases where the
application supports critical functions, such as air traffic control or military defense systems,
the coverage goal may be 100% at all stages of testing.

The objective of test coverage is simply to assure that the test process has covered the
application. Although this sounds simple, effectively measuring coverage may be critical to
the success of the implementation. There are many methods that can be used to define and
measure test coverage, including:

• Statement Coverage
• Branch Coverage
• Basis Path Coverage
• Integration Sub-tree Coverage
• Modified Decision Coverage
• Global Data Coverage
• User-specified Data Coverage

It is usually necessary to employ some form of automation to measure the portions of the
application covered by a set of tests. Tools like McCabe and BattleMap support test coverage
analysis in order to both accelerate testing and widen the coverage achieved by the tests. The
development team can also design and implement code instrumentation to support this
analysis. This automation enables the team to:

• Measure the “coverage” of a set of test cases
• Analyze test case coverage against system requirements
• Develop new test cases to test previously “uncovered” parts of a system

Even with the use of tools to measure coverage, it is usually cost prohibitive to design tests to
cover 100% of the application outside of unit testing or black-box testing methods. One way
to leverage a dynamic analyzer during system testing is to begin by generating test cases
based on functional or black-box test techniques. Examine the coverage reports as test cases
are executed. When the functional testing provides a diminishing rate of additional coverage
for the effort expended, use the coverage results to conduct additional white-box or structural
testing on the remaining parts of the application until the coverage goal is achieved.
5-26 October 25, 2006

Executing the Test Plan
5.3 Performing Tests
Test execution is the operation of a test cycle. Each cycle needs to be planned, prepared for,
executed and the results recorded. This section addresses these activities involved in
performing tests:

• Test platforms
• Test cycle strategy
• Use of tools in testing
• Test execution
• Executing the Unit Test plan
• Executing the Integration Test Plan
• Executing the System Test Plan
• When is Testing Complete?
• Concerns

5.3.1 Platforms
As discussed in Skill Category 2, Building the Test Environment platforms must be
established for conducting tests. For example in testing of web-based systems the test
environment needs to simulate the type of platforms that would be used in the web
environment.

Since the test scripts and test data may need to run on different platforms, the platforms must
be taken into consideration in the design of test data and test scripts. Since a large number of
platforms may be involved in operation of the software, testers need to decide which
platforms are needed for test purposes.

5.3.2 Test Cycle Strategy
Each execution of testing is referred to as a test cycle. Ideally the cycles are planned and
included in the test plan. However, as defects are uncovered, and change is incorporated into
the software, additional test cycles may be needed.

Software testers should determine the number and purpose of the test cycles to be used during
testing. Some of these cycles will focus on the level of testing, for example unit, integration
and system testing. Other cycles may address attributes of the software such as data entry,
database updating and maintenance, and error processing.
October 25, 2006 5-27

Guide to the 2006 CSTE CBOK
5.3.3 Use of Tools in Testing
Testing, like program development, generates large amounts of information, necessitates
numerous computer executions, and requires coordination and communication between
workers. Test tools can ease the burden of test design, test execution, general information
handling, and communication.

General system utilities and test generation tools are invaluable for test preparation,
organization, and modification. A well-organized and structured file system and a good text
editor are a minimum support set. A more powerful support set includes data reduction and
report generation tools. Library support systems consisting of a database management system
and a configuration control system are as useful during testing, as during software
development since data organization, access, and control are required for management of test
files and reports.

5.3.3.1 Test Documentation

Most guidelines for software documentation during the development phase recommend that
test documentation be prepared for all multipurpose or multi-user projects and for other large
software development projects. The preparation of a Test Plan and issuing a Test Analysis
Report is recommended. The Test Plan should identify test milestones and provide the testing
schedule and requirements. In addition, it should include specifications, descriptions, and
procedures for all tests, and the test data reduction and evaluation criteria. The Test Analysis
Report should summarize and document the test results and findings. The analysis summary
should present the software capabilities, deficiencies, and recommendations. As with all types
of documentation, the extent, formality, and level of detail of the test documentation are
functions of IT standards and may vary depending upon the size, complexity, and risk of the
project.

5.3.3.2 Test Drivers

Unless the module being developed is a stand-alone program, considerable auxiliary software
must be written in order to exercise and test it. Auxiliary code which sets up an appropriate
environment and calls the module is termed a driver, while code which simulates the results of
a routine called by the module is a stub. For many modules both stubs and drivers must be
written in order to execute a test.

When testing is performed incrementally, an untested function is combined with a tested one
and the package is then tested. Such packaging can lessen the number of drivers and/or stubs
that must be written. When the lowest level of functions, those which call no other function,
are tested first and then combined for further testing with the functions that call them, the need
for writing stubs can be eliminated. This approach is called bottom-up testing. Bottom-up
testing still requires that test drivers be constructed. Testing which starts with the executive
functions and incrementally adds functions which it calls, is termed top-down testing. Top-
down testing requires that stubs be created to simulate the actions of called functions that have
5-28 October 25, 2006

Executing the Test Plan
not yet been incorporated into the system. The testing order utilized should be coordinated
with the development methodology used.

5.3.3.3 Automatic Test Systems and Test Languages

The actual performance of each test requires the execution of code with input data, an
examination of the output, and a comparison of the output with the expected results. Since the
testing operation is repetitive in nature, with the same code executed numerous times with
different input values, an effort has been made to automate the process of test execution.
Programs that perform this function of initiation are called test drivers, test harnesses, or test
systems.

The simplest test drivers merely re-initiate the program with various input sets and save the
output. The more sophisticated test systems accept data inputs, expected outputs, the names of
routines to be executed, values to be returned by called routines, and other parameters. These
test systems not only initiate the test runs but also compare the actual output with the expected
output and issue concise reports of the performance.

A side benefit of a comprehensive test system is that it establishes a standard format for test
materials, which is extremely important for regression testing. Currently, automatic test driver
systems are expensive to build and consequently are not in widespread use.

5.3.4 Perform Tests
In a life cycle approach to testing, test performance can occur throughout the project life
cycle, from testing requirements through conducting user acceptance testing. This discussion
will focus on the performance of the dynamic testing that is planned for an application.

The more detailed the test plan, the easier this task becomes for the individuals responsible for
performing the test. The test plan should have been updated throughout the project in response
to approved changes made to the application specifications. This process ensures that the true
expected results have been documented for each planned test.

The roles and responsibilities for each stage of testing should also have been documented in
the test plan. For example, the development team might be responsible for unit testing in the
development environment, while the test team is responsible for integration and system
testing.

The Test Manager is responsible for conducting the Test Readiness Review prior to the start of
testing. The purpose of this review is to ensure that all of the entrance criteria for the test
phase have been met, and that all test preparations are complete.

The test plan should contain the procedures, environment, and tools necessary to implement
an orderly, controlled process for test execution, defect tracking, coordination of rework, and
configuration & change control. This is where all of the work involved in planning and set-up
pays off.
October 25, 2006 5-29

Guide to the 2006 CSTE CBOK
For each phase of testing, the planned tests are performed and the actual results are compared
to the documented expected results. When an individual performs a test script, they should be
aware of the conditions under test, the general test objectives, as well as specific objectives
listed for the script. All tests performed should be logged on a Test Execution Log, or in a tool
such as Mercury’s Test Director, by the individual performing the test.

The Test Log is a simple worksheet or spreadsheet that records test activities in order to
maintain control over the test. It includes the test ID, test activities, start and stop times, pass
or fail results, and comments. Be sure to document actual results. Log the incidents into the
defect tracking system once a review determines it is actually a defect.

When the development team communicates the defect resolution back to the test team, and the
fix is migrated to the test environment, the problem is ready for retest and execution of any
regression testing associated with the fix.

5.3.4.1 Perform Unit Testing

Unit testing is normally performed by the programmer that developed the program. Unit
testing can be performed many ways but the result of unit testing should be that the unit is
defect free. In other words, the program performs as specified. Integration testing should not
occur until the units included in integration testing are defect free.

5.3.4.2 Perform Integration Test

Integration testing should begin once unit testing for the components to be integrated is
complete, and should follow the basic testing process outlined in the previous section. The
objectives in this stage of testing are to validate the application design, and prove that the
application components can be successfully integrated to perform one or more application
functions. The team must also prove that the application integrates correctly into its
environment.

For client/server applications, this process may involve multiple iterations through the
integration test process. The most effective method for validating successful integration is to:

• Test the client components
• Test the server components
• Test the network
• Integrate the client, server, and network

Some common items to focus on during Integration testing include:
• Validation of the links between the client and server(s)
• Security controls
• Performance and load tests on individual application components such as the database,

network, and application server
• Sequences of adds, updates, views, and deletes within the application
5-30 October 25, 2006

Executing the Test Plan
• Simple transaction completion
• Tests for empty database or file conditions
• Output interface file accuracy
• Back-out situations

Depending on the sequence and design of the integration test “builds,” the application may be
ready to enter System Test once the pre-defined exit criteria have been met.

5.3.4.3 Perform System Test

System test should begin as soon as a minimal set of components has been integrated and
successfully completed integration testing. System test ends when the test team has measured
system capabilities and corrected enough of the problems to have confidence that the system
will operate successfully in production.

Once test planning is complete, preparation activities and actual test execution begins.
Although many activities may be included in this process, the major steps are outlined below:

• Set up system test environment, mirroring the planned production environment as
closely as possible.

• Establish the test bed.
• Identify test cases that will be included in the system test.
• Identify test cycles needed to replicate production where batch processing is involved.
• Assign test cases to test cycles; note that in applications where the processing is real-

time the test sets may still need to be grouped by planned days if the sequence of test
execution is critical.

• Assign test scripts to testers for execution.
• Review test results and determine whether problems identified are actually defects.
• Record defect(s) in a tracking system, making sure the developer responsible for

fixing the defect(s) is notified.
• When a defect is fixed and migrated to the test environment, re-test and validate the

fix. If the defect is fixed, close the defect log. If the defect is not fixed, return it to the
developer for additional work.

The system test focuses on determining whether the requirements have been implemented
correctly. This includes verifying that users can respond appropriately to events such as
month-end processing, year-end processing, business holidays, promotional events,
transaction processing, error conditions, etc.

In client/server testing, the test team must also prove that the application runs successfully on
all supported hardware and software environments. This becomes even more complex with
Internet applications that must also support various versions of the supported browsers.
Standard backup and recovery procedures must also be tested, as well as special security
requirements.
October 25, 2006 5-31

Guide to the 2006 CSTE CBOK
5.3.5 When is Testing Complete?
How do you know when testing is complete? Most testers might answer, “When I run out of
time!” but there are other factors the Test Manager can use to make this decision. The Test
Manager must be able to report, with some degree of confidence, that the application will
perform as expected in production and whether the quality goals defined at the start of the
project have been met.

The Test Manager may use a set of test metrics, including Mean Time Between Failure or the
percentage of coverage achieved by the executed tests, to determine whether the application is
ready for production. Other factors, such as the number of open defects and their severity
levels, must also be taken into consideration. Finally, the risk associated with moving the
application into production, as well as the risk of not moving forward, must be addressed.

5.3.6 General Concerns
There are three general concerns testers have in performing tests:

• Software is not in a testable mode for this test level.
The previous testing levels will not have been completed adequately to remove most of
the defects and the necessary functions will not have been installed, or correctly installed
in the software (i.e., performing integration testing when some units contain defects).
Thus, testing will become bogged down in identifying problems that should have been
identified earlier.
• There is inadequate time and resources.
Because of delays in development or failure to adequately budget sufficient time and
resources for testing, the testers will not have the time or resources necessary to
effectively test the software. In many IT organizations, management relies on testing to
assure that the software is ready for production prior to being placed in production. When
adequate time or resources are unavailable, management may still rely on the testers when
they are unable to perform their test as expected.
• Significant problems will not be uncovered during testing.
Unless testing is adequately planned and executed according to that plan, the problems
that can cause serious operational difficulties may not be uncovered. This can happen
because testers at this step spend too much time uncovering defects rather than evaluating
the operational performance of the application software.

5.4 Recording Test Results
A test problem is a condition that exists within the software system that needs to be addressed.
Carefully and completely documenting a test problem is the first step in correcting the
5-32 October 25, 2006

Executing the Test Plan
problem. While the word “problem” is used in this practice, some software testers refer to
these problems as “defects.”

The following four attributes should be developed for all test problems:
• Statement of condition – Tells what is.
• Criteria – Tells what should be.

Please note that the two attributes above are the basis for a finding. If a comparison
between the two gives little or no practical consequence, no finding exists.

• Effect – Tells why the difference between what is and what should be is significant.
• Cause – Tells the reasons for the deviation. Identification of the cause is necessary as a

basis for corrective action.

A well-developed problem statement will include each of these attributes. When one or more
of these attributes is missing, questions usually arise, such as:

• Criteria – Why is the current state inadequate?
• Effect – How significant is it?
• Cause – What could have caused the problem?

Documenting a statement of a user problem involves three sub-tasks, which are explained in
the following paragraphs.

5.4.1 Problem Deviation
Problem statements begin to emerge by a process of comparison. Essentially the user
compares “what is” with “what should be.” When a deviation is identified between what is
found to actually exist and what the user thinks is correct or proper, the first essential step
toward development of a problem statement has occurred. It is difficult to visualize any type
of problem that is not in some way characterized by this deviation. The “what is” can be called
the statement of condition. The “what should be” shall be called the criteria. These concepts
are the first two, and most basic, attributes of a problem statement.

The documenting of deviation is describing the conditions, as they currently exist, and the
criteria, which represents what the user desires. The actual deviation will be the difference or
gap between “what is” and “what is desired.”

The statement of condition is uncovering and documenting the facts, as they exist. What is a
fact? If somebody tells you something happened, is that “something” a fact? On the other
hand, is it only a fact if someone told you it’s a fact? The description of the statement of
condition will of course depend largely on the nature and extent of the evidence or support
that is examined and noted. For those facts making up the statement of condition, the IT
professional will obviously take pains to be sure that the information is accurate, well
supported, and worded as clearly and precisely as possible.
October 25, 2006 5-33

Guide to the 2006 CSTE CBOK
The statement of condition should document as many of the following attributes as
appropriate for the problem:

• Activities involved – The specific business or administrated activities that are being
performed.

• Procedures used to perform work – The specific step-by-step activities that are utilized
in producing output from the identified activities.

• Outputs/Deliverables – The products that are produced from the activity.
• Inputs – The triggers, events, or documents that cause this activity to be executed.
• User/Customers served – The organization, individuals, or class users/customers

serviced by this activity.
• Deficiencies noted – The status of the results of executing this activity and any

appropriate interpretation of those facts.

The criterion is the user’s statement of what is desired. It can be stated in either negative or
positive terms. For example, it could indicate the need to reduce the complaints or delays as
well as desired processing turnaround time.

There are often situations where what “should be,” can relate primarily to common sense or
general reasonableness, and the statement of condition virtually speaks for itself. These
situations must be carefully distinguished from personal whims or subjective, fanciful
notions. There is no room for such subjectivity in defining what is desired.

As much as possible the criteria should be directly related to the statement of condition. For
example, if volumes are expected to increase, the number of users served changed, or the
activity deficiencies addressed, they should be expressed in the same terms as used in
documenting the statement of condition.

Table 5-3, “Test Problem Documentation Example” illustrates what is normally documented
to describe the problem and document the statement of condition and the statement of criteria.
Note that an additional item could be added to describe the deviation. However, if the
statement of condition and statement criteria is properly worded, the deviation should be
readily determinable.
5-34 October 25, 2006

Executing the Test Plan
Table 5-3: Test Problem Documentation Example

5.4.2 Problem Effect
Whereas the legitimacy of a problem statement may stand or fall on criteria, the attention that
the problem statement gets after it is reported depends largely on its significance. Significance
is judged by effect.

Efficiency, economy, and effectiveness are useful measures of effect and frequently can be
stated in quantitative terms such as dollars, time, and units of production, number of
procedures and processes, or transactions. Where past effects cannot be ascertained, potential
future effects may be presented. Sometimes, effects are intangible, but nevertheless of major
significance.

In thought processes, effect is frequently considered almost simultaneously with the first two
attributes of the problem. Reviewers may suspect a bad effect even before they have clearly
formulated these other attributes in their minds. After the statement of condition is identified
the reviewer may search for a firm criterion against which to measure the suspected effect.
They may hypothesize several alternative criteria, which are believed to be suitable based on
experiences in similar situations elsewhere. They may conclude that the effects under each

Name of Software
Tested

Put the name of the software system or subsystem tested here.

Problem Description Write a brief narrative description of the variance uncovered from
expectations.

Statement of Conditions Put the results of actual processing that occurred here.

Statement of Criteria Put what the testers believe was the expected result from
processing.

Effect of Deviation If this can be estimated, testers should indicate what they believe
the impact or effect of the problem will be on computer processing.

Cause of Problem
The testers should indicate what they believe is the cause of the
problem, if known. If the testers are unable to do this, the
worksheet will be given to the development team and they should
indicate the cause of the problem.

Location of Problem
The testers should document where the problem occurred as
closely as possible. It can be related to a specific instruction or
processing section that is desirable. If not, the testers should try to
find the location as accurately as possible.

Recommended Action

The testers should indicate any recommended action they believe
would be helpful to the project team. If the testers feel unable to
indicate the action needed, the project team would record the
recommended action here. Once approved, then the action would
be implemented. If not approved, an alternate action should be
listed or the reason for not following the recommended action
should be documented.
October 25, 2006 5-35

Guide to the 2006 CSTE CBOK
hypothesis are so divergent or unreasonable that what is really needed is a more firm criterion
– say, a formal policy in an area where no policy presently exists. The presentation of the
problem statement may revolve around this missing criterion, although suspicions as to effect
may have been the initial path.

The reviewer should attempt to quantify the effect of a problem wherever practical. While the
effect can be stated in narrative or qualitative terms, that frequently does not convey the
appropriate message to management; for example, statements like “Service will be delayed,”
or “Extra computer time will be required” do not really tell what is happening to the
organization.

5.4.3 Problem Cause
The cause is the underlying reason for the condition. In some cases the cause may be obvious
from the facts presented. In other instances investigation will need to be undertaken to identify
the origin of the problem.

Most findings involve one or more of the following causes:
• Nonconformity with standards, procedures, or guidelines
• Nonconformity with published instructions, directives, policies, or procedures from a

higher authority
• Nonconformity with business practices generally accepted as sound
• Employment of inefficient or uneconomical practices

The determination of the cause of a condition usually requires the scientific approach, which
encompasses the following steps:

Step 1. Define the problem (the condition that results in the finding).
Step 2. Identify the flow of work and information leading to the condition.
Step 3. Identify the procedures used in producing the condition.
Step 4. Identify the people involved.
Step 5. Recreate the circumstances to identify the cause of a condition.

5.4.4 Use of Test Results
Decisions need to be made as to who should receive the results of testing. Obviously, the
developers whose products have been tested are the primary recipients of the results of testing.
However, other stakeholders have an interest in the results including:

• End users
• Software project manager
• IT quality assurance
5-36 October 25, 2006

Executing the Test Plan
It is important to note that the individual whose results are being reported receive those results
prior to other parties. This has two advantages for the software tester. The first is that the
individual, whom testers believe may have made a defect, will have the opportunity to
confirm or reject that defect. Second it is important for building good relationships between
testers and developers to inform the developer who made the defect prior to submitting the
data to other parties. Should the other parties contact the developer in question prior to the
developer receiving the information from the tester, the developer would be put in a difficult
situation. It would also impair the developer-tester relationship.

5.5 Defect Management
A major test objective is to identify defects. Once identified, defects need to be recorded and
tracked until appropriate action is taken. This section explains a philosophy and a process to
find defects as quickly as possible and minimize their impact.

This section also outlines an approach for defect management. This approach is a synthesis of
the best IT practices for defect management. It is way to explain a defect management process
within an organization.

Although the tester may not be responsible for the entire defect management process, they
need to understand all aspects of defect management. The defect management process
involves these general principles:

• The primary goal is to prevent defects. Where this is not possible or practical, the
goals are to both find the defect as quickly as possible and minimize the impact of the
defect.

• The defect management process, like the entire software development process, should
be risk driven. Strategies, priorities and resources should be based on an assessment of
the risk and the degree to which the expected impact of a risk can be reduced.

• Defect measurement should be integrated into the development process and be used by
the project team to improve the development process. In other words, information on
defects should be captured at the source as a natural by-product of doing the job. It
should not be done after the fact by people unrelated to the project or system.

• As much as possible, the capture and analysis of the information should be automated.
This section includes a list of tools which have defect management capabilities and
can be used to automate some of the defect management processes.

• Defect information should be used to improve the process. This, in fact, is the primary
reason for gathering defect information.

• Imperfect or flawed processes cause most defects. Thus, to prevent defects, the
process must be altered.
October 25, 2006 5-37

Guide to the 2006 CSTE CBOK
5.5.1 Defect Naming Guidelines
It is important to name defects early in the defect management process. This will enable
individuals to begin articulating more specifically what the defect is.

5.5.1.1 Name of the Defect

Name defects according to the phase in which the defect most likely occurred such as,
requirements defect, design defect, documentation defect, and so forth.

5.5.1.2 Defect Severity

Use three categories of severity as follows:
• Critical - The defect(s) would stop the software system from operating.
• Major - The defect(s) would cause incorrect output to be produced.
• Minor - The defect(s) would be a problem but would not cause improper output to be

produced, such as a system documentation error.

5.5.1.3 Defect Type
Indicates the cause of the defect. For example, code defects could be errors in procedural logic, or
code that does not satisfy requirements or deviates from standards.

5.5.1.4 Defect Class

The following defect categories are suggested for each phase:
• Missing - A specification was not included in the software.
• Wrong - A specification was improperly implemented in the software.
• Extra - An element in the software was not requested by a specification

5.5.1.4.1 Defect-Naming Example

If a requirement was not correct because it had not been described completely during the
requirements phase of development, the name of that defect using all 3 levels might be:

• Name – Requirement defect
• Severity – Minor
• Type - Procedural
• Class – Missing

Note that Severity, Type, and Class are qualifiers to the name.
5-38 October 25, 2006

Executing the Test Plan
5.5.2 The Defect Management Process
Figure 5-3 illustrates the key elements of a defect management process. Each element is
described below.

Figure 5-3 Defect Management Process

5.5.2.1 Defect Prevention

As many quality experts have pointed out, the best approach to defects is to eliminate them
altogether. Until the technology exists to guarantee that defects will not be created, strategies
will be needed to find them as quickly as possible and minimize their impact. Nevertheless,
there is much that organizations can do to prevent defects. Identifying the best defect-
prevention techniques (which is a large part of identifying the best software development
processes) and implementing them should be a high-priority activity in any defect
management program.

Figure 5-4 illustrates a defect prevention process with three major steps that are described
below.

Figure 5-4 Defect Prevention

Defect prevention should begin with an assessment of the critical risks associated with the
system. Once the critical risks are identified, it is possible to know the types of defects that are
most likely to occur and the types of defects that can have the greatest impact on the system.
Strategies can then be developed to prevent the defects.

Identify Critical Risks
The first step in preventing defects is to understand the critical risks facing the project
or system. The best way to do this is to identify the types of defects that pose the
October 25, 2006 5-39

Guide to the 2006 CSTE CBOK
largest threat – defects that could jeopardize the successful construction, delivery, and
operation of the system. These risks can vary widely from project to project depending
on the type of system, the technology, the users of the software, etc. These risks might
include:

• A key requirement is missing
• Critical application software does not function properly
• Vendor-supplied software does not function properly
• Software does not support major business functions – necessitates process re-

engineering
• Performance is unacceptably poor
• Hardware that malfunctions
• Hardware and software do not integrate properly
• Hardware that is new to installation site
• Users are unable or unwilling to embrace new system
• User’s ability to actively participate in project, etc.
It should be emphasized that the purpose of this step is not to identify every
conceivable risk, rather to identify those critical risks, which could jeopardize the
success of the project and therefore merit special attention

Estimate Expected Impact
The “expected impact” of a risk is affected by both the probability that the risk will
become a problem and the potential loss to the organization. Estimating the expected
impact provides insight into the issues involved in reducing the risk. For each critical
risk, an assessment can be made of the impact, in dollars, if the risk does become a
problem. The probability that the risk will become a problem can also be assessed. The
product of these two numbers is the expected impact. Risks should be prioritized by
the expected impact and the degree to which the expected impact can be reduced.
While there will almost surely be a significant amount of guesswork in producing
these numbers, precision is not important. What will be important is to identify the
risk, and determine the order of magnitude of the risk.

Large, complex systems will have many critical risks and it will be important to reduce
the probability of each individual critical risk becoming a problem to a very small
number. In this circumstance the cumulative probability that one or more critical risks
will become a problem is essentially the probability that the project will be successful.
One should assume that an individual critical risk has a low probability of becoming a
problem only when there is specific knowledge justifying why it is low. For example,
the likelihood that an important requirement was missed may be high if users have not
been very involved in the project. It may be low if the users have actively participated
in the requirements definition using a good verification or validation process, and the
new system is not a radical departure from an existing system or process.

One of the more effective methods for estimating the expected impact of a risk is the
annual loss expectation formula. This formula states that the annual loss expectation
5-40 October 25, 2006

Executing the Test Plan
(ALE) equals the loss per event multiplied by the number of events. For the annual
calculation, the number of events should be the number of events per year. The
estimated loss can be calculated by determining the average loss for a sample of loss
events. For example, if the risk is that the software system will abnormally terminate,
then the average cost of correcting an abnormal termination is calculated and
multiplied by the expected number of abnormal terminations associated with this risk.

The expected impact may be strongly affected not only by whether or not a risk
becomes a problem, but also by how long it takes a problem to become recognized and
how long it takes to be fixed, once recognized. In one reported example, a telephone
company had an error in its billing system which caused it to under bill its customers
by about $30 million. By law, the telephone company had to issue corrected bills
within thirty days, or write off the under billing. By the time the telephone company
recognized it had a problem, it was too late to collect much of the revenue.

Minimize Expected Impact
Expected impact is also affected by the action that is taken once a problem is
recognized. Once Johnson & Johnson realized it had a problem with Tylenol
tampering, it greatly reduced the impact of the problem by quickly notifying doctors,
hospitals, distributors, retail outlets, and the public, of the problem. While the
tampering itself was not related to a software defect, software systems had been
developed by Johnson & Johnson to quickly respond to drug-related problems. In this
case, the key to Johnson & Johnson’s successful management of the problem was how
it minimized the impact of the problem, once the problem was discovered.

Minimizing expected impact involves a combination of the following three strategies:

• Eliminate the risk. While this is not always possible, there are situations where the
best strategy will be simply to avoid the risk. For example, reducing the scope of a
system, or deciding not to use the latest unproven technology, are ways to avoid
certain risks.

• Reduce the probability of a risk becoming a problem. Most strategies will fall into
this category. Inspections and testing are examples of approaches, which reduce,
but do not eliminate, the probability of problems.

• Reduce the impact if there is a problem. In some situations, the risk cannot be
eliminated, and even when the probability of a problem is low, the expected impact
is high. In these cases, the best strategy may be to explore ways to reduce the
impact if there is a problem. Contingency plans and disaster recovery plans would
be examples of this strategy.

From a conceptual viewpoint, there are two ways to minimize the risk. These are
deduced from the annual loss expectation formula. The two ways are:

• Reduce the expected loss per event

• Reduce the frequency of an event
October 25, 2006 5-41

Guide to the 2006 CSTE CBOK
If both of these can be reduced to zero, the risk will be eliminated. If the frequency is
reduced, the probability of a risk becoming a problem is reduced. If the loss per event
is reduced, the impact is reduced when the problem occurs.

There is a well-known engineering principle that says that if you have a machine with
a large number of components, even if the probability that any given component will
fail is small, the probability that one or more components will fail may be
unacceptably high. Because of this phenomenon, engineers are careful to estimate the
mean time between failures of the machine. If the machine cannot be designed with a
sufficiently large mean time between failures, the machine cannot be made. When
applied to software development, this principle would say that unless the overall
expected impact of the system can be made sufficiently low, do not develop the
system.

Appropriate techniques to reduce expected impact are a function of the particular risk.
Techniques to prevent defects include:

• Quality Assurance
Quality assurance techniques are designed to ensure that the processes employed
are adequate to produce the desired result and that the process is being followed.

• Training and Education (Work Force)
It goes without saying that the better trained a work force is, the higher the quality
of its work. Many defects are simply the result of workers not understanding how
to do their job. Computer technology is significantly more complex today than it
was just a few years ago. Moreover, the complexity will increase significantly in
the coming years. Thus, it appears that the training needs at most organizations
will increase sharply in the coming years.

• Training and Education (Customers)
As more and more people use computers, and as the complexity of systems grows,
the problem of training the end user will become more and more acute. Unlike the
problem of training workers, more creative strategies will be required to train
customers – especially when customers are not technically sophisticated. One
computer manufacturer reported that a customer, when asked to send in a copy of a
disk, sent in a Xerox copy of the disk. In another instance, a customer complained
that a disk would not go into the drive. It was later determined that the customer
did not realize that he had to remove the disk that was already in the drive before
another could be inserted. While these anecdotes are extreme, the problem of
effectively training even sophisticated customers to use complex software is far
from trivial. Many software vendors have recognized this problem and developed
strategies to address it (more elaborate Help facilities, cue cards, audio training
tapes delivered with the product, tutorials, etc.).

• Methodology and Standards
As Deming emphasizes, reducing variation is key to ensuring quality. As the
nature of a process becomes understood, it evolves from art to science. At some
point in this evolution, it becomes appropriate to standardize the process. This has
occurred in the past with the development of standard life cycles, design
5-42 October 25, 2006

Executing the Test Plan
approaches, etc. This is occurring today with many diverse efforts – various IEEE
standards, ISO 9000, etc. As the root cause of defects becomes understood,
consideration should be given to developing or enhancing an organization’s
methodology and standards to produce a repeatable process that prevents the
defects from reoccurring.

• Defensive Design
While there are many variations of defensive design, the concept generally refers
to designing the system so that two or more independent parts of the system must
fail before a failure could occur. As technology gets more and more complicated,
there should be significantly more emphasis on designing systems defensively to
prevent, discover, and minimize the impact of defects. While some organizations
have been doing this for years, it is a new concept to many organizations and the
industry provides very little guidance on how to do it. Design techniques to
improve reliability should receive more attention as the complexity of technology
grows. These techniques usually involve designing the system so that two
components of the system must be in error before a major system problem can
occur.

• Defensive Code
The concept of designing a program to prevent, discover, and minimize the impact
of defects is not new; it is, however, not widely practiced. Like defensive design,
the concept of defensive code involves adding code to a program so that two parts
of the program must fail before a major problem can occur. One form of defensive
design, assertions, has been around for many years, but has received relatively
little attention. An assertion is a code which tests for expected conditions and
brings unexpected conditions to the attention of the programmer or users. This area
also deserves to receive more attention as the complexity of technology grows.
The best defect-prevention techniques will be the ones, which reduce the expected
impact the most. This, in turn, will be a function of the nature of the risks and
systems within an organization. Very critical software (e.g., NASA’s space shuttle
software, health care equipment) and widely distributed software (e.g., Microsoft
Windows) may need to use all of the above techniques and more to adequately
reduce the overall risk of highly critical software.

5.5.2.2 Deliverable Baseline

You baseline a deliverable, or work product when it reaches a predefined milestone in its
development. This milestone involves transferring the product from one stage of development
to the next. As a work product moves from one milestone to the next, the cost to make
changes becomes much more expensive and defects in the deliverable have a much larger
impact on the rest of the system. Once you baseline a deliverable, it is subject to configuration
management (e.g., change control).

A defect is an instance of one or more baseline product components not satisfying their given
set of requirements. Thus, errors caught before a deliverable is baselined are not to be
considered defects. For example, if a programmer had responsibility for both the
October 25, 2006 5-43

Guide to the 2006 CSTE CBOK
programming and the unit testing of a module, the program would not become baselined until
after the program was unit tested. Therefore, a potential defect discovered during unit testing
is not considered a defect. If, on the other hand, an organization decided to separate the coding
and unit testing, it might decide to baseline the program after it was coded, but before it was
unit tested. In this case, a potential defect discovered during unit testing would be considered
a defect as illustrated in Figure 5-5 Deliverable Baseline.

Figure 5-5 Deliverable Baseline

Even if an organization does not formally recognize the concept of baselining deliverables, a
deliverable is, for practical purposes, baselined when the person or group responsible for the
deliverable passes it to the next stage of development. For example, a program specification
should be considered baselined when a programmer is using it as the basis to code a program;
a program should be considered baselined when it is passed on for integration testing; and
requirements specification should be considered baselined if it is being used as the basis for a
technical design.

The concept of baselining is important because it requires an organization to decide both the
level of formality that is appropriate and the point in the process when the formality takes
effect. In general, a deliverable should be baselined when changes to the deliverable, or
defects in the deliverable, can have an impact on deliverables on which other people are
working.

Deliverable baseline involves the following activities:
• Identify key deliverables

Select those deliverables which will be baselined, and the point within the
development process where those deliverable will be baselined.

• Define standards for each deliverable
The standards should define the requirements for each deliverable and the criteria that
must be met before the deliverable can be baselined.
5-44 October 25, 2006

Executing the Test Plan
5.5.2.3 Defect Discovery

If technology cannot guarantee that defects will not be created, and this is certainly the case in
software development today, then the next best thing is to find defects quickly before the cost
to fix them is great. A defect is considered to have been discovered when the defect has been
formally brought to the attention of the developers, and the developers acknowledge that the
defect is valid. A defect has not necessarily been discovered when the user finds a problem
with the software. The user must also report the defect and the developers must acknowledge
that the defect is valid. There are examples where users reported problems for years before the
developers of the software admitted there was a defect. Since it is important to minimize the
time between defect origination and defect discovery, strategies that not only uncover the
defect, but also facilitate the reporting and developer acknowledgment of the defect can be
very important.

To make it easier to recognize defects, organizations should attempt to predefine defects by
category. This is a one-time event, or an event that could be performed annually. It would
involve the knowledgeable, respected individuals from all major areas of the IT organization.
A facilitator should run the group. The objective is to identify the errors or problems that
occur most frequently in the IT organization and then get agreement that they are, in fact,
defects. A name should be attached to the defects. The objective of this activity is to avoid
conflict when developers do not acknowledge identified defects as a valid defect. For
example, developers may not want to acknowledge that a missing requirement is a defect, but
if it has previously been defined as a defect, the developer’s concurrence is not necessary.

The steps involved in defect discovery are illustrated in Figure 5-6 and described below.

Figure 5-6 Defect Discovery

• Find Defect
Defects are found either by pre-planned activities specifically intended to uncover defects
(e.g., quality control activities such as inspections, testing, etc.) or, in effect, by accident
(e.g., users in production).
Techniques to find defects can be divided into three categories:

• Static techniques – A deliverable is examined (manually or by a tool) for defects.
Reviews, walkthroughs, and inspections, are examples of static techniques.

• Dynamic techniques – A deliverable is used to discover defects. Testing is an
example of a dynamic technique.

• Operational techniques – An operational system produces a deliverable containing
a defect found by users, customers, or control personnel, i.e., the defect is found as
a result of a failure.
October 25, 2006 5-45

Guide to the 2006 CSTE CBOK
Research shows the following conclusions when you compare and contrast the various
static, dynamic, and operational techniques.

• Each of the three categories of techniques is generally required for an effective
defect management program. In each category, the more formally the techniques
were integrated into the development process, the more effective they were.

• Since static techniques will generally find defects earlier in the process, they are
more efficient at finding defects.

• Inspection, in particular, can be very effective at removing defects. NASA and
Shell Oil both use them extensively and have had impressive results. When the full
inspections process was followed, Shell Oil found that for each staff-hour spent in
the inspection process, ten hours were saved! Shell Oil also found that even when
groups decided not to follow the prescribed inspections process, but conducted
more informal (and less effective) reviews, the results showed that the reviews
saved as much time as they cost. In other words, worst case (informal reviews) –
no extra cost; best case (formal inspections) – a 10-1 savings. Shell Oil found that
their defect removal efficiency with inspections was 95-97% versus roughly 60%
for systems that did not use inspections.

Shell Oil also emphasized the more intangible, yet very significant, benefits of
inspections:

• If the standards for producing a deliverable were vague or ambiguous (or
nonexistent), the group would attempt to define a best practice and develop a
standard for the deliverable. Once the standard became well defined, checklists
would be developed. (NASA also makes extensive use of checklists and cross-
references defects to the checklist item that should have caught the defect).

• Inspections were a good way to train new staff in both, best practices and the
functioning of the system being inspected.

• Record Defect
Recording the defects identified at each stage of the test process is an integral part of a
successful life cycle testing approach. The purpose of this activity is to create a
complete record of the discrepancies identified during testing. The information
captured is used in multiple ways throughout the project, and forms the basis for
quality measurement.

A defect can be defined in one of two ways. From the producer’s viewpoint, a defect is a
deviation from specifications, whether missing, wrong, or extra. From the Customer’s
viewpoint, a defect is anything that causes customer dissatisfaction, whether in the
requirements or not; this view is known as “fit for use.” It is critical that defects identified
at each stage of the project life cycle be tracked to resolution.
You should record defects for these four major purposes:

• To correct the defect
• To report status of the application
• To gather statistics used to develop defect expectations in future applications
• To improve the software development process
5-46 October 25, 2006

Executing the Test Plan
Most project teams utilize some type of tool to support the defect tracking process. This
tool could be as simple as a white board or a table created and maintained in a word
processor, or one of the more robust tools available today on the market, such as
Mercury’s Test Director. Tools marketed for this purpose usually come with some number
of customizable fields for tracking project specific data in addition to the basics. They also
provide advanced features such as standard and ad hoc reporting, e-mail notification to
developers and testers when a problem is assigned to them, and graphing capabilities.
At a minimum, the tool selected should support the recording and communication of all
significant information about a defect. For example, a defect log could include:

• Defect ID number
• Descriptive defect name and type
• Source of defect – test case or other source
• Defect severity
• Defect priority
• Defect status (e.g., open, fixed, closed, user error, design, and so on) – more robust

tools provide a status history for the defect
• Date and time tracking for either the most recent status change, or for each change

in the status history
• Detailed description, including the steps necessary to reproduce the defect
• Component or program where defect was found
• Screen prints, logs, etc., that will aid the developer in the resolution process
• Stage of origination
• Person assigned to research and correct the defect

5.5.2.3.1 Severity versus Priority

The test team, based on pre-defined severity descriptions, should assign the severity of a
defect objectively. For example a “severity one” defect may be defined as one that causes data
corruption, a system crash, security violations, etc. In large projects, it may also be necessary
to assign a priority to the defect, which determines the order in which defects should be fixed.
The priority assigned to a defect is usually more subjective based upon input from users
regarding which defects are most important to them, and therefore should be fixed first.

It is recommended that severity levels be defined at the start of the project so that they are
consistently assigned and understood by the team. This foresight can help test teams avoid the
common disagreements with development teams about the criticality of a defect.

5.5.2.3.2 A Sample Defect-Tracking Process

After a defect is recorded it needs to be tracked. The steps below describe a simple defect
tracking process. Depending on the size of the project or project team, this process may be
substantially more complex.
October 25, 2006 5-47

Guide to the 2006 CSTE CBOK
1. Execute the test and compare the actual results to the documented expected results. If a
discrepancy exists, log the discrepancy with a status of “open.” Supplementary documen-
tation, such as screen prints or program traces, should be attached if available.

2. The Test Manager or tester should review the problem log with the appropriate member of
the development team to determine if the discrepancy is truly a defect.

3. Assign the defect to a developer for correction. Once the defect is corrected, the developer
will usually enter a description of the fix applied and update the defect status to “Fixed” or
“Retest.”

4. The defect is routed back to the test team for retesting. Additional regression testing is per-
formed as needed based on the severity and impact of the fix applied.

5. If the retest results match the expected results, the defect status is updated to “Closed.” If
the test results indicate that the defect is still not fixed, the status is changed to “Open” and
sent back to the developer.

Steps 3-5 should be repeated until the problem is resolved. Test reports are issued periodically
throughout the testing process to communicate the test status to the rest of the team and
management. These reports usually include a summary of the open defects, by severity.
Additional graphs and metrics can also be provided to further describe the status of the
application.

5.5.2.3.3 Report Defects

Once found, defects must be brought to the attention of the developers. When the defect is
found by a technique specifically designed to find defects, such as those mentioned above,
this is a relatively straightforward process and is almost as simple as writing a problem report.
Some defects, however, are found more by accident – people who are not trying to find
defects. These may be development personnel or users. In these cases, techniques that
facilitate the reporting of the defect may significantly shorten the defect discovery time. As
software becomes more complex and more widely used, these techniques become more
valuable. These techniques include computer forums, electronic mail, help desks, etc.

It should also be noted that there are some human factors and cultural issues involved with the
defect discovery process. When a defect is initially uncovered, it may be very unclear whether
it is a defect, a change, user error, or a misunderstanding. Developers may resist calling
something a defect because that implies “bad work” and may not reflect well on the
development team. Users may resist calling something a “change” because that implies that
the developers can charge them more money. Some organizations have skirted this issue by
initially labeling everything by a different name – for example, “incidents” or “issues.” From
a defect management perspective, what they are called is not an important issue. What is
important is that the defect be quickly brought to the developers’ attention and formally
controlled.
5-48 October 25, 2006

Executing the Test Plan
5.5.2.3.4 Acknowledge Defect

Once a defect has been brought to the attention of the developer, the developer must decide
whether or not the defect is valid. Delays in acknowledging defects can be very costly. The
primary causes of delays in acknowledging a defect appears to be an inability to reproduce the
defect. When the defect is not reproducible and appears to be an isolated event (“no one else
has reported anything like that”), there will be an increased tendency for the developer to
assume the defect is not valid – that the defect is caused by user error or misunderstanding.
Moreover, with very little information to go on, the developer may feel that there is nothing
they can do anyway. Unfortunately, as technology becomes more complex, defects, which are
difficult to reproduce, will become more and more common. Software developers must
develop strategies to quickly pinpoint the cause of a defect.

Strategies to address this problem include:
• Instrument the code to trap the state of the environment when anomalous conditions

occur.
In the Beta release of Windows 3.1, Microsoft included features to trap the state of the
system when a significant problem occurred. This information was then available to
Microsoft when the problem was reported and helped them analyze the problem.
• Write code to check the validity of the system.
This is actually a very common technique for hardware manufacturers. Unfortunately,
diagnostics may give a false sense of security – they can find defects, but they cannot
show the absence of defects. Virus checkers would be an example of this strategy.
• Analyze reported defects to discover the cause of a defect.
While a given defect may not be reproducible, quite often it will appear again (and again)
perhaps in different disguises. Eventually patterns may be noticed, which will help in
resolving the defect. If the defect is not logged, or if it is closed prematurely, then valuable
information can be lost. In one instance reported to the research team, a development team
was having difficulty reproducing a problem. They noticed, however, that the defect was
showing up at only one location. Finally, during a visit to the location they discovered how
to reproduce the problem. The problem was caused when one of the users fell asleep with
her finger on the enter key. In order to protect the user, the circumstances surrounding the
problem were not reported to the developers until the on-site visit.

A resolution process needs to be established for use in the event there is a dispute regarding a
defect. For example, if the group uncovering the defect believes it is a defect but the
developers do not, a quick-resolution process must be in place. While many approaches can
address this situation, the two most effective are:

• Arbitration by the software owner – the customer of the software determines whether
or not the problem shall be called a defect.

• Arbitration by a software development manager – a senior manager of the software
development department will be selected to resolve the dispute.
October 25, 2006 5-49

Guide to the 2006 CSTE CBOK
This page intentionally left blank.

5.5.2.4 Defect Resolution

Once the developers have acknowledged that a reported defect is a valid defect, the defect
resolution process begins. The steps involved in defect resolution are illustrated in Figure 5-7
and described below.

Figure 5-7 Defect Resolution

5.5.2.4.1 Prioritize Fix

The purpose of this step is to answer the following questions and initiate any immediate action
that might be required:

• Is this a previously reported defect, or is it new?
• What priority should be given to fixing this defect?
• What steps should be taken to minimize the impact of the defect prior to a fix? For

example, should other users be notified of the problem? Is there a work-around for the
defect?

A suggested prioritization method is a three-level method, as follows:
• Critical – Would have a serious impact on the organization’s business operation.
• Major – Would cause an output of the software to be incorrect or stop.
• Minor – Something is wrong, but it does not directly affect the user of the system, such

as a documentation error or cosmetic GUI (graphical user interface) error.

5.5.2.4.2 Schedule Fix

Based on the priority of the defect, the fix should be scheduled. It should be noted that some
organizations treat lower priority defects as changes. All defects are not created equal from
the perspective of how quickly they need to be fixed. (From a defect-prevention perspective,
they may all be equal.)

5.5.2.4.3 Fix Defect

This step involves correcting and verifying one or more deliverables (e.g., programs,
documentation) required to remove the defect from the system. In addition, test data,
checklists, etc., should be reviewed and perhaps enhanced, so that, in the future, this defect
would be caught earlier.
5-50 October 25, 2006

Executing the Test Plan
5.5.2.4.4 Report Resolution

Once the defect has been fixed and the fix verified, appropriate developers and users need to
be notified that the defect has been fixed, the nature of the fix, when the fix will be released,
and how the fix will be released. As in many aspects of defect management, this is an area
where automation of the process can help. Most defect management tools capture information
on who found and reported the problem and therefore provides an initial list of who needs to
be notified. Figure 5-8 illustrates this process. Computer forums and electronic mail can help
notify users of widely distributed software.

Figure 5-8 Report Resolution

5.5.2.5 Process Improvement

This is perhaps the activity that is most ignored by organizations today, but offers one of the
greatest areas of payback. NASA emphasizes the point that any defect represents a weakness
in the process. Seemingly unimportant defects are, from a process perspective, no different
than critical defects. It is only the developer’s good luck that prevents a defect from causing a
major failure. Even minor defects, therefore, represent an opportunity to learn how to improve
the process and prevent potentially major failures. While the defect itself may not be a big
deal, the fact that there was a defect is a big deal.

This activity should include the following:
• Go back to the process where the defect originated to understand what caused the

defect.
• Go back to the validation process, which should have caught the defect earlier in the

process. Not only can valuable insight be gained as to how to strengthen the review
process, this step serves to make everyone involved in these activities take them more
seriously. This human factors dimension alone, according to some of the people the
October 25, 2006 5-51

Guide to the 2006 CSTE CBOK
research team interviewed, can have a very large impact on the effectiveness of the
review process.

NASA takes an additional step of asking the question: If this defect could have gotten this far
into the process before it was captured, what other defects may be present that have not been
discovered? Thus, not only is the process strengthened to prevent defects, it is strengthened to
find defects which have been created but not yet discovered. This aggressiveness should be
mandatory on life-critical systems.
5-52 October 25, 2006

Test Reporting Process
esters need to demonstrate the ability to develop testing status reports. These reports
should show the status of the testing based on the test plan. Reporting should
document what tests have been performed and the status of those tests. The test
reporting process is a process to collect data, analyze the data, supplement the data

with metrics, graphs and charts and other pictorial representations which help the developers
and users interpret that data. The lessons learned from the test effort should be used to
improve the next iteration of the test process.

6.1 Prerequisites to Test Reporting
From the developer and user perspective the value of software testing is in the reports issued
by the testers. The testers uncover facts, document those facts into a finding, and then report
that information to developers and users. They may also provide opinions and
recommendations under findings. The test reporting process begins with the prerequisite to
collect test status data, analyze the data, and supplement the data with effective metrics.

It is recommended that a database be established in which to store the results collected during
testing. It is also suggested that the database be put online through client/server systems so
that those with a vested interest in the status of the project can readily access that database for
status update.

Prerequisites to Test Reporting 6-1
Test Tools used to Build Test Reports 6-11
Test Tools used to Enhance Test
Reporting 6-32

Reporting Test Results 6-37

Skill
Category

6

T

October 25, 2006 6-1

Guide to the 2006 CSTE CBOK
The prerequisites to the process of reporting test results are:
• Define the test status data to be collected
• Define the test metrics to be used in reporting test results
• Define effective test metrics

6.1.1 Define and Collect Test Status Data
Processes need to be put into place to collect the data on the status of testing that will be used
in reporting test results. Before these processes are built testers need to define the data they
need to collect. Four categories of data that testers most frequently collect are:

• Test results data
• Test case results and test verification results
• Defects
• Efficiency

6.1.1.1 Test Results Data

This data will include, but is not limited to:
• Test factors – The factors incorporated in the plan, the validation of which becomes

the test objective.
• Business objectives – The validation that specific business objectives have been met.
• Interface objectives – Validation that data/objects can be correctly passed among

software components.
• Functions and sub-functions – Identifiable software components normally associated

with the requirements for the software.
• Units – The smallest identifiable software components.
• Platform – The hardware and software environment in which the software system will

operate.

6.1.1.2 Test Case Results and Test Verification Results

These are the test techniques used by the test team to perform testing. They include, but are
not limited to:

• Test cases – The type of tests that will be conducted during the execution of tests,
which will be based on software requirements.

• Inspections – A verification of process deliverables against deliverable specifications.
• Reviews – Verification that the process deliverables/phases are meeting the user’s true

needs.
6-2 October 25, 2006

Test Reporting Process
6.1.1.3 Defects

This category includes a description of the individual defects uncovered during testing. The
description of defects should include, but is not limited to:

• Data the defect uncovered
• Name of the defect
• Location of the defect
• Severity of the defect
• Type of defect
• How the defect was uncovered (i.e., test data/test script)

The results of later investigations should add to this information and include:
• where the defect originated
• when it was corrected
• when it was entered for retest

6.1.1.4 Efficiency

As the Test Plan is being developed, the testers decompose requirements into lower and lower
levels. Conducting testing is normally a reverse of the test planning process. In other words,
testing begins at the very lowest level and the results are rolled up to the highest level. The
final Test Report determines whether the requirements were met. How well documenting,
analyzing, and rolling up test results proceeds depends partially on the process of
decomposing testing through a detailed level. The roll-up is the exact reverse of the test
strategy and tactics. The efficiency of these processes should be measured.

Two types of efficiency can be evaluated during testing: efficiency of the software system and
efficiency of the test process. If included in the mission of software testing, the testers can
measure the efficiency of both developing and operating the software system. This can
involve simple metrics such as the cost to produce a function point of logic, or as complex as
using measurement software.

6.1.2 Define Test Metrics used in Reporting
The most common Test Report is a simple matrix, which indicates the test cases, the test
objectives, and the results of testing at any point in time.

The following six tasks define how a test team can define metrics to be used in test reporting.
An important part of these tasks is to assure that the data needed (i.e., measures) to create the
test metrics is available.

1. Establish a test metrics team.
The measurement team should include individuals who:
October 25, 2006 6-3

Guide to the 2006 CSTE CBOK
• Have a working knowledge of quality and productivity measures
• Are knowledgeable in the implementation of statistical process control tools
• Have a working understanding of benchmarking techniques
• Know the organization’s goals and objectives
• Are respected by their peers and management
The measurement team may consist of two or more individuals, relative to the size of the
organization. Representatives should come from management and development and
maintenance projects. For an average-size organization, the measurement team should be
between three and five members.

2. Inventory existing IT measures.
The inventory of existing measures should be performed in accordance with a plan.
Should problems arise during the inventory, the plan and the inventory process should be
modified accordingly. The formal inventory is a systematic and independent review of all
existing measures and metrics captured and maintained. All identified data must be
validated to determine if they are valid and reliable.
The inventory process should start with an introductory meeting of the participants. The
objective of this meeting is to review the inventory plan with management and
representatives of the projects that are to be inventoried. A sample agenda for the
introductory meeting is:

• Introduce all members.
• Review scope and objectives of the inventory process
• Summarize the inventory processes to be used
• Establish communication channels to use
• Confirm the inventory schedule with major target dates

The inventory involves these activities:

• Review all measures currently being captured and recorded. Measures
should include, but not be limited to, functionality, schedule, budgets, and
quality.

• Document all findings. Measures should be defined; samples captured, and
related software and methods of capture documented. Data file names and
media location should be recorded. It is critical that this be as complete as
possible in order to determine the consistency of activities among different
projects.

• Conduct interviews. These interviews should determine what and how
measurement data is captured and processed. Through observation, the
validity of the data can be determined.

3. Develop a consistent set of metrics.
To implement a common set of test metrics for reporting that enables senior management
to quickly access the status of each project, it is critical to develop a list of consistent
measures spanning all project lines. Initially, this can be challenging, but with cooperation
6-4 October 25, 2006

Test Reporting Process
and some negotiating, a reasonable list of measures can be drawn up. Organizations with
mature processes will have an easier time completing this step, as well as those with
automated tools that collect data.

4. Define desired test metrics.
The objective of this task is to use the information collected in tasks 2 and 3 to define the
metrics for the test reporting process. Major criteria of this task includes:

• Description of desired output reports
• Description of common measures
• Source of common measures and associated software tools for capture
• Definition of data repositories (centralized and/or segregated)

5. Develop and implement the process for collecting measurement data.
The objective of this step is to document the process used to collect the measurement data.
The implementation will involve these activities:

• Document the workflow of the data capture and reporting process
• Procure software tool(s) to capture, analyze, and report the data, if such tools are

not currently available
• Develop and test system and user documentation
• Beta-test the process using a small to medium-size project
• Resolve all management and project problems
• Conduct training sessions for management and project personnel on how to use the

process and interrelate the reports
• Roll out the test status process

6. Monitor the process.
Monitoring the test reporting process is very important because the metrics reported must
be understood and used. It is essential to monitor the outputs of the system to ensure
usage. The more successful the test reporting process, the better the chance that
management will want to use it and perhaps expand the reporting criteria.

6.1.3 Define Effective Test Metrics
A metric is a mathematical number that shows a relationship between two variables. Software
metrics are measures used to quantify status or results. This includes items that are directly
measurable, such as lines of code, as well as items that are calculated from measurements,
such as earned value. Metrics specific to testing include data regarding testing, defect
tracking, and software performance. The following are metric definitions:

Metric
A metric is a quantitative measure of the degree to which a system, component, or process
possesses a given attribute.

Process Metric
October 25, 2006 6-5

Guide to the 2006 CSTE CBOK
A process metric is a metric used to measure characteristics of the methods, techniques,
and tools employed in developing, implementing, and maintaining the software system.

Product Metric
A product metric is a metric used to measure the characteristics of the documentation and
code.

Software Quality Metric
A software quality metric is a function whose inputs are software data and whose output is
a single numerical value that can be interpreted as the degree to which software possesses
a given attribute that affects its quality.

Testers are typically responsible for reporting their test status at regular intervals. The
following measurements generated during testing are applicable:

• Total number of tests
• Number of tests executed to date
• Number of tests executed successfully to date

Data concerning software defects include:
• Total number of defects corrected in each activity
• Total number of defects detected in each activity
• Average duration between defect detection and defect correction
• Average effort to correct a defect
• Total number of defects remaining at delivery

Some of the basic measurement concepts are described below to help testers use quantitative
data effectively.

6.1.3.1 Objective versus Subjective Measures

Measurement can be either objective or subjective. An objective measure is a measure that
can be obtained by counting. For example, objective data is hard data, such as defects, hours
worked, and completed deliverables. Subjective data normally has to be calculated. It is a
person’s perception of a product or activity. For example, a subjective measure would involve
such attributes of an information system as how easy it is to use and the skill level needed to
execute the system.

As a general rule, subjective measures are much more important than objective measures. For
example, it is more important to know how effective a person is in performing a job (a
subjective measure) versus whether or not they got to work on time (an objective measure).
QAI believes that the more difficult something is to measure, the more valuable that measure.

Individuals seem to want objective measures because they believe they are more reliable than
subjective measures. It is unfortunate, but true, that many bosses are more concerned that the
workers are at work on time and do not leave early, than they are about how productive they
6-6 October 25, 2006

Test Reporting Process
are during the day. You may have observed the type of people that always want to arrive at
work before the boss, because they believe meeting objective measures is more important than
meeting subjective measures, such as how easy the systems they built are to use.

6.1.3.2 How Do You Know a Metric is Good?

Before a measure is approved for use, there are certain tests that it must pass. QAI has
identified the following tests that each measure and metric should be subjected to before it is
approved for use:

Reliability
This refers to the consistency of measurement. If taken by two people, would the same
results be obtained?

Validity
This indicates the degree to which a measure actually measures what it was intended to
measure.

Ease of Use and Simplicity
These are functions of how easy it is to capture and use the measurement data.

Timeliness
This refers to whether the data was reported in sufficient time to impact the decisions
needed to manage effectively.

Calibration
This indicates the movement of a metric so it becomes more valid, for example, changing
a customer survey so it better reflects the true opinions of the customer.

6.1.3.3 Standard Units of Measure

A measure is a single attribute of an entity. It is the basic building block for a measurement
program. Measurement cannot be used effectively until the standard units of measure have
been defined. You cannot intelligently talk about lines of code until the measure lines of code
has been defined. For example, lines of code may mean lines of code written, executable lines
of code written, or even non-compound lines of code written. If a line of code was written that
contained a compound statement it would be counted as two or more lines of code, such as a
nested IF statement two levels deep. In addition, organizations may desire to use weighting
factors; for example, one verb would be weighted as more complete than other verbs in the
same programming language.

Measurement programs can be started with as few as five or six standard units of measure, but
rarely would exceed 50 standard units of measure.
October 25, 2006 6-7

Guide to the 2006 CSTE CBOK
6.1.3.4 Productivity versus Quality

Quality is an attribute of a product or service. Productivity is an attribute of a process. They
have frequently been called two sides of the same coin. This is because one has a significant
impact on the other.

There are two ways in which quality can drive productivity. The first, and an undesirable
method, is to lower or not meet quality standards. For example, if one chose to eliminate the
testing and rework components of a system development process, productivity as measured in
lines of code per hours worked would be increased. This is done frequently in information
services under the guise of completing projects on time. While testing and rework may not be
eliminated, they are not complete when the project is placed into production. The second
method for improving productivity through quality is to improve processes so that defects do
not occur, thus minimizing the need for testing and rework. The QAI Approach uses quality
improvement processes to drive productivity.

6.1.3.5 Test Metric Categories

While there are no generally accepted categories of metrics, it has proved helpful to many test
organizations to establish categories for status and reporting purposes. The metric categories
and metrics within those categories provide an inventory of the metrics that testers will use in
status reporting and final test reports.

In examining many reports prepared by testers the following eight metric categories are
commonly used:

• Metrics unique to test
• Complexity measurements
• Project metrics
• Size measurements
• Defect metrics
• Product measures
• Satisfaction metrics
• Productivity metrics

6.1.3.5.1 Metrics Unique to Test

This category includes metrics such as Defect Removal Efficiency, Defect Density, and Mean
Time to Last Failure. The following are examples of metrics unique to test:

• Defect removal efficiency – the percentage of total defects occurring in a phase or
activity removed by the end of that activity.

• Defect density – the number of defects in a particular product.
• Mean time to failure – the average operational time it takes before a software system

fails.
6-8 October 25, 2006

Test Reporting Process
• Mean time to last failure – an estimate of the time it will take to remove the last defect
from the software

• Coverage metrics – the percentage of instructions or paths executed during tests.
• Test cycles – the number of testing cycles required to complete testing (Note: May be

related to the size of the software system or complexity of the system).
• Requirements tested – the percentage of requirements tested during testing (Note: Can

indicate requirements tested which are correct, and requirements tested having
defects).

6.1.3.5.2 Complexity Measurements

This category includes quantitative values accumulated by a predetermined method, which
measure the complexity of a software product. The following are examples of complexity
measures:

• Size of module/unit (larger module/units are considered more complex).
• Logic complexity – the number of opportunities to branch/transfer within a single

module.
• Documentation complexity – the difficulty level in reading documentation usually

expressed as an academic grade level.

6.1.3.5.3 Project Metrics

This category includes status of the project including milestones, budget and schedule
variance and project scope changes. The following are examples of project metrics:

• Percent of budget utilized
• Days behind or ahead of schedule
• Percent of change of project scope
• Percent of project completed (not a budget or schedule metric, but rather an

assessment of the functionality/structure completed at a given point in time)

6.1.3.5.4 Size Measurements

This category includes methods primarily developed for measuring the software size of
software systems, such as lines of code, and function points. These can also be used to
measure software testing productivity. Sizing is important in normalizing data for comparison
to other projects. The following are examples of size metrics:

• KLOC – thousand lines of code, used primarily with statement level languages.
• Function points – a defined unit of size for software.
• Pages or words of documentation
October 25, 2006 6-9

Guide to the 2006 CSTE CBOK
6.1.3.5.5 Defect Metrics

This category includes values associated with numbers or types of defects, usually related to
system size, such as “defects/1000 lines of code” or “defects/100 function points,” severity of
defects, uncorrected defects, etc. The following are examples of defect metrics:

• Defects related to size of software.
• Severity of defects such as very important, important, and unimportant.
• Priority of defects – the importance of correcting defects.
• Age of defects – the number of days the defect has been uncovered but not corrected.
• Defects uncovered in testing
• Cost to locate a defect

6.1.3.5.6 Product Measures

This category includes measures of a product’s attributes such as performance, reliability,
usability. The following are examples of product measures:

• Defect density – the expected number of defects that will occur in a product during
development.

6.1.3.5.7 Satisfaction Metrics

This category includes the assessment of customers of testing on the effectiveness and
efficiency of testing. The following are examples of satisfaction metrics:

• Ease of use – the amount of effort required to use software and/or software
documentation.

• Customer complaints – some relationship between customer complaints and size of
system or number of transactions processed.

• Customer subjective assessment – a rating system that asks customers to rate their
satisfaction on different project characteristics on a scale, for example a scale of 1-5.

• Acceptance criteria met – the number of user defined acceptance criteria met at the
time software goes operational.

• User participation in software development – an indication of the user desire to
produce high quality software on time and within budget.

6.1.3.5.8 Productivity Metrics

This category includes the effectiveness of test execution. Examples of productivity metrics
are:

• Cost of testing in relation to overall project costs – assumes a commonly accepted
ratio of the costs of development versus tests.

• Under budget/Ahead of schedule.
• Software defects uncovered after the software is placed into an operational status.
• Amount of testing using automated tools.
6-10 October 25, 2006

Test Reporting Process
6.2 Test Tools used to Build Test Reports
Testers use many different tools to help in analyzing the results of testing, and to create the
information contained in the test reports. The use of these tools has proven very effective in
improving the value of the reports prepared by testers for the stakeholders of the software
system.

Experience has shown the analysis and reporting of defects and other software attributes is
enhanced when those involved are given analysis and reporting tools. Software quality
professionals have recognized the following tools as the more important analysis tools used
by software testers. Some of these tools are included in statistical software packages. For each
tool the deployment, or how to use, is described, as well as examples, results, and
recommendations.

6.2.1 Pareto Charts
A Pareto chart is a special type of bar chart to view the causes of a problem in order of
severity: largest to smallest. The Pareto chart provides an effective tool to graphically show
where significant problems and causes are in a process.

A Pareto chart can be used when data is available or can be readily collected from a process.
The use of this tool occurs early in the continuous improvement process when there is a need
to order or rank, by frequency of problems and causes. Team(s) can focus on the vital few
problems and their respective root causes contributing to these problems. This technique
provides the ability to:

• Categorize items, usually by content or cause factors.
• Content: type of defect, place, position, process, time, etc.
• Cause: materials, machinery or equipment, operating methods, manpower,

measurements, etc.
• Identify the causes and characteristics that most contribute to a problem.
• Decide which problem to solve or basic causes of a problem to work on first.
• Understand the effectiveness of the improvement by doing pre- and post-improvement

charts.

6.2.1.1 Deployment

A process for using Pareto charts requires a series of tasks, which fall into the following steps:

1. Define the problem clearly – Normally, this results from a team's brainstorming including
using techniques such as development of affinity diagrams and cause and effect (fishbone)
diagrams.

2. Collect data – Sufficient sample size over specified time, or use historical data if available
or retrievable.
October 25, 2006 6-11

Guide to the 2006 CSTE CBOK
3. Sort or tally data in descending order by occurrence or frequency of cause and characteris-
tics.

4. Construct chart – Use scale on “x” and “y” axis to correspond to data collected or sorted as
shown in Figure 6-1.

Figure 6-1 Pareto X, Y Chart

5. Draw bars to correspond to sorted data in descending order as shown in Figure 6-2.

Figure 6-2 Pareto Bar Chart

6. Determine vital few causes (20-80 Rule) as shown in Figure 6-3.
6-12 October 25, 2006

Test Reporting Process
Figure 6-3 Pareto Vital Few Causes Chart

7. Compare and select major causes and repeat process until problem's root causes are
reached sufficiently to resolve the problem.

6.2.1.2 Examples
• Problem-solving for vital few causes and characteristics.
• Defect analysis
• Cycle or delivery time reductions
• Unexpected computer processing terminations found in production
• Employee satisfaction or dissatisfaction

6.2.1.3 Results
• A necessary first step in continuous process improvement.
October 25, 2006 6-13

Guide to the 2006 CSTE CBOK
• Graphically demonstrates the 20-80 Rule or vital few number of items that contribute
the large percentage (80%) of problems or causes.

• Provides the ability to identify which problem or cause to work on first by its severity
or impact.

6.2.1.4 Recommendations

The Pareto chart is a tool that is easy to understand. To use this tool effectively requires
discipline by management teams, facilitators, and teams involved with the continuous
improvement process.

6.2.2 Pareto Voting
To identify significant potential causes of a problem when the problem cannot be quantified,
the Pareto voting technique can be used to obtain the vital few. Use a Pareto chart for
quantifiable causes. Like a Pareto chart, Pareto voting is based upon the Pareto Principle –
20% of the potential causes brainstormed will usually be chosen by 80% of the group.

Pareto voting is usually used in conjunction with a cause and effect (fishbone) diagram. This
technique is commonly used by management teams that have implemented a quality
management process. However, any team can use this tool to separate the vital few causes
from the trivial many, as a means of ranking.

6.2.2.1 Deployment

The steps for using this tool are different from Pareto charting, but the same in results –
decision-making on when to identify the most potential critical causes of a non-quantifiable
problem. The end result is working on the right things first. The following steps are used:

1. Complete brainstorming for potential causes of a problem.

2. Determine the total number of brainstormed ideas and multiply by 20%. For example: 10
ideas results in 2. If number is a fraction, round up to next whole number.

3. Based on the result of Step 2, determine the number of votes each team member receives.
In this case, each team member receives two votes.

4. Each team member then uses his or her allocated votes (two in this case) to select the
cause(s) having the largest impact on the stated problem.

5. Tally votes each cause receives. Those receiving the most votes are considered most
important to the team.

6. Determine the plan of action to resolve these causes.
6-14 October 25, 2006

Test Reporting Process
6.2.2.2 Example
• Determine questions to ask your end user or your employees on satisfaction surveys.
• Determine why quality is or isn't working.
• Determine areas, courses or programs for training.

6.2.3 Cause and Effect Diagrams
Useful tools to visualize, clarify, link, identify, and classify possible causes of a problem is
sometimes referred to as a "fishbone diagram," or an "Ishikawa diagram," or a "characteristics
diagram." The champion of the use of this diagram was the late Kaoru Ishikawa, a quality
leader from Japan.

A team tool used to help identify the causes of problems related to processes, products and
services. This technique keeps teams focused on a problem and potential causes. By better
understanding problems within the work processes, teams can reach probable and root causes
of a problem. A diagnostic approach for complex problems, this technique begins to break
down root causes into manageable pieces of a process. A cause and effect diagram visualizes
results of brainstorming and affinity grouping through major causes of a significant process
problem. Through a series of "why-why" questions on causes, a lowest-level root cause can be
discovered by this process.

6.2.3.1 Deployment

Developing a cause and effect diagram requires a series of steps:

1. Generally, as a result of a brainstorm session, identify a problem (effect) with a list of
potential causes.

2. Construct a fishbone diagram with basic material: flip-chart, paper, tape, water-base mark-
ers, brainstorm cards or post-its.

3. Write the effect (problem) at the right side as shown in Figure 6-4.

Figure 6-4 Effect Problem

4. Identify major causes of the problems, which become “big branches” as shown in
Figure 6-5.
October 25, 2006 6-15

Guide to the 2006 CSTE CBOK
Figure 6-5 Big Branches Problem

5. Use Results of brainstorm or affinity diagram to fill “small branches” as shown in
Figure 6-6.

Figure 6-6 Small Branches Problem

6. Complete process until lowest-level sub-cause is identified as shown in Figure 6-7.
6-16 October 25, 2006

Test Reporting Process
Figure 6-7 Lowest-Level Subcause

7. After the team completes the fishbone diagram, review, check, and verify with the work
process that these causes (factors) do strongly affect the problem or causes being resolved.

8. Select most important causes to work on first. Many causes or root causes may need to use
nominal grouping or the Pareto voting technique before reaching consensus.

9. Verify root causes by collecting appropriate data (sampling) to validate a relationship to
the problem.

10. Continue this process to identify all validated root causes.

6.2.3.2 Results
• Provides a visual relationship between cause and effect.
• Breaks down problem into manageable group of root causes that contribute most to a

problem.
• Separates symptoms of a problem from real causes.
• Provides interaction within a team to analyze problems.

6.2.3.3 Examples
• Analysis of problems
• Source for potential process improvements
• Identify sources of defect causes
• Improper use of test routines and testing problems
• Scheduling problems and cycle times
• Compliance to standards and implementation of standards
October 25, 2006 6-17

Guide to the 2006 CSTE CBOK
• Non-manufacturing – Display possible cause of work-related problem or conditions
with the 4-Ps: policy, procedures, plant (environment and facilities), and people

6.2.3.4 Recommendation

Use to analyze problem related to workplace or processes owned by a team.

6.2.4 Check Sheets
A check sheet is a technique or tool to record the number of occurrences over a specified
interval of time; a data sample to determine the frequency of an event. The recording of data,
survey, or sample is to support or validate objectively the significance of the event. This
usually follows the Pareto analysis and cause and effect diagram to validate and verify a
problem or cause. The team uses this technique in problem solving to support the
understanding of a problem, cause, or process. This technique or tool is often used to establish
a frequency or histogram chart.

6.2.4.1 Deployment

Developing a check sheet requires a series of steps:

1. Clarify what must be collected objectively.

2. Establish the format for the data collection; one easily understood by the collector.

3. Everyone involved needs to understand the objectives to ensure accuracy of the collection
process.

4. Establish the sample size and time frame of data collection.

5. For consistency, instruct or train data collectors.

6. Observe, record, and collect data.

7. Tally results, using Pareto chart or histograms.

8. Evaluate results – a team evaluation process provides better understanding and verifica-
tion of data collected to support its original analysis.

6.2.4.2 Results
• Provides objective factual data to evaluate problems. Provides causes or processes

early in the problem-solving process. Provides a tracking method.
• Detects patterns occurring in the process where problems are suspect. Provides data

for Pareto charts or histograms.
6-18 October 25, 2006

Test Reporting Process
6.2.4.3 Examples
• Project review results – defect occurrences, location, and type
• Documentation defects by type and frequency
• Cycle times-requirements to design, design to implementation
• Late deliveries
• End user complaints-all types
• Conformance to standards
• End user surveys

6.2.4.4 Recommendations

Use check sheets as a standard for problem solving whenever data is available or can be
collected to validate what is happening to a process or underlining a problem early in the
project.

The advantages and disadvantages are listed below:
• Advantages

• Defines areas to discuss
• Limits scope
• Consistency
• Organized approach
• Documents results

• Disadvantages
• Over reliance
• Applicability
• Limiting

The following are suggestions for preparing checklists:
• Avoid bias
• Mix questions by topic
• Test questions prior to use
• Allow for "I don't know"

The following are suggestions on using checklists:
• Learn reason for question
• Determine applicability or completeness
• Prepare or rehearse
• Anticipate response
• Ask without questionnaire
• Document when interview complete
October 25, 2006 6-19

Guide to the 2006 CSTE CBOK
6.2.4.5 Example Check Sheet

Figure 6-8 is an example of a check sheet.

Figure 6-8 Check Sheet Example

6.2.5 Histograms
A histogram is an orderly technique of grouping data by predetermined intervals to show the
frequency of the data set. It provides a way to measure and analyze data collected about a
process or problem. Pareto charts are a special use of a histogram. When sufficient data on a
process is available, a histogram displays the process central point (average), variation
(standard deviation, range) and shape of distribution (normal, skewed, and clustered).

Figure 6-9 illustrates a simple histogram.
6-20 October 25, 2006

Test Reporting Process
Figure 6-9 Simple Histogram Example

6.2.5.1 Variation of a Histogram
1. Polygon: Draw line from midpoints of bars.

2. Add range of acceptable values (e.g., within plus or minus 5 of budget) to show if actual
values lie within acceptable range.

6.2.5.2 Deployment

A histogram requires some understanding of the data set being measured to consolidate and
condense into a meaningful display. To do this, the following steps should be taken:

1. Gather data and organize from lowest to highest values.

2. Calculate the range (r): largest less smallest.

3. Determine number of cells (k) – normally between 7 and 13.

4. Calculate the interval or width (m) of the cells: m = range/k.

5. Sort the data or observations into their respective cells.

6. Count the data points of each cell (frequency) to determine the height of the interval.
October 25, 2006 6-21

Guide to the 2006 CSTE CBOK
7. Create a frequency table.

8. Plot the results.

9. Distribution pattern from histograms: normal, double peak, isolated island, cliff, cog-
wheel, and skewed.

6.2.5.3 Results
• Helps explain graphically if a process is in or out of control - define a process.
• Provides a basis for what to work on first, especially using the Pareto chart

application.
• Provides insight on the process capability to meet end user specifications.
• Establishes a technique to measure a process.
• Analyze for improvement opportunities.

6.2.5.4 Examples
• Defects by type
• Defects by source
• Delivery rates or times
• Experience or skill levels
• Cycle times
• End user survey responses

6.2.5.5 Recommendations

Everyone should use the histogram technique, especially teams that want to understand the
nature of the processes they are accountable for or own.

6.2.6 Run Charts
A run chart is a graph of data (observation) in chronological order displaying shifts or trends
in the central tendency (average). The data represents measures, counts or percentages of
outputs from a process (products or services).

Run charts track changes or trends in a process as well as help to understand the dynamics of
a process. This technique is often used before a control chart is developed to monitor a
process. A run chart is established for measuring or tracking events or observations in a time
or sequence order.
6-22 October 25, 2006

Test Reporting Process
6.2.6.1 Deployment
1. Decide which outputs of a process you need to measure.

2. Label your chart both vertically (quantity) and horizontally (time).

3. Plot the individual measurements over time (once per time interval or as they become
available).

4. Connect data points for easy use and interpretation.

5. Track data chronologically in time.

6. Follow these guidelines to interpret certain patterns when monitoring the data points:
• Unusual events - Eight or more data points above or below the average value

indicates the average has changed and must be investigated. If shift is favorable, it
should be made a permanent part of the process. If unfavorable, it should be
eliminated.

Figure 6-10 Example of a Run Chart

• Trend - Six or more data points of continuous increase or decrease. Neither pattern
would be expected to happen based on random chance. Strong indication that an
important change has occurred and needs to be investigated.

• Two processes - Fourteen or more data points in a row alternating up or down.
Indicates two distinct patterns caused by two groups, two shifts, or two people.

• All special causes need to be investigated to determine these patterns.

6.2.6.2 Results
• Monitor outputs of a process to better understand what is happening from the process.
October 25, 2006 6-23

Guide to the 2006 CSTE CBOK
• Provides a means to detect shift or trends in a process.
• Provides input for establishing control charts after a process has matured or stabilized

in time.

6.2.6.3 Examples
• Total unexpected computer processing terminations
• Complaint levels
• End user satisfaction level
• Suggestion levels
• Training efforts
• Production yields
• Number of invoices
• Number of system errors
• Down time (minutes,%)

6.2.6.4 Recommendations

Use to quantify and determine what is happening in or with a process. Several samples of run
charts begin the basis for a control chart.

6.2.7 Scatter Plot Diagrams
A scatter plot diagram shows the relationship that might exist between two variables or
factors. It can test for possible cause and effect relationships. Walter Shewhart at Bell
Laboratories popularized this technique.

This technique explores possible relationships between a variable and a response to test how
one variable influences the response. The use of this tool is for problem solving and the
understanding of cause and effect relationships. It is often referred to as “correlation”
diagrams (positive, negative, or zero). Typical scatter plot diagrams are shown in Figure 6-11.

6.2.7.1 Deployment

This technique is used during analysis to study the relationship between two variables, or
cause and effect:

1. Select the variable and response relationship to be examined by the team.

2. Gather data on variable and response; determine sample size of paired data.

3. Plot the results; determine appropriate scale to plot the relationship.

4. Circle repeated data points as many times as they occur.
6-24 October 25, 2006

Test Reporting Process
The pattern of the plots will reveal any correlation such as, positive, negative, random, linear,
curvilinear, or cluster. A frequent error in interpreting results is to assume that no relationship
exists because a relationship isn’t immediately apparent. It may be necessary to take another
sample.

Figure 6-11 Example of a Scatter Plot Diagram

6.2.7.1.1 Using Scatter Diagram for Exploratory Analysis

Computer populations are difficult to conceptualize and to analyze. Manual populations of
information or documents are equally difficult. In manual analysis, data is normally randomly
sampled, and then the results are extrapolated to draw conclusions about the population.
Using computer graphics, random sampling may not be necessary in order to identify unusual
conditions.

Exploratory graphics present information from the population of data under review in a
manner such that unusual conditions are highlighted.

Exploratory graphics are not meant to replace statistical sampling. They are an adjunct to it, or
an alternate means for identifying problems. However, while statistical samples, if performed
properly, can be used to predict characteristics of populations, exploratory graphics cannot be
used to project the characteristics of the population.
October 25, 2006 6-25

Guide to the 2006 CSTE CBOK
Exploratory graphics are used primarily to identify conditions for additional investigations.
While the same result could be achieved by listing and analyzing large amounts of records, the
impact of graphics is missing in the listings.

The ability to use scatter diagrams for exploratory analysis is almost unlimited. Three of the
more common uses for exploratory analysis are discussed in the following sections.

6.2.7.1.2 Cluster Analysis

Most of the exploratory graphics use scatter plots. A scatter plot shows items, events and
transactions on a graph as a point. The scatter concept means that the transactions are
scattered in accordance with their characteristics.

The types of scatter charts can be single- or multi-dimensional. In a single-dimensional scatter
chart, there is the X and Y-axes with the items scattered within the intersection of those axes.
Figure 6-13 shows a scatter plot of this type, while Figure 6-12 expands the scatter plot
capabilities by showing the complete X and Y-axes. In Figure 6-12, one axis represents
budget, both under and over budget, while the other axis shows schedule, representing behind
and ahead of schedule. This scatter plot shows computer project completions.

Each computer project completed is plotted on the chart showing how much over or under the
budget is, and how much ahead or behind schedule it is.

The cluster analysis is used to identify groups or clusters of items, which are in close
proximity of one another on the scatter plot. For example, the circle in Figure 6-12 shows a
cluster of projects over budget and behind schedule. Having identified this cluster, the analyst
could now use it to determine if there are unique characteristics among those projects, which
cause them to be over budget and behind schedule; for example, they might all use database
terminology. Thus, the scatter plot used to identify this cluster could lead the reviewer to a
conclusion about database projects.

Cluster analysis is particularly useful in the following instances. See Figure 6-12 for a cluster
analysis using a scatter plot.

• Identifying common characteristics of subcategories of events, for example, the over
budget and behind schedule of database projects.

• Multi-variable relationships, for example, the budget and schedule relationship.
• Identification of items that should be of concern to management, but they may not

have realized the quantity of items in the cluster.

Items to sample because they fall outside expected ranges. Note that many times the cluster is
around the intersection of the axis, so those items outside the cluster represent potential
problems for investigation.
6-26 October 25, 2006

Test Reporting Process
Figure 6-12 Cluster Analysis using a Scatter Plot

6.2.7.2 Results
• Gives analysis between two measurement variables in a process.
• Provides a test of two variables being changed to improve a process or solve a

problem.
• Helps to recover real causes, not symptoms, of a problem or process.

6.2.7.3 Examples
• Defect level versus complexity.
• Defects versus skill levels (training).
• Failures versus time.
• Cost versus time.
• Change response versus people availability.
• Defect cost versus where found (life cycle).
• Preventive cost versus failure cost.
October 25, 2006 6-27

Guide to the 2006 CSTE CBOK
6.2.8 Regression Analysis
Regression analysis is a means of showing the relationship between two variables. Regression
analysis will provide two pieces of information. The first is a graphic showing the relationship
between two variables. Second, it will show the correlation, or how closely related the two
variables are.

The regression analysis shown in Figure 6-13 illustrates the relationship between size of
computer programs as expressed in number of lines of executable code and the cost to develop
those programs in dollars. In this illustration, there is almost a perfect correlation between the
size of a computer program and the cost to produce that program. The correlation shows that
as the size of the program increases, the cost to develop that program increases. While the
information presented is not related to specific size in dollars, the conclusion drawn has been
statistically validated through regression analysis.

Regression analysis is used in analysis to show cause and effect relationships between two
variables. In many instances, the analysis may hypothesize that such a relationship is correct,
but cannot support it without regression analysis. The use of graphics that show these
correlations are not only valuable for analysis, but are valuable for presentation. For example,
if the analyst wanted to recommend that there be a standard or guideline on size of computer
programs, this graphic would illustrate to management the cost of not following that
guideline.

Figure 6-13 Regression Analysis using a Scatter Plot

6.2.8.1 Deployment

Regression analysis requires the use of a statistical software package, coupled with graphic
presentation. The math required for regression analysis is usually substantial.
6-28 October 25, 2006

Test Reporting Process
Note that our regression analysis example is a regression of two variables. In actual practice,
the analyst may wish to pick three or more variables in order to show regression. When more
variables are used, it is important to calculate the standard error that is attributable to using the
regression formula.

The standard error deals with the probability that the regression is correct. Generally, the
smaller the standard error, the more closely the variables are related. However, the graphic
also helps show the standard error. The more closely related the scatter plot to the regression
line, the less the standard error shown by that line.

6.2.8.2 Results

Among the uses for regression analysis is:
• Cause and effect relationship of two variables, for example, the effect on cause of the

size of a computer program.
• Projecting performance based on multiple variables. For example, predicting what an

individual's salary should be, based on the background, skill, and other performance
characteristics of that individual.

• Probing to determine the cause of some unfavorable event, such as computer projects
significantly missing schedules. By developing correlations among multiple variables,
the analyst can begin to see which variable may be causing the undesired result.

6.2.9 Multivariate Analysis
A multivariate analysis shows the relationship between two variables. The multivariate
analysis example illustrated in Figure 6-14, shows two variables presented on the same chart.
One line shows the dollar sales per salesperson, and the other line, the profit on sales. The
conclusion from this graphic would be that the more volume a salesperson sells, the less profit
made. Obviously, if this conclusion is correct some underlying information is needed. For
example, the reason may be that there is less profit in the high-dollar area.

Reading these graphics begins by examining the shape of distribution of single variables. In
Figure 6-14, we would need to look at the distribution of profits and the distribution of sales
among sales personnel. Remember that while our example appears to show a meaningful
relationship between these multiple variables, each graphic will not necessarily produce
meaningful information.

The concept of “exploratory graphics” is used because many times the graphical information
produced is not helpful in identifying areas for further analysis. Figure 6-14 has distributions
that are distributed in a manner that makes analysis meaningful. On the other hand, different
distributions would show random lines, meaning that some salespeople with high-dollar
volumes had high profits, while other salespeople with high-dollar volumes had low profits.
The conclusion from such a graphic would be meaningless.
October 25, 2006 6-29

Guide to the 2006 CSTE CBOK
Figure 6-14 Multivariate Analysis

6.2.9.1 Deployment

The multivariate analysis normally requires advanced statistical packages to perform the
underlying analysis. In most instances, regression statistics are used to produce the
information needed for creating the multi-variable graph.

Exploratory graphics doe not confirm hypotheses but, rather, poses hypotheses. The results of
exploratory graphics must be confirmed through more investigation. Only after this
confirmation should these exploratory graphics be used in presentations and reports.

6.2.9.2 Results

Multivariate analysis can be used:
• Only after individual variables have been carefully examined.
• When scatter plots of the individuals have been made and the information smoothed in

order to examine or plot the individual variables.

6.2.10 Control Charts
A statistical technique to assess, monitor and maintain the stability of a process. The objective
is to monitor a continuous repeatable process and the process variation from specifications.
The intent of a control chart is to monitor the variation of a statistically stable process where
activities are repetitive. Two types of variation are being observed: 1) common, or random;
and, 2) special or unique events.
6-30 October 25, 2006

Test Reporting Process
Control charts are used to evaluate variation of a process to determine what improvements are
needed. Control charts are meant to be used on a continuous basis to monitor processes.

Figure 6-15 Control Chart

6.2.10.1 Deployment

A decision to use control charts is serious business and should not be taken lightly. Normally,
this occurs when a process is thought to be out of control. Initially, a team evaluates what is
going wrong by using brainstorming, Pareto analysis, and cause and effect diagrams to
understand the problem. The next steps lead into control chart application:

1. Identify characteristics of process to monitor: defects, cycle times, unexpected computer
processing terminations, cost, or maintenance.

2. Select the appropriate type of control chart based on characteristics to monitor.

3. Determine methods for sampling – how many, over what time frame; use check sheets.

4. Collect sample data.

5. Analyze and calculate sample statistics: average, standard deviation, upper limit, lower
limit.

6. Construct control chart based on statistics.

7. Monitor process for common and special causes.

8. Since a process is in control when observations fall within limits, evaluate and analyze any
observation outside the limits for causes related to the situation.

9. Investigate unusual patterns when observations have multiple runs above or below central
line (average). A process shift is occurring and the reason needs to be understood. This
may lead to process improvements or corrections.
October 25, 2006 6-31

Guide to the 2006 CSTE CBOK
6.2.10.2 Results
• Objectively defines a process and variation.
• Establishes measures on a process.
• Improves process analysis and opportunities.
• Process improvements are based on facts-managed by facts.

6.2.10.3 Examples
• Unexpected computer processing terminations in production.
• Defects by life cycle phase.
• Complaint or failures by application or software.
• Response time to change request.
• Cycle times or delivery times.
• Mean time to failure.

6.3 Test Tools used to Enhance Test Reporting
Project managers, IT management and users of software often judge the effectiveness of
software testing by the reports issued by testers. The more useful information that testers can
convey in their test reports, the more favorable impression of testing that is achieved. There
are many tools available to help in report writing such as report graphics, color, highlighting
key points and management summaries.

Two tools that are not normally used by testers, but which are helpful in report writing, are
described in this category:

• The first is benchmarking to illustrate a comparison to other projects tested internally,
as well as testing results and approaches by external test organizations.

• The second is Quality Function Deployment (QFD) that allows testers to trace
requirements throughout development.

6.3.1 Benchmarking
Benchmarking is the continuous process of measuring products, services, and practices
against our toughest competitors, or those companies recognized as world leaders. It is a way
to achieve process improvement, motivation, and a management process for improvement.

Benchmarking is not normally associated with cost cutting, stealing or copying a difficult
activity, or a quick fix. The purpose of benchmarking is to:

• Gain a better awareness of yourself:
6-32 October 25, 2006

Test Reporting Process
• What you are doing and how
• How well you are doing it

• Gain a better awareness of "the best":
• What they are doing and how
• How well they are doing it
• Identify the performance gap

• Understand how to change business processes to improve quality, cost, and delivery.

The three types of benchmarking are explained below. Note that process and product
benchmarking account for approximately 80 percent of all benchmarking.

• Performance Benchmarking
Use performance benchmarking to set and validate objectives for key performance
metrics and for projections of improvements required to close the benchmark "gap."

• Process Benchmarking
Use Process benchmarking to plan for business process improvement and document as
part of business plans and quality improvement projects.

• Product Benchmarking
Use Product benchmarking to help in product planning and development. Product
documentation includes the product performance goals and design practices identified
through benchmarking.

6.3.1.1 A Ten-Step Process to Collect Benchmark Data

Benchmarking is a ten-step process, involving four phases, as described in Figure 6-16.

6.3.1.1.1 Planning Phase

1. Identify benchmarking subject and teams. These can be internal or external candidates.
The candidates come from personal knowledge, interaction with industry groups, studying
industry reports; and interviewing consultants, professional groups, and so forth.

2. Identify and select benchmarking partners. The purpose of this step is to determine viable
candidates for benchmarking; gain participation agreement by phone calls; and confirm
visit time period, agenda, and attendees with the benchmarking partner.
October 25, 2006 6-33

Guide to the 2006 CSTE CBOK
Figure 6-16 10-Step Benchmarking Process

3. Collect data. The performance of this step requires you to document your own process,
develop question lists, meet with the process owners to collect data, and record the data.

6.3.1.1.2 Analysis Phase

4. Determine current competitive gap. Determine the difference between the attributes of
your own process, product, performance, and that of the benchmark partner. This is done
for many different attributes of a process, product, or performance.

5. Project the future performance levels. Make a managerial decision of the goals your orga-
nization wishes to establish for improved performance based on the competitive gap.

6.3.1.1.3 Integration Phase

6. Communicate findings and gain acceptance. Describe the results of benchmarking to the
process owners and involved parties, as well as communicating the potential future perfor-
mance levels to gain acceptance to move forward.

7. Establish functional improvement goals. In conjunction with the process owners, establish
specific improvement goals to be achieved. (These generally should be short-term goals,
not to exceed one year.)

6.3.1.1.4 Action Phase

8. Develop an Action Plan. Use your organization's process improvement process to plan
improvement.
6-34 October 25, 2006

Test Reporting Process
9. Implement plans and monitor progress. Perform the plan, measure progress, and make
adjustments as necessary.

10. Re-calibrate and reset benchmark performance levels. Based on the analysis, set new
goals, re-benchmark to find better ways to do the process, set new goals, and continue the
improvement cycle.

There are three ways benchmarks can be deployed:

1. Competitive Benchmarks
Compare your business performance within the IT industry.

2. Functional Benchmarks
Compare your business performance with that of the "best in class" or "best in breed"
within any industry.

3. Internal Benchmarks
Compare business performance with that of other company units.

There are three results that normally occur when you benchmark:

1. An assessment of how good you are against industry leaders.

2. An indication of an improvement goal that is realistic based on industry practices. Note
that many organizations set goals above the industry benchmark.

3. Insight into how to achieve improvement from analysis of benchmarking partners' pro-
cesses.

Some examples where benchmarking has been used effectively in IT are:
• Benchmarking to evaluate and upgrade the end-user requirements process.
• Benchmarking to design a professional career ladder for information professionals.
• Benchmarking to identify and install metrics to measure quality and productivity.

There are four lessons to learn from benchmarking from the benchmarking leaders:

1. It’s important to focus on a specific objective and process:
• Breadth for context; depth for understanding
• Facilitation of the benchmarking session to keep on track

2. It's key to prepare in advance:
• Objectives, agenda, date, attendees
• Meeting and benchmarking protocol
• Process documentation (own company and partners)

3. It's not easy to identify the IT "best of the best":
• Good performance data is not readily available
• Research is required to evaluate opinion versus fact

4. It always takes longer than you think!
October 25, 2006 6-35

Guide to the 2006 CSTE CBOK
6.3.2 Quality Function Deployment
Quality function deployment (QFD) is the only comprehensive quality system aimed
specifically at satisfying the end user. It concentrates on maximizing end-user satisfaction
(positive quality) – measured by metrics, such as end-user compliments. QFD focuses on
delivering value by understanding the end user's wants and needs, and then deploying these
expectations downstream in a visible way. With QFD, we design value into the software.

An organized approach to quality with tools, techniques and a set of methods is a quality
system. Dr. Yoji Akao, the principal developer of QFD, defines QFD as a quality system with
many components as illustrated in Figure 6-17. QFD includes tools and techniques for
improving the software product. Comprehensive quality deployment includes quality
deployment, technology deployment, cost/schedule deployment, and reliability deployment.

Figure 6-17 Quality Function Deployment Defined

QFD improves both the software product and the software process to better satisfy customers
and stakeholders.

It can also address other special concerns with a corresponding deployment – such as
usability, reuse, and security. QFD provides forward and backward traceability of value in the
software development life cycle. Value is why end users want software.
6-36 October 25, 2006

Test Reporting Process
A special challenge exists for complex products and services – those involving a combination
of hardware, software, and service, or those where nontrivial design decisions must be made
at the system, subsystem, and component levels. In QFD, there are series of matrices that
comprise a visible means to address a particular concern, such as reliability, during
development. These deployments are a structured way of dealing with a special concern at a
detailed level. They provide a basis for linking the concerns into an integrated framework.
This framework results in a very sophisticated (and efficient) product development process.

The starting point in a new product development is the decision of what is to be built for
whom. This requires deciding whom the end user is, finding out what they want, and
determining what capabilities we can provide them. In QFD, the fundamental deployments of
end users and quality address this.

The end-user deployment involves the determination of which types of end users the
organization is trying to provide a product/service for. It precedes the determination of
requirements in quality deployment. You must first decide who your end users are so you
know what voices to listen to. The end-user deployment component of QFD is particularly
important for software, as a single software product must often satisfy many types of end
users.

The quality deployment has tools and techniques for the exploration and specification of high-
value end-user requirements (or "demanded quality"). Once captured, the end-user
requirements are translated and deployed into technical requirements (or "quality
characteristics") in the A-1 or "house of quality" matrix. This can be done at various levels of
sophistication, ranging from four matrices to a dozen.

These fundamental deployments are the foundation for downstream design-and-development
decisions about "how" the product will work – the horizontal deployments – and "how well" it
will be designed and developed – the vertical deployments.

Dr. Deming said, “We must view development as a system, and look at how we satisfy our end
users as an organization.” Software QFD is one quality system with precisely that aim – to
deliver great software-intensive products and services to multiple types of end users. A
number of leading software firms in Europe, Japan, and North America has applied this
approach. Results to date are very promising, and further refinement is still occurring.

The description of QFD was extracted from "Quality Function Deployment (QFD) for
Software" by Richard E. Zultner, American Programmer, February 1992, pp. 1-12; and was
reprinted with permission of the author.

6.4 Reporting Test Results
Reporting test results should be a continuous process. Whenever significant problems are
encountered they should be reported to the decision-makers who can determine the
October 25, 2006 6-37

Guide to the 2006 CSTE CBOK
appropriate action. Testing reports should also be prepared at pre-defined checkpoints and at
the end of testing.

In preparing test reports testers should answer these questions:
• What information do the stakeholders need?
• How can testers present that information in an easy-to-understand format?
• How can I present the information so that it is believable?
• What can I tell the stakeholder that would help in determining what action to take?

The following aspects of test reporting are covered in this section:
• Current status test report
• Final test reports

The test reports indicating the current status of reporting, or interim test reports are needed for
project management. Those responsible for making project decisions need to know the status
from the tester’s perspective throughout the project. These interim reports can occur in any
phase of the life cycle, at pre-defined checkpoints, or when important information needs to be
conveyed to developers.

The final test reports are prepared at the conclusion of each level of testing. The ones
occurring at the end of unit and integration testing are normally informal and have the primary
purpose of indicating that there are no remaining defects at the end of those test levels. The
test reports at the conclusion of system testing and acceptance testing are primarily for the
customer or user to make decisions regarding whether or not to place the software in
operation. If it is placed in operation with known defects the user can develop strategies to
address potential weaknesses.

6.4.1 Current Status Test Reports
Testers need to develop reports that show the status of testing throughout the process of
testing the software. The test process should produce a continuous series of reports that
describe the status of testing. The current status test reports are for use by the testers, the test
manager, and the software development team. The frequency of the test reports should be at
the discretion of the team, and based on the extensiveness of the test process. Generally, large
projects will require more interim reporting than will small test projects with a very limited
test staff.

Thirteen current status reports are proposed here. Testers can use all thirteen or select specific
ones to meet individual test needs. However, it is recommended that, if available, test data
permits at the end of the testing phase, all thirteen test reports be prepared and incorporated
into the final test report. Each of the thirteen reports is described in the following pages, with
examples.
6-38 October 25, 2006

Test Reporting Process
6.4.1.1 Function Test Matrix

The function test matrix is the core of a test report. The function test matrix shows which tests
must be performed to validate the functions. Its matrix will be used to determine which tests
are needed, as well as their sequencing. It will also be used to determine the status of testing.

Many organizations use a spreadsheet package to maintain test results. The intersection can be
color coded or coded with a number or symbol to indicate the following:

1. Test is needed, but not performed

2. Test is currently being performed

3. Test was performed and a minor defect noted

4. Test was performed and a major defect noted

5. Test complete and function is defect-free for the criteria included in this test

6.4.1.1.1 Report Example

The function test matrix can be prepared with one of the five test results in the appropriate
intersection. The matrix intersections can be color coded to show the results of testing using a
color for the five types of test results. The matrix example shown in Table 6-1, “Function Test
Matrix Report Example” uses checkmarks to indicate that a test is to be conducted on the
functions indicated. The check mark can then be supplemented or replaced to show the results
of testing.

Table 6-1: Function Test Matrix Report Example

6.4.1.1.2 How to Interpret the Report

The report is designed to show the results of performing a specific test on a function. A low-
level report indicates the results of each test. The report is designed to show the status of each
test; therefore no interpretation can be made about the results of the entire software system,
only about the results of individual tests. However, if all of the tests for a specific function are
successful, one could assume that function works. Nevertheless, “working” means that it has
met the criteria in the Test Plan.

Test
Test Function 1 2 3 4 5 6 7 8 9 10
A √ √ √ √

B √ √ √

C √ √ √

D √ √

E √ √ √ √
October 25, 2006 6-39

Guide to the 2006 CSTE CBOK
6.4.1.2 Defect Status Report

A report is needed for each defect found by testers. It is recommended that the information
collected about each defect be maintained electronically so that test managers and users of the
software system can review it. The information collected about each defect can be as simple
or as complex as desired. For simplification purposes, it is suggested that the following
guidelines be used:

• Defect Naming
Name defects according to the phase in which the defect most likely occurred, such as a
requirements defect, design defect, documentation defect, and so forth.
• Defect Severity
Use three categories of severity as follows:

• Critical – Would stop the software system from operating
• Major – Would cause incorrect output to be produced
• Minor – Would be a problem, but would not cause improper output to be produced,

such as a system documentation error
• Defect Type
Use the following three categories:

1. Missing – A specification not included in the software

2. Wrong – A specification improperly implemented in the software

3. Extra – Element in the software not requested by a specification

6.4.1.2.1 Report Example

The defect status report information should be completed each time the testers uncover a
defect. An example of a defect status report is shown in Table 6-2, “Defect Status Report”.
6-40 October 25, 2006

Test Reporting Process
Table 6-2: Defect Status Report

6.4.1.2.2 How to Interpret the Report

The report is designed to both describe a defect and to report the current status of that defect.
The individual responsible for the function containing the defect needs to decide what
action(s) to take, make any desired correction, and retest the function if changed.

The information from the defect status report can be used to produce the function/test matrix
as shown in Table 6-1, “Function Test Matrix Report Example”. In this example, the
intersection between the function and test is check marked to indicate test status. Status can be
color-coded or numbered 1 to 5, as described earlier.

6.4.1.3 Functional Testing Status Report

The purpose of this report is to list the percent of the functions that have been fully tested; the
functions that have been tested, but contain errors; and the functions that have not been tested.
The report should include 100 percent of the functions to be tested in accordance with the Test
Plan.

Software/System
Tested

Name of software being tested.

Date Date on which the test occurred.

Defect Found (Name/
Type)

The name and type of a single defect in the software being tested.

Location Found
(Unit/Module)

The individual unit or system module in which the defect was found.

Severity of Defect
Critical, major, or minor. Critical means the system cannot run without
correction; major means the defect will impact the accuracy of operation;
minor means it will not impact the operation.

Type of Defect Whether the defect represents something missing, something wrong, or
something extra.

Test Data/Script
Locating Defect

Which test was used to uncover the defect.

Origin of Defect/
Phase of
Development

The phase in which the defect occurred.

Date Corrected The date on which the defect was corrected.

Retest Date The date on which the testers were scheduled to validate whether the
defect had been corrected.

Result of Retest
Whether the software system functions correctly and the defect no longer
exists; or if additional correction and testing will be required. If so, the “To
be added later” section will need to be reentered.
October 25, 2006 6-41

Guide to the 2006 CSTE CBOK
6.4.1.3.1 Report Example

A sample of this Test Report is illustrated in Figure 6-18. It shows that 50 percent of the
functions tested have errors, 40 percent were fully tested, and 10 percent were not tested.

Figure 6-18 Functional Testing Status Report

6.4.1.3.2 How to Interpret the Report

The report is designed to show status to the test manager and customer of the software system.
How status is interpreted will depend heavily on the point in the test process at which the
report was prepared. As the implementation date approaches, a high number of functions
tested with uncorrected errors and functions not tested should raise concerns about meeting
the implementation date.

6.4.1.4 Functions Working Timeline

The purpose of this report is to show the status of testing and the probability that the
development and test groups will have the system ready on the projected implementation date.
6-42 October 25, 2006

Test Reporting Process
6.4.1.4.1 Report Example

The example of the Functions Working Timeline in Figure 6-19 shows the normal projection
for having functions working. This report assumes a September implementation date and
shows from January through September the percent of functions that should be working
correctly at any point in time. The actual line shows that the project is doing better than
anticipated.

Figure 6-19 Functions Working Timeline Report

6.4.1.4.2 How to Interpret the Report

If the actual performance is better than planned, the probability of meeting the implementation
date is high. On the other hand, if the actual percent of functions working is less than planned,
both the test manager and development team should be concerned, and may want to extend the
implementation date or add resources to testing and/or development.

6.4.1.5 Expected versus Actual Defects Uncovered Timeline

The purpose of this report is to show whether the number of defects uncovered is above or
below the expected number. This assumes that the organization has sufficient historical data to
project defect rates. It also assumes that the development process is sufficiently stable so that
the defect rates from that process are relatively consistent.
October 25, 2006 6-43

Guide to the 2006 CSTE CBOK
6.4.1.5.1 Report Example

The example chart for the Expected versus Actual Defects Uncovered Timeline in Figure 6-20
shows a project beginning in January with a September implementation date. For this project,
500 defects are expected; the expected line shows the cumulative anticipated rate for
uncovering those defects. The actual line shows that a higher number of defects than expected
have been uncovered early in the project.

Figure 6-20 Expected versus Actual Defects Uncovered Timeline Report

6.4.1.5.2 How to Interpret the Report

If the actual defect rate varies from the expected rate, generally, there is a special cause, and
investigation is warranted. In Figure 6-20, the cause may be because a very inexperienced
project team is developing the software. Even when the actual defects are significantly less
than expected, testers should be concerned, because it may mean that the tests have not been
effective and therefore a large number of undetected defects remain in the software.

6.4.1.6 Defects Uncovered versus Corrected Gap Timeline

The purpose of this report is to list the backlog of detected but uncorrected defects. It requires
recording defects as they are detected, and then again when they have been successfully
corrected.
6-44 October 25, 2006

Test Reporting Process
6.4.1.6.1 Report Example

The example in Figure 6-21 shows a project beginning in January with a projected September
implementation date. One line on the chart shows the cumulative number of defects
uncovered during testing, and the second line shows the cumulative number of defects
corrected by the development team, which have been retested to demonstrate that correctness.
The gap represents the number of uncovered but uncorrected defects at any point in time.

Figure 6-21 Defects Uncovered versus Corrected Gap Timeline Report

6.4.1.6.2 How to Interpret the Report

The ideal project would have a very small gap between these two timelines. If the gap
becomes wide, it indicates that the backlog of uncorrected defects is growing, and that the
probability the development team will be able to correct them prior to implementation date is
decreasing. The development team must manage this gap to ensure that it remains narrow.

6.4.1.7 Average Age of Uncorrected Defects by Type

The purpose of this report is to show the breakdown of the gap presented in Figure 6-21 by the
number of days it has taken to correct defects.
October 25, 2006 6-45

Guide to the 2006 CSTE CBOK
6.4.1.7.1 Report Example

The Average Age of Uncorrected Defects by Type report example in Figure 6-22 shows the
three severity categories aged according to the average number of days since the defect was
detected. For example, it shows that the average critical defect is about 3 days old, the average
major defect is about 10 days old, and the average minor defect is about 20 days old. The
calculation is to accumulate the total number of days each defect has been waiting to be
corrected, divided by the number of defects. Average days should be working days.

Figure 6-22 Average Age of Uncorrected Defects by Type Report

6.4.1.7.2 How to Interpret the Report

Figure 6-22 is the desirable status, demonstrating that critical defects are being corrected
faster than major defects, which are being corrected faster than minor defects. Organizations
should have guidelines for how long defects at each level should be maintained before being
corrected. Action should be taken accordingly based on actual age.

6.4.1.8 Defect Distribution Report

The purpose of this report is to explain how defects are distributed among the modules/units
being tested. It lists the total cumulative defects uncovered for each module being tested at
any point in time.

6.4.1.8.1 Report Example

The Defect Distribution Report example in Figure 6-23 shows eight units under test along
with the number of defects uncovered in each of those units to date. The report could be
enhanced to show the extent of testing that has occurred on the modules, for example, by
color-coding the number of tests; or by incorporating the number of tests into the bar as a
number, such as 6 for a unit that has undergone six tests when the report was prepared.
6-46 October 25, 2006

Test Reporting Process
Figure 6-23 Defect Distribution Report

6.4.1.8.2 How to Interpret the Report

This report can help identify modules that have an excessive defect rate. A variation of the
report could list the cumulative defects by test. For example, defects uncovered in test 1, the
cumulative defects uncovered by the end of test 2, the cumulative defects uncovered by test 3,
and so forth. Frequently, modules that have abnormally high defect rates are those that have
ineffective architecture, and thus are candidates for rewrite rather than additional testing.

6.4.1.9 Relative Defect Distribution Report

The purpose of this report is to normalize the defect distribution presented. The normalization
can be by function points or lines of code. This will permit comparison of defect density
among the modules/units.

6.4.1.9.1 Report Example

The Normalized Defect Distribution Report illustrated in Figure 6-24 shows the same eight
modules presented in Figure 6-23. However, in this example, the defect rates have been
normalized to defects per 100 function points or defects per 1,000 lines of code, to enable the
reader of the report to compare defect rates among the modules. This was not possible in
Figure 6-23 because there was no size consideration. Again, a variation that shows the number
of tests can be helpful in drawing conclusions.
October 25, 2006 6-47

Guide to the 2006 CSTE CBOK
Figure 6-24 Normalized Defect Distribution Report

6.4.1.9.2 How to Interpret the Report

This report can help identify modules that have excessive defect rates. A variation of the
report could show the cumulative defects by test; for example, the defects uncovered in test 1,
the cumulative defects uncovered by the end of test 2, the cumulative defects uncovered by
test 3, and so forth. Frequently, modules that have abnormally high defect rates are those that
have ineffective architecture, and thus are candidates for rewrite rather than additional testing.

6.4.1.10 Testing Action Report

This is a summary action report prepared by the test team. It is designed for the test manager
and the software development manager. The information contained in the report should be
listed as necessary to the test manager and/or the development manager to properly direct the
team toward a successful implementation date.

6.4.1.10.1 Report Example

The Testing Action Report example in Figure 6-25 lists four pieces of information helpful to
most test managers:

• Tests Behind Schedule – Total number of tests behind schedule, meaning either they
have not been performed or contain an excessive number of defects that prevent their
completion on the scheduled date.
6-48 October 25, 2006

Test Reporting Process
• Uncorrected Critical Defects – The total number of critical defects not yet corrected.
• Major Uncorrected Defects Over 5 Days Old – The absolute number of major defects

waiting more than five days to be corrected.
• Number of Uncovered Defects Not Corrected – The total number of defects awaiting

correction.

Figure 6-25 Testing Action Report

These items are examples of what could be included in the Testing Action Report. Most are
included in the other reports, but this report is a summation, or a substitute, for the other
reports.

6.4.1.10.2 How to Interpret the Report

The test manager should carefully monitor the status of testing and take action when testing
falls behind schedule.

6.4.1.11 Individual Project Component Test Results

As testing is completed on each project component, the tester should issue test reports for the
individual component.

6.4.1.11.1 Report Example

An Individual Projects and Interface Report is illustrated in Figure 6-26. It describes a
standard for such a report, indicating it should discuss the scope of the test, the test results,
what works and does not work, and recommendations.
October 25, 2006 6-49

Guide to the 2006 CSTE CBOK
Figure 6-26 Individual Project Component Test Report

• Scope of Test – In any report on testing it is important to show the scope, otherwise,
the reader will assume that exhaustive testing has occurred, which is never the case.
Testing is a risk-oriented activity in which resources should be expended to minimize
the major risks. Exhaustive testing is not possible, practical or economical. Thus
testing is never designed to assure that there are no defects remaining in the software
and the scope will explain what the testers accomplished.

• Test Results – This is straightforward, describing the result of the testing including any
variance between the expected and actual outputs.

• What Works/What Does Not Work – Where detailed interim Test Reports are
available, the “what works” and “what does not work” sections may merely reference
those reports or attach those reports.

• Recommendations – This section is a critical part of the report, because the reader is
usually removed from the project being tested and the technical recommendations
provided by the testers can help with the reader’s business decision. For example,
testers may indicate that there is a 50/50 probability that the system will terminate
abnormally in production due to dating problems. With that information in hand, a
business decision might be made to put the software into operation, but develop
effective backup recovery procedures in case the termination occurs.
6-50 October 25, 2006

Test Reporting Process
6.4.1.12 Summary Project Status Report

The Summary Project Status Report is illustrated in Figure 6-27. It provides general
information about software and uses graphics to summarize the status of each project
component. The design of the report and use of color enables the reader to quickly and easily
access project information.

Figure 6-27 Summary Project Status Report Example

The Summary Project Status Report is divided into these four sections:

1. Report Date Information
The date of the report should be on the report. The information that is contained in the
report should be current as of that date.

2. Project Information
Project information appears in a column on the left side of the report. Each project has its
own “cell” where information about the project appears. Each cell contains the official
project name, the name of the project manager, the phase of the project (e.g., planning,
requirements, development, and implementation) and the name of the executive sponsor.

3. Timeline Information
Timeline information appears in a chart that displays project status over a 16-month
period. It shows project status by measuring technical, budgeting, and scheduling
considerations. The year and month (abbreviated with initials) appear along the top of the
chart to indicate the month-by-month status of each project.
October 25, 2006 6-51

Guide to the 2006 CSTE CBOK
Technical (T), Scheduling (S), and Budget (B) information also appears in the chart, and is
specific to each project. These three considerations measure the status of each project:

• Technical status (T) shows the degree to which the project is expected to function
within the defined technical and/or business requirements.

• Scheduling status (S) shows the degree to which the project is adhering to the
current approved schedule.

• Budgeting status (B) shows the degree to which the project is adhering to the
current approved budget. Expenditures for the budget include funds, human
resources, and other resources.

4. Legend Information
The report legend, which is located along the bottom of the page, defines the colors and
symbols used in the report, including category and color codes. The following colors
could be used to help to quickly identify project status:

• A green circle could mean there are no major problems and that the project is
expected to remain on schedule.

• A yellow circle could indicate potentially serious deviation from project
progression.

• A red circle could mean a serious problem has occurred and will have a negative
effect on project progression.

6.4.1.13 Individual Project Status Report

The Individual Project Status Report as illustrated in Figure 6-28 provides information related
to a specific project component. The design of the report enables the reader to quickly and
easily access project information.

6.4.1.13.1 Project Information

The project information normally includes the following six sections:

1. Name of the report

2. Date the report is issued

3. Name of the executive sponsoring the project

4. Name of the project manager

5. General project information

6. Quick-status box containing a color-coded rectangle indicating the overall status of the
project

6.4.1.13.2 General Project Information

This section of the report contains general information about the project. It should include the
work request number; a brief description of the project; and show the phase of the project
6-52 October 25, 2006

Test Reporting Process
(e.g., planning, requirements, development, and implementation), as well as important project
dates and figures, which include:

• Project start date, determined by official approval, sponsorship, and project
management

• Original target date for project completion
• Current target date for project completion
• Phase start date of the current phase
• Original target date for completion of the current phase
• Current target date for completion of the current phase
• Original budget allotted for the project
• Current budget allotted for the project
• Expenses to date for the project

6.4.1.13.3 Project Activities Information

The Project Activities section of the report gives a history of the project over an extended
period. The Project Activities chart measures the status according to the phase of the project.
The project phases used might be:

• Planning
• Requirements
• Development
• Implementation

Comments may be added below each phase to track specific project developments or
occurrences. A timeline should be included in the chart to measure each phase of the project.
Color-coded circles could indicate the status of each phase.

Future activities for the project should be indicated showing the expected date of project
completion, or the current target date.
October 25, 2006 6-53

Guide to the 2006 CSTE CBOK
Figure 6-28 Example of an Individual Project Status Report

6.4.1.13.4 Essential Elements Information

The Essential Elements section of the report also contains a chart. It measures the status of the
project by comparing it to the previous status of the project. The chart could use the color-
6-54 October 25, 2006

Test Reporting Process
coded circles and list considerations that allow the reader to quickly gather project statistics.
These considerations ask:

• Is the project on schedule?
• Do the current project results meet the performance requirements?
• Are the project costs within the projected budget?
• Is the project cost over-budget?
• What is the dollar amount of the project budget overrun?

These questions can be answered by comparing the previous report results to the current
report results.

This section of the report also includes a graph that compares projected costs to actual costs.
The projected cost line can appear in one color; the actual cost line appears in another color.
This graph shows you whether the project is adhering to the current approved budget.

6.4.1.13.5 Legend Information

The report legend, which should be located along the bottom of the page, defines the colors
and symbols used in the report, including category and color codes. The following symbols
can be used to help to quickly identify project status:

• The indicates there are no major problems and that the project is expected to
remain on schedule.

• The means there is a potentially serious deviation from project progression.
• The indicates a serious problem has occurred and will have a negative effect on

project progression.

6.4.1.13.6 Project Highlights Information

The project highlights should appear at the bottom of the report. This section may also contain
comments explaining specific project developments or occurrences that affect progression.

6.4.2 Final Test Reports
Test reports should be prepared at the conclusion of each level of testing. This might include:

• Unit Test Report
• Integration Test Report
• System Test Report
• Acceptance Test Report

The test reports are designed to report the results of testing as defined in the Test Plan.
Without a well-developed Test Plan, which has been executed in accordance with the plan, it
is difficult to develop a meaningful test report.
October 25, 2006 6-55

Guide to the 2006 CSTE CBOK
All final test reports should be designed to accomplish the following three objectives:
• Define the scope of testing – this is normally a brief recap of the Test Plan
• Present the results of testing
• Draw conclusions and recommendations from those test results

The final test report may be a combination of electronic data and printed information. For
example, if the Function Test Matrix is maintained electronically, there is no reason to print
that, as the detail is available electronically if needed. The printed final report will summarize
that data, draw the appropriate conclusions, and present recommendations.

The final test report has the following objectives:
• Inform the developers what works and what does not work.
• Provide information to the users of the software system so that they can determine

whether the system is ready for production; and if so, to assess the potential
consequences and initiate appropriate actions to minimize those consequences.

• After implementation, help the project trace problems in the event the application
malfunctions in production. Knowing which functions have been correctly tested and
which ones still contain defects can assist in taking corrective action.

• Use the test results to analyze the test process for the purpose of preventing similar
defects from occurring in the future. Accumulating the results of many test reports to
identify which components of the software development process that are defect-prone.
These defect-prone components identify tasks or steps that, if improved, could
eliminate or minimize the occurrence of high-frequency defects.

6.4.2.1 Description of Test Reports

There is no generally accepted standard regarding the type, content and frequency of test
reports. However, it is reasonable to assume that some type of report should be issued after the
conclusion of each test activity. This would include reports at the conclusion of these test
activities:

• Unit test
• Integration test
• System test

The individual who wrote the unit normally conducts unit testing. The objective is to assure
all the functions in the unit perform correctly, and the unit structure performs correctly. The
report should focus on what was tested, the test results, defects uncovered and, what defects
have not been corrected, plus the unit tester’s recommendations as to what should be done
prior to integration testing. Figure 6-29 illustrates an example of a Unit Test Report.
6-56 October 25, 2006

Test Reporting Process
Figure 6-29 Unit Test Report Example

6.4.2.2 Integration Test Report

Integration testing tests the interfaces between individual projects or units. A good Test Plan
will identify the interfaces and institute test conditions that will validate interfaces. Given this,
the integration report follows the same format as the Unit Test Report, except that the
conditions tested are the interfaces.

As testing is completed on each project, integration test reports could be issued for the
individual projects. Figure 6-30 is an example of such a report, indicating it should discuss the
scope of the test, the test results, what works and does not work, and recommendations.

Figure 6-30 Integration Test Report Example
October 25, 2006 6-57

Guide to the 2006 CSTE CBOK
In any report on testing, it is important to show the scope; otherwise, the reader will assume
that exhaustive testing has occurred, which is never the case. Testing is a risk-oriented activity
in which resources should be expended to minimize the major risks. Exhaustive testing is
neither possible, practical, nor economical. Thus, testing is never designed to assure that there
are no defects remaining in the software and the scope will explain what the testers
accomplished.

The remainder of the report is straightforward, describing the result of the testing –
specifically, what works and what does not work in recommendations. Where detailed interim
test reports are available, the “what works” and “what does not work” sections may merely
reference those reports or attach those reports.

The recommendations section is a critical part of the report, because the reader is usually
removed from the project being tested and the technical recommendations provided by the
testers can help with the reader’s business decision. For example, testers may indicate that
there is a 50/50 probability that the system will terminate abnormally in production due to
dating problems. A business decision might then be made to put the software into operation,
but develop effective backup recovery procedures in case the termination occurs.

6.4.2.3 System Test Report

Skill Category 4, Test Planning presented a system test plan standard that identified the
objectives of testing, what was to be tested, how it was to be tested, and when tests should
occur. The System Test Report should present the results of executing that Test Plan.
Figure 6-31 illustrates the test reporting standard that is based on the test plan standard.
6-58 October 25, 2006

Test Reporting Process
Figure 6-31 System Test Report Standard Example

6.4.3 Guidelines for Report Writing
The following two guidelines are provided for writing and using the report information:

1. Develop a baseline.
The data extracted from individual project reports can be used to develop a baseline for
the enterprise based on mean scores of the reporting criteria. Rather than comparing
quality, productivity, budget, defects, or other categories of metrics to external
organizations, valuable management information can be made available. From this
baseline, individual projects can be compared. Information from projects consistently
October 25, 2006 6-59

Guide to the 2006 CSTE CBOK
scoring above the enterprise baseline can be used to improve those projects that are
marginal or fall below the enterprise baseline.

2. Use good report writing practices. The following are examples of good report writing:
• Allow project team members to review the draft and make comments before the report

is finalized.
• Don’t include names or assign blame.
• Stress quality.
• Limit the report to two or three pages stressing important items; include other

information in appendices and schedules.
• Eliminate small problems from the report and give these directly to the project people.
• Hand-carry the report to the project leader.
• Offer to have the testers work with the project team to explain their findings and

recommendations.
6-60 October 25, 2006

User Acceptance Testing
he objective of software development is to develop the software that meets the true
needs of the user, not just the system specifications. To accomplish this, testers should
work with the users early in a project to clearly define the criteria that would make the
software acceptable in meeting the user needs. As much as possible, once the

acceptance criterion has been established, they should integrate those criteria into all aspects
of development. This same process can be used by software testers when users are unavailable
for test; when diverse users use the same software; and for beta testing software. Although
acceptance testing is a customer and user responsibility, testers normally help develop an
acceptance test plan, include that plan in the system test plan to avoid test duplication; and, in
many cases, perform or assist in performing the acceptance test.

7.1 Acceptance Testing Concepts
It is important that both software testers and user personnel understand the basics of
acceptance testing. This section will address:

• Acceptance testing concepts
• Difference between system test and acceptance test

Acceptance testing is formal testing conducted to determine whether a software system
satisfies its acceptance criteria and to enable the buyer to determine whether to accept the

Acceptance Testing Concepts 7-1
Roles and Responsibilities 7-5
Acceptance Test Planning 7-7
Acceptance Test Execution 7-12

Skill
Category

7

T

October 25, 2006 7-1

Guide to the 2006 CSTE CBOK
system. Software acceptance testing at delivery is usually the final opportunity for the buyer
to examine the software and to seek redress from the developer for insufficient or incorrect
software. Frequently, the software acceptance test is the only time the buyer is involved in
acceptance and the only opportunity the buyer has to identify deficiencies in a critical
software system. The term critical implies economic or social catastrophe, such as loss of life;
it implies the strategic importance to an organization’s long-term economic welfare. The
buyer is thus exposed to the considerable risk that a needed system will never operate reliably
because of inadequate quality control during development. To reduce the risk of problems
arising at delivery or during operation, the buyer must become involved with software
acceptance early in the acquisition process.

Software acceptance is an incremental process of approving or rejecting software systems
during development or maintenance, according to how well the software satisfies predefined
criteria. For the purpose of software acceptance, the activities of software maintenance are
assumed to share the properties of software development.

Acceptance decisions occur at pre-specified times when processes, support tools, interim
documentation, segments of the software, and finally the total software system must meet
predefined criteria for acceptance. Subsequent changes to the software may affect previously
accepted elements. The final acceptance decision occurs with verification that the delivered
documentation is adequate and consistent with the executable system and that the complete
software system meets all buyer requirements. This decision is usually based on software
acceptance testing. Formal final software acceptance testing must occur at the end of the
development process. It consists of tests to determine whether the developed system meets
predetermined functionality, performance, quality, and interface criteria. Criteria for security
or safety may be mandated legally or by the nature of the system.

Acceptance testing involves procedures for identifying acceptance criteria for interim life
cycle products and for accepting them. Final acceptance not only acknowledges that the entire
software product adequately meets the buyer’s requirements, but also acknowledges that the
process of development was adequate. As a life cycle process, software acceptance enables:

• Early detection of software problems (and time for the customer or user to plan for
possible late delivery)

• Preparation of appropriate test facilities
• Early consideration of the user’s needs during software development
• Accountability for software acceptance belongs to the customer or user of the

software, whose responsibilities are:
• Ensure user involvement in developing system requirements and acceptance

criteria
• Identify interim and final products for acceptance, their acceptance criteria, and

schedule
• Plan how and by whom each acceptance activity will be performed
• Plan resources for providing information on which to base acceptance decisions
• Schedule adequate time for buyer staff to receive and examine products and

evaluations prior to acceptance review
7-2 October 25, 2006

User Acceptance Testing
• Prepare the Acceptance Plan
• Respond to the analyses of project entities before accepting or rejecting
• Approve the various interim software products against quantified criteria at

interim points
• Perform the final acceptance activities, including formal acceptance testing, at

delivery
• Make an acceptance decision for each product

The customer or user must be actively involved in defining the type of information required,
evaluating that information, and deciding at various points in the development activities if the
products are ready for progression to the next activity.

Acceptance testing is designed to determine whether the software is fit for use. The concept of
fit for use is important in both design and testing. Design must attempt to build the application
to fit into the user’s business process; the test process must ensure a prescribed degree of fit.
Testing that concentrates on structure and requirements may fail to assess fit, and thus fail to
test the value of the automated application to the business.

The four components of fit are:

1. Data
The reliability, timeliness, consistency, and usefulness of the data included in the
automated application.

2. People
People should have the skills, training, aptitude, and desire to properly use and interact
with the automated application.

3. Structure
The structure is the proper development of application systems to optimize technology
and satisfy requirements.

4. Rules
The rules are the procedures to follow in processing the data.

The system must fit into these four components of the business environment as illustrated in
Figure 7-1. If any of the components fails to fit properly, the success of the application system
will be diminished. Therefore, testing must ensure that all the components are adequately
prepared and developed, and that the four components fit together to provide the best possible
solution to the business problem.
October 25, 2006 7-3

Guide to the 2006 CSTE CBOK
Figure 7-1 Software Change Testing and Training

The objective of acceptance testing is to determine throughout the development cycle that all
aspects of the development process meet the user’s needs. There are many ways to accomplish
this. The user may require that the implementation plan be subject to an independent review of
which the user may choose to be a part, or simply prefer to input acceptance criteria into the
review process.

Acceptance testing should be an ongoing activity that tests both interim and final products. Do
not wait until the end of the development process so that unnecessary time is expended
making corrections that will prove unacceptable to the system user.

7.1.1 Difference between Acceptance Test and System Test
Acceptance testing is performed by user personnel and may include assistance by software
testers. System testing is performed by developers and/or software testers. The objective of
both types of testing is to assure that when the software is complete it will be acceptable to the
user.
7-4 October 25, 2006

User Acceptance Testing
System test should be performed before acceptance testing. There is a logical sequence for
testing, and an important reason for the logical steps of the different levels of testing. Unless
each level of testing fulfills its objective, the following level of testing will have to
compensate for weaknesses in testing at the previous level.

In most organization units, integration and system testing will focus on determining whether
or not the software specifications have been implemented as specified. In conducting testing
to meet this objective it is unimportant whether or not the software specifications are those
needed by the user. The specifications should be the agreed upon specifications for the
software system.

The system specifications tend to focus on the software specifications. They rarely address the
processing concerns over input to the software, nor do they address the concerns over the
ability of user personnel to effectively use the system in performing their day-to-day business
activities.

Acceptance testing should focus on input processing, use of the software in the user
organization, and whether or not the specifications meet the true processing needs of the user.
Sometimes these user needs are not included in the specifications; sometimes these user needs
are incorrectly specified in the software specifications; and sometimes the user was unaware
that without certain attributes of the system, the system was not acceptable to the user.
Examples include users not specifying the skill level of the people who will be using the
system; processing may be specified but turnaround time not specified, and the user may not
know that they have to specify the maintainability attributes of the software.

Effective software testers will focus on all three reasons why the software specified may not
meet the user’s true needs. For example they may recommend developmental reviews with
users involved. Testers may ask users if the quality factors are important to them in the
operational software. Testers may work with users to define acceptance criteria early in a
development process so that the developers are aware and can address those acceptance
criteria.

7.2 Roles and Responsibilities
The roles and responsibilities of all parties involved in acceptance testing should be
incorporated into the test planning process. This section will specifically address:

• User’s role
• Software tester’s role
October 25, 2006 7-5

Guide to the 2006 CSTE CBOK
7.2.1 User’s Role
The user’s role in acceptance testing begins with the user making the determination as to
whether acceptance testing will or will not occur. If the totality of user’s needs have been
incorporated into the software requirements, then the software testers should test to assure
those needs are met in unit, integration, and system testing.

If acceptance testing is to occur the user has primary responsibility for planning and
conducting acceptance testing. This assumes that the users have the necessary testing
competency to develop and execute an acceptance test plan.

If the user does not have the needed competency to develop and execute an acceptance test
plan the user will need to acquire that competency from other organizational units or out
source the activity. Normally, the IT organization’s software testers would assist the user in
the acceptance testing process if additional competency is needed.

At a minimum the user will have the following roles in acceptance testing:
• Defining acceptance criteria in a testable format
• Providing the use cases that will be used in acceptance testing
• Training user personnel in using the new software system
• Providing the necessary resources, primarily user staff personnel, for acceptance

testing
• Comparing the actual acceptance testing results with the desired acceptance testing

results (NOTE: This may be performed using testing software)
• Making decisions as to whether additional work is needed prior to placing the software

in operation, whether the software can be placed in operation with additional work to
be done, or whether the software is fully acceptable and can be placed into production
as is

If the software does not fully meet the user needs, but will be placed into operation, the user
must develop a strategy to anticipate problems and pre-define the actions to be taken should
those problems occur.

7.2.2 Software Tester’s Role
Software testers can have one of three roles in acceptance testing. First is no involvement at
all. In that instance the user accepts full responsibility for developing and executing the
acceptance test plan. The second role is that of an advisor. The user will develop and execute
the test plan, but rely on software testers to compensate for a lack of competency on the part of
the users, or to provide a quality control role. The third role is an active participant in software
testing. This role can include any or the entire acceptance testing activities.

The role of the software tester cannot include defining the acceptance criteria, or making the
decision as to whether or not the software can be placed into operation. If software testers are
7-6 October 25, 2006

User Acceptance Testing
active participants in acceptance testing, then they may conduct any part of acceptance testing
up to the point where the results of acceptance testing are documented.

A role that software testers should accept is developing the acceptance test process. This
means that they will develop a process for defining acceptance criteria, develop a process for
building an acceptance test plan, develop a process to execute the acceptance test plan, and
develop a process for recording and presenting the results of acceptance testing.

7.3 Acceptance Test Planning
The acceptance test plan basically follows the practices used for developing an overall system
test plan. Specifically this section will address:

• Acceptance Criteria
• Acceptance Test Plan
• Use Case Test Data

7.3.1 Acceptance Criteria
The user must assign the criteria the software must meet to be deemed acceptable. Ideally, this
is included in the software requirements specifications. In preparation for developing the
acceptance criteria, the user should:

• Acquire full knowledge of the application for which the system is intended
• Become fully acquainted with the application as it is currently implemented by the

user’s organization
• Understand the risks and benefits of the development methodology that is to be

used in correcting the software system
• Fully understand the consequences of adding new functions to enhance the system

Acceptance requirements that a system must meet can be divided into these four categories:
• Functionality Requirements

These requirements relate to the business rules that the system must execute.

• Performance Requirements
These requirements relate to operational aspects, such as time or resource constraints.

• Interface Quality Requirements
These requirements relate to connections from one component to another component
of processing (e.g., human-machine, machine-module).

• Overall Software Quality Requirements
October 25, 2006 7-7

Guide to the 2006 CSTE CBOK
These requirements specify limits for factors or attributes such as reliability,
testability, correctness, and usability.

The criterion that a requirements document may have no more than five statements with
missing information is an example of quantifying the quality factor of completeness.
Assessing the criticality of a system is important in determining quantitative acceptance
criteria. The user should determine the degree of criticality of the requirements by the above
acceptance requirements categories.

By definition, all safety criteria are critical; and by law, certain security requirements are
critical. Some typical factors affecting criticality include:

• Importance of the system to organization or industry
• Consequence of failure
• Complexity of the project
• Technology risk
• Complexity of the user environment

Products or pieces of products with critical requirements do not qualify for acceptance if they
do not satisfy their acceptance criteria. A product with failed noncritical requirements may
qualify for acceptance, depending upon quantitative acceptance criteria for quality factors.
Clearly, if a product fails a substantial number of noncritical requirements, the quality of the
product is questionable.

The user has the responsibility of ensuring that acceptance criteria contain pass or fail criteria.
The acceptance tester should approach testing assuming that the least acceptable corrections
have been made; while the developer believes the corrected system is fully acceptable.
Similarly, a contract with what could be interpreted as a range of acceptable values could
result in a corrected system that might never satisfy the user’s interpretation of the acceptance
criteria.

For specific software systems, users must examine their projects’ characteristics and
criticality in order to develop expanded lists of acceptance criteria for those software systems.
Some of the criteria may change according to the phase of correction for which criteria are
being defined. For example, for requirements, the “testability” quality may mean that test
cases can be developed automatically.

The user must also establish acceptance criteria for individual elements of a product. These
criteria should be the acceptable numeric values or ranges of values. The buyer should
compare the established acceptable values against the number of problems presented at
acceptance time. For example, if the number of inconsistent requirements exceeds the
acceptance criteria, then the requirements document should be rejected. At that time, the
established procedures for iteration and change control go into effect.

Table 7-1, “Example of Required Information to Document Acceptance Criteria” explains
what users need to provide to document the acceptance criteria. It should be prepared for each
hardware or software project within the overall project, where the acceptance criteria
requirements should be listed and uniquely numbered for control purposes.
7-8 October 25, 2006

User Acceptance Testing
Table 7-1: Example of Required Information to Document Acceptance Criteria

After defining the acceptance criteria, determine whether meeting the criteria is critical to the
success of the system. As shown in Table 7-2, this is indicated by placing a check mark in the
Yes or No columns under Critical. Note that if an acceptance criterion were critical, then the
system would not be accepted if that requirement has not been met.

Table 7-2: Acceptance Criteria Example

Table 7-2 is an example of two acceptance criteria for a payroll project. It shows that both
acceptance criteria are critical for the project. The Test Result column is blank, indicating the
test has not yet been performed. The Comments column reports that the payroll system will
not run unless these two critical requirements are met.

Criteria Action
Hardware/Software Project The name of the project being acceptance-tested. This is the name the

user or customer calls the project.

Number A sequential number identifying acceptance criteria.

Acceptance Requirement A user requirement that will be used to determine whether the corrected
hardware/software is acceptable.

Critical / Non -Critical Indicate whether the acceptance requirement is critical, meaning that it
must be met, or non-critical, meaning that it is desirable but not essential.

Test Result Indicates after acceptance testing whether the requirement is acceptable
or not acceptable, meaning that the project is rejected because it does not
meet the requirement.

Comments Clarify the criticality of the requirement; or indicate the meaning of the test
result rejection. For example: The software cannot be run; or management
will make a judgment after acceptance testing as to whether the project
can be run.

Number Acceptance
Requirement

Critical Test Result
Comments

Yes No Accept Reject
1 The system must

execute to end of job. √
Payroll will not run in a
production status until
this requirement has
been met.

2 The results of payroll
must be correct. √

Payroll will not run in a
production status until
this requirement has
been met.
October 25, 2006 7-9

Guide to the 2006 CSTE CBOK
7.3.2 Acceptance Test Plan
The first step to achieve software acceptance is the simultaneous development of a Software
Acceptance Plan, general project plans, and software requirements to ensure that user needs
are represented correctly and completely. This simultaneous development will provide an
overview of the acceptance activities, to ensure that resources for them are included in the
project plans. Note that the initial plan may not be complete and may contain estimates that
will need to be changed, as more complete project information becomes available.

Acceptance managers define the objectives of the acceptance activities and a plan for meeting
them. Knowing how the software system is intended to be used in the operational environment
and the risks associated with the project’s life cycle provide a basis for determining these
acceptance objectives. Because users may provide most of this information, initial planning
sessions may be interactive between acceptance managers and users to assure that all parties
fully understand what the acceptance criteria should be.

After the initial Software Acceptance Plan has been prepared, reviewed, and approved, the
acceptance manager is responsible for implementing the plan and assuring that the plan’s
objectives are met. It may have to be revised before this assurance is warranted.

Table 7-2: lists examples of information that should be included in a Software Acceptance
Plan. The first section of the plan is an overview of the software development or maintenance
project, followed by major sections for management responsibilities and administrative
matters. The plan’s overview section describes the technical program for software acceptance.
Details for each software acceptance activity or review appear in separate sections as
supplements to the overview.

Figure 7-2 Information Included in an Acceptance Test Plan

Project
Description

Type of system; life cycle methodology; user community of
delivered system; major tasks system must satisfy; major external
interfaces of the system; expected normal usage; potential misuse;
risks; constraints; standards and practices.

User
Responsibilities

Organization and responsibilities for acceptance activities;
resource and schedule requirements; facility requirements;
requirements for automated support; special data, and training;
standards, practices, and conventions; updates and reviews of
acceptance plans and related products.

Administrative
Procedures

Anomaly reports; change control; record-keeping; communication
between developer and manager organizations.

Acceptance
Description

Objectives for entire project; summary of acceptance criteria; major
acceptance activities and reviews; information requirements; types
of acceptance decisions; responsibility for acceptance decisions.
7-10 October 25, 2006

User Acceptance Testing
The plan must include the techniques and tools that will be utilized in acceptance testing.
Normally, testers will use the organization’s current testing tools, which should be oriented
toward specific testing techniques.

Two categories of testing techniques can be used in acceptance testing: structural and
functional. Remember that acceptance testing must be viewed in its broadest context; not the
minimal testing that some users perform after the information system professionals have
concluded their testing.

The functional testing techniques help ensure that the requirements/specifications are properly
satisfied by the software system. Functional testing is not concerned with how processing
occurs, but with the results of processes.

Structural testing ensures sufficient checking of the implementation of the function by finding
test data that will force sufficient coverage of the structured presence in the implemented
software. It evaluates all aspects of this structure to verify that the structure is sound.

7.3.3 Use Case Test Data
A use case is a test case which represents how the software will be used in operation. A use
case is built on a business transaction and can be test data or a test script. Unit testing will
attempt to determine whether there are any variances between unit specifications and the unit
as it is executed. Integration testing will attempt to determine if there is a variance between
specified integration and actual integration. System testing will validate that the system, when
assembled, will perform as specified. The test cases and scripts used for these three levels of
testing are focused more on the components of the software than business transactions.

Many software testers do not have an adequate knowledge of the business to create business
or use cases for test purposes. For example, an online data entry clerk may need to go to more
than one source to gather the information needed to enter a business transaction. For example,
they may need to look up the credit history of a customer prior to approving that order. While
the software tester would be primarily concerned with the single system being developed, the
user is concerned with the totality of events that lead to a business transaction being entered
into the software.

When use cases are developed by clerical people intimately familiar with the system, they
tend to know the type of problems that are typical in the business system. Thus, they can
simulate those unusual events through use cases that may not be developed during normal
system testing.

An individual use case consists of:
• Preconditions that set the stage for the series of events that should occur for the use

case
• Post-conditions that state the expected outcomes of the above process
• Sequential narrative of the execution of the use case
October 25, 2006 7-11

Guide to the 2006 CSTE CBOK
See “Skill Category 5, Executing the Test Plan” for information on the process for preparing
use cases.

7.4 Acceptance Test Execution
The execution of the test plan should be performed in accordance with the test plan. This
section will focus on:

• Execute the Acceptance Test Plan
• Acceptance Decision

7.4.1 Execute the Acceptance Test Plan
The objective of this step is to determine whether the acceptance criteria have been met in a
delivered product. This can be accomplished through reviews, which involve looking at
interim products and partially developed deliverables at various points throughout the
developmental process. It can also involve testing the executable software system. The
determination of which (or both) of these techniques to use will depend on the criticality of
the software, the size of the software program, the resources involved, and the time period
over which the software is being developed.

Software acceptance criteria should be specified in the formal project plan. The plan identifies
products to be tested, the specific pass/fail criteria, the reviews, and the types of testing that
will occur throughout the entire life cycle.

Acceptance decisions need a framework in which to operate. Items such as contracts,
acceptance criteria, and formal mechanisms are part of this framework. Software acceptance
must state or refer to specific criteria that products must meet in order to be accepted. A
principal means of reaching acceptance in the development of critical software systems is to
hold a periodic review of interim software documentation and other software products.

A disciplined acceptance program for software of any type may include reviews as a formal
mechanism. When the acceptance decision requires change, another review becomes
necessary to ensure that the required changes have been properly configured and implemented
and that any affected segments are acceptable. For large or complicated projects, several
reviews may be necessary during the development of a single product.

Some software acceptance activities may include testing pieces of the software; formal
software acceptance testing occurs at the point in the development life cycle when the user
accepts or rejects the software. This means a contractual requirement between the user and the
project team has been met. Rejection normally means additional work must be done on the
system in order to become acceptable to the user. Final software acceptance testing is the last
opportunity for the user to examine the software for functional, interface, performance, and
7-12 October 25, 2006

User Acceptance Testing
quality features prior to the final acceptance review. The system at this time must include the
delivered software, all user documentation, and final versions of other software deliverables.

7.4.2 Acceptance Decision
Final acceptance of software based on software acceptance testing usually means that the
software project has been completed, with the exception of any caveats or contingencies.
Final acceptance for the software occurs, and the developer has no further development
obligations (except, of course, for maintenance, which is a separate issue).

Typical acceptance decisions include:
• Required changes are accepted before progressing to the next activity
• Some changes must be made and accepted before further development of that section

of the product; other changes may be made and accepted at the next major review
• Progress may continue and changes may be accepted at the next review
• No changes are required and progress may continue

The goal is to achieve and accept “perfect” software, but usually some criteria will not be
completely satisfied for each product, in which case the user may choose to accept less-than-
perfect software. The user must have established in advance, individual and collections of
requirements.

Software acceptance is a contractual process during which users and developers identify
criteria for the acceptance of software systems. Developers must agree to the users’
acceptance criteria. The users must define the acceptance criteria based on the system
requirements for functionality, performance, interface quality, and overall software quality, as
well as project characteristics such as the correction methodology (or variant). The buyer
bases acceptance decisions on analyses and reviews of the products and on results from
software product assurance activities.

The users must plan and manage the software acceptance program carefully to assure the
adequate resources are available throughout the acceptance activities. Early in the process,
they must include detailed plans for software acceptance testing. Such early planning enables
all those involved in the software project to focus on the requirements and how well the
evolving system is satisfying those requirements. Software acceptance requires adequate
resources and commitment from the beginning. Its completion will result in software that
delivers to its users the services they require.
October 25, 2006 7-13

Guide to the 2006 CSTE CBOK
This page intentionally left blank.
7-14 October 25, 2006

Testing Software
Developed by Contractors

here are many challenges when testing software developed by a contractor, or an
external organization. It is management’s responsibility that acquired software meets
the needs of their organization. Contractors will test the software they build, but that
does not relieve management from their quality responsibilities. Management must

put into place those test processes within their organization that provide the assurance that
acquired software will perform as expected. This skill category discusses two test processes
that are representative of best practices for testing acquired software are for commercial off-
the shelf (COTS) software and software developed under contract by an outside organization.
Executing those defined test processes should be performed by software testers.

Please note the following definitions:
• The term contractors will be used to mean contractors, outsourcers, offshore software

developers, and developers of COTS software.
• The term contracting organization will be used to denote the customer, group, or

organization that is purchasing the COTS or contracted software.

Challenges in Testing Acquired Software 8-2
COTS Software Test Process 8-5
Contracted Software Test Process 8-11

Skill
Category

8

T

October 25, 2006 8-1

Guide to the 2006 CSTE CBOK
8.1 Challenges in Testing Acquired Software
There is a trend in the software industry for organizations to move from in-house developed
software to COTS software and software developed by contractors. These contractors are not
part of the contracting organization and are referred to as outsourcers. Contractors working in
another country are referred to as offshore software developers.

There are some common differences between software developed in-house and any software
developed by a contractor, and then differences specific to COTS. Quality professionals
should be familiar with these differences as they impact their quality responsibilities.

Two differences between software developed in-house and software developed by contractors
are:

• Relinquishment of control
The software is developed by individuals who are not employees of the organization,
and thus it is difficult to oversee the development process. The contracting
organization cannot direct the employees of the other organization, nor have control
over the many day-to-day decisions that are made in developing software.

• Loss of control over reallocation of resources
If work needs to be done to correct problems and/or speed up development, the
contracting organization cannot take workers off one project and assign them to
another project.

8.1.1 Purchased COTS software
COTS software is normally developed prior to an organization selecting that software for its
use. For smaller, less expensive software packages the software is normally “shrink wrapped”
and is purchased as is. As the COTS software becomes larger and more expensive, the
contracting organization may be able to specify modifications to the software.

Differences or challenges faced with testing COTS software include:
• Task or items missing
• Software fails to perform
• Extra features
• Does not meet business needs
• Does not meet operational needs
• Does not meet people needs
8-2 October 25, 2006

Testing Software Developed by Contractors
8.1.1.1 Evaluation versus Assessment

Many organizations select COTS software on evaluation which is a static analysis of the
documentation and benefits of the software, versus performing an assessment during which
the software is tested in a dynamic mode before use.

8.1.2 Contracted Software
The differences in testing software developed in-house and software developed by a
contractor include the following:

• Quality factors may not be specified
There are many factors such as reliability and ease of use which are frequently not
included as part of the contractual criteria. Thus, when the software is delivered it may
not be as easy to use or as reliable as desired by the contracting organization.

• Non-testable requirements and criteria
If the requirements or contractual criteria are not in measurable and testable terms then
the delivered result may not meet the intent of the contracting organization.

• contracting organization’s standards may not be met
Unless the contract specifies the operational standards and documentation standards
the delivered product may be more complex to use than desired by the contracting
organization.

• Missing requirements
Unless detailed analysis and contractual specifications work is complete the contractor
may realize during the development of the software that requirements are missing and
thus the cost of the contract could escalate significantly.

• Overlooked changes in standards or technology
If changes in the standards that the contracting organization must meet, or new
desirable technology is incorporated into the contract after work has begun, there may
be significant cost to modify the software to incorporate the new standards or
technology.

• Training and deployment may be difficult
If software is developed by a contractor there may be inadequate knowledge in the
contracting organization to provide the appropriate training for staff and to ensure that
deployment is effective and efficient.

8.1.2.1 Additional Differences with Contractors in another Country (Offshore)

Experience has shown that over 50% of the software developed by offshore organizations fails
to meet the expectations of the contracting organization. Since many of the decisions to have
software developed offshore are economic decisions, the differences associated with having
October 25, 2006 8-3

Guide to the 2006 CSTE CBOK
the software developed offshore negate the economic advantages in many cases. These
offshore testing differences are:

• Cultural differences
There may be a significant difference in the culture and values between the contracting
organization and the offshore organization.

• Communication barriers
The language of the offshore organization may be different or difficult to comprehend
which causes difficulty in communicating the needs and desires of the contracting
organization.

• Loss of employee morale and support
Employees who would like to have developed the software may resent the software
being developed offshore and thus make it difficult for the offshore developed
software to be successful.

• Root cause of the contractor IT organization not addressed
Frequently, an offshore organization is chosen because there are problems in the
contracting organization that executives do not want to address. For example, the
problems might include a lack of training for the employees in the contracting
organization or other perhaps better options for software development were not
explored.

The above discussions are not meant to be an exhaustive list of the differences between in-
house developed software and software developed by a contractor. The objective is so the
software tester recognizes some potential root causes of software quality. If those differences
are not adequately addressed in the contract or through additional test activities, the
probability of the contracted or offshore-developed software failing to meet the needs of the
acquiring organization increases.

8.1.2.2 Software Tester’s Responsibility for Software Developed by a Contractor

While the software may be developed by a contractor, the responsibility for the quality of that
software cannot be contracted. The contracting organization is still responsible for the quality
of the organization. There must be a process to monitor the development and validate the
correct functioning of the software when it is developed by a contractor.

The software tester is the individual who should accept the responsibility for software testing
developed by a contractor. This may mean that the software tester needs to periodically visit
the contractor during the entire developmental period of the software to ensure the quality.
Many of the same practices used to test in-house developed software are applicable to
software developed by a contractor. For example, conducting reviews at specific checkpoints
should occur; Acceptance testing should be conducted on all software regardless of how
developed.
8-4 October 25, 2006

Testing Software Developed by Contractors
The software tester’s specific responsibility for software developed by a contractor could
include assuring that the process for selecting COTS software and contracting with a
contractor are adequate.

The software tester needs to look at how the contractor tests in relation to the SEI CMMI®
Capability Maturity Model. If testing is done at a Level 1 maturity there will be great
variability and thus many disappointments in the delivered product and services. On the other
hand, as those test processes move to a Level 5 maturity, the probability of getting exactly
what is wanted from COTS software and contracted software is very high.

8.2 COTS Software Test Process
COTS software will have been developed and tested by the contractor, and be ready to put
into operation when the contracting organization begins its software testing activities. The
amount of testing to be performed on COTS software will be determined by the risk
associated with placing that software into operation. If the risk is minimal, a decision may be
made not to test. If the risk is high, extensive testing may be required.

The following seven step test process is designed to test high-risk COTS software. As the risk
decreases so should the test effort. Reducing the test effort can be accomplished by
eliminating all or parts of these seven steps that are discussed further:

• Assure completeness of needs specification
• Define critical success factor
• Determine compatibility with your computer environment
• Assure the software can be integrated into your business system work flow
• Demonstrate the software in operation
• Evaluate the people fit
• Acceptance test the COTS software

8.2.1 Assure Completeness of Needs Specification
This step determines whether you have adequately defined your needs. Your needs should be
defined in terms of the following two categories of outputs:

1. Output products and reports
Output products and reports are specific documents that you want produced by the
computer system. In many instances, such as printing payroll checks for example, the style
and format of these output products is important. This does not mean that the specific
location of the check has to be defined but, rather, the categories of information to be
included on the check. Computer-produced reports may also be important for tax
information (e.g., employee withholding forms sent to governmental units), financial
October 25, 2006 8-5

Guide to the 2006 CSTE CBOK
statements where specific statements are wanted (e.g., balance sheets or statements of
income and expense), or contracting organization invoice and billing forms which you
might want preprinted to include your logo and conditions of payment.

2. Management decision information
This category tries to define the information needed for decision-making purposes. In the
computer product/report category you were looking for a document; in this case you are
looking for information. How that information is provided is unimportant. Thus, the
structure of the document, what the documents are, or their size, frequency, or volume are
not significant. All you need is information.

8.2.1.1 Define Critical Success Factor

This step determines whether the software package will be successful in meeting your
business needs. Critical Success Factors (CSFs) are those criteria or factors that must be
present in the acquired software for it to be successful. A question that is often asked is, “Are
the needs are the same as the critical success factors?”. They are, but needs are not defined in
a manner that makes them testable, and they may be incomplete.

Often the needs do not take into account some of the intangible criteria that make the
difference between success and failure. In other words, the needs define what we are looking
for, and the critical success factors tell us how we will evaluate that product after we get it.
They are closely related and complementary, but different in scope and purpose. The
following list helps to illustrate the differences by using the needs and requirements for the
automobile, and then the CSFs on which the automobile will be evaluated:

• Automobile requirements and needs: seats six people, has four doors, has a five-year
guarantee on motor, gets 20 miles per gallon or greater, and costs under $12,000.

• Critical success factors: operates at 20.5 cents or less per mile, experiences no more
than one failure per year, maintains its appearance without showing signs of wear for
two years.

Use some of these more common CSFs when testing COTS software:
• Ease of use – the software is understandable and usable by the average person.
• Expandability – the vendor plans to add additional features in the future.
• Maintainability – the vendor will provide support/assistance to help utilize the

package in the event of problems.
• Cost-effectiveness – the software package makes money for your business by reducing

costs, and so on.
• Transferability – if you change your computer equipment the vendor indicates that

they will support new models or hardware.
• Reliability – in computer language, the system is friendly, meaning that it will help

you get your transactions entered into the system so that you can produce your results
readily.
8-6 October 25, 2006

Testing Software Developed by Contractors
• Security – the system has adequate safeguards to protect the data against damage (for
example, power failures, operator errors, or other situations that could cause you to
lose your data).

8.2.1.2 Determine Compatibility with Your Computer Environment

This is not a complex step. It involves a simple matching between your processing capabilities
and limitations, and what the vendor of the software says is necessary to run the software
package. The most difficult part of this evaluation is ensuring the multiple software packages
can properly interface.

This step is best performed by preparing a checklist defining your compatibility needs.
Software vendors are generally good about identifying the needed hardware and operating
system compatibility.

In addition to the hardware on which the software runs, and the operating system with which it
must interact to run, there are two other important compatibilities:

• Compatibility with other software packages (software vendors are generally not good
in identifying compatibility with other software packages)

• Compatibility with available data

If you have no other software packages that you want to have interact with this one, or no data
on computer-readable media, you need not worry about these aspects of compatibility.
However, as you do more with your computer these aspects of compatibility will become
more important, and the hardware and operating compatibility will become routine and easy
to verify.

Systems compatibility is defined in data processing jargon as interoperability. This term refers
to the amount of effort required to intercouple or interconnect computer systems. In other
words, how do you tie two or more programs together so that they will work and pass data
between them? For example, if you have a payroll system it may be desirable to pass that
payroll summary information to your general-ledger system. The ability to pass information
from system to system is an extremely important part of data processing. Much of the success
of the Lotus Corporation was based in its ability to intercouple five office software functions
so that information could be readily passed from one to another.

To help assure compatibility, prepare a list with the information described below. The list is
divided into hardware, operating systems, programs, and data.

8.2.1.2.1 Hardware Compatibility

List the following characteristics for your computer hardware:
• Hardware vendor(s)
• Amount of main storage
• Disk storage unit identifier
• Disk storage unit capacity
October 25, 2006 8-7

Guide to the 2006 CSTE CBOK
• Type of printer(s)
• Number of print columns
• Type of terminal(s)
• Maximum terminal display size
• Keyboard restrictions

8.2.1.2.2 Operating Systems Compatibility

For the operating system used by your computer hardware, list:
• Name of operating system (e.g., UNIX or Windows)
• Version of operating system in use

8.2.1.2.3 Software Compatibility

List all of the programs with which you expect or would like this specific application to
interact. Be sure that you have the name of the vendor and, if applicable, the version of the
program. Note that as discussed earlier, this linkage may only be verifiable by actually
attempting to interact two or more systems using common data.

• Data Compatibility
In many cases, software compatibility will answer the questions on data compatibility.
However, if you created special files you may need descriptions of the individual data
elements and files. Again, as with software compatibility, you may have to actually
verify through trial whether the data can be read and used by other software.

8.2.1.3 Assure the Software can be Integrated into Your Business System Work
Flow

Each computer system makes certain assumptions. Unfortunately, these assumptions are
rarely stated in the vendor literature. The danger is that you may be required to do some
manual processing functions that you may not want to do in order to utilize the software.

The objective of this step is to determine whether you can implement the COTS into your
existing work environment without disrupting your entire operation. Remember that:

• Your current system is based on a certain set of assumptions
• Your current system uses existing forms, existing data, and existing procedures
• The COTS system is based on a set of assumptions
• The COTS system uses a predetermined set of forms and procedures
• Your current system and the COTS system may be incompatible
• If they are incompatible, the COTS system is not going to change—you will have to
• You may not want to change – then what?

The objective of this process is to illustrate the type and frequency of work flow changes that
will be occurring. You can see what will happen when the COTS system is brought into your
8-8 October 25, 2006

Testing Software Developed by Contractors
organization. For example, there might be tasks performed now that weren’t performed
before, or tasks that were previously performed but are no longer necessary, or tasks which
had been performed by people which will now be performed by the COTS system. Having the
COTS system perform those tasks might mean that the oversight that people had been giving
will not be available any more.

At the end of this test, you will need to decide whether you are pleased with the revised work
flow. If you feel the changes can be effectively integrated into your work flow, the potential
COTS system has passed the test. If you feel the changes in work flow will be disruptive, you
may want to fail the COTS in this test and either look for other software or continue your
current processing.

If the testing is to continue, you should prepare a clean data flow diagram indicating what
actions need to be taken to integrate the COTS system into your organization’s work flow.
This new data flow diagram becomes your installation plan of action. It will tell you what
changes need to be made, who is involved in them, what training might be necessary, and
areas of potential work flow problems.

8.2.1.4 Demonstrate the Software in Operation

This step analyzes the many facets of software. Software developers are always excited when
their program goes to what they call “end of job.” This means that it executes and concludes
without abnormally terminating (i.e., stops after doing all the desired tasks). While this is one
aspect of the demonstration, observing the functioning of software is like taking an
automobile for a test drive. The more rigorous the test, the greater the assurance you are
getting what you expect.

Demonstrations can be performed in either of the following ways:
• Computer store–controlled demonstration
In this mode, the demonstration is conducted at the computer store, by computer store
personnel, using their data. The objective is to show you various aspects of the computer
software, but not to let you get too involved in the process. This is done primarily to limit
the time involved in the demonstration.
• contracting organization site demonstration
In this mode, the demonstration takes place at your site, under your control, by your
personnel, using your information. It is by far the most desirable of all demonstrations, but
many software COTS computer stores may not permit it unless you purchase the COTS.

These aspects of computer software should be observed during the demonstration:
• Understandability
As you watch and listen to the demonstration, you need to evaluate the ease with which
the operating process can be learned. If the commands and processes appear more like
magic than logical steps, you should be concerned about implementing the concept in your
organization. If you have trouble figuring out how to do it, think about how difficult it may
October 25, 2006 8-9

Guide to the 2006 CSTE CBOK
be for some of your clerical personnel who understand neither the business application nor
the computer.
• Clarity of communication
Much of the computer process is communication between man and machine. That is, you
must learn the language of the computer software programs in order to communicate with
the computer. Communication occurs through a series of questions and responses. If you
do not understand the communications, you will have difficulty using the routine.
• Ease of use of instruction manual
While monitoring the use of the equipment, the tasks being demonstrated should be cross-
referenced to the instruction manual. Can you identify the steps performed during the
demonstration with the same steps included in the manual? In other words, does the
operator have to know more than is included in the manual, or are the steps to use the
process laid out so clearly in the manual that they appear easy to follow?
• Functionality of the software
Ask to observe the more common functions included in the software: Are these functions
described in the manual? Are these the functions that the salesperson described to you?
Are they the functions that you expected? Concentrate extensively on the applicability of
those functions to your business problem.
• Knowledge to execute
An earlier test has already determined the extent of the salesperson’s knowledge. During
the demonstration, you should evaluate whether a lesser-skilled person could as easily
operate the system with some minimal training. Probe the demonstrator about how
frequently they run the demonstration and how knowledgeable they are about the
software.
• Effectiveness of help routines
Help routines are designed to get you out of trouble when you get into it. For example, if
you are not sure how something works you can type the word “help” or an equivalent and
the screen should provide you additional information. Even without typing “help” it
should be easy to work through the routines from the information displayed on the screen.
Examine the instructions and evaluate whether you believe you could have operated the
system based on the normal instructions. Then ask the operator periodically to call the
help routines to determine their clarity.
• Evaluate program compatibility
If you have programs you need to interact with, attempt to have that interaction
demonstrated. If you purchased other software from the same store where you are now
getting the demonstration, they should be able to show you how data is passed between the
programs.
• Data compatibility
Take one of your data files with you. Ask the demonstrator to use your file as part of the
software demonstration. This will determine the ease with which existing business data
can be used with the new software.
• Smell test
8-10 October 25, 2006

Testing Software Developed by Contractors
While watching the demonstration, let part of your mind be a casual overseer of the entire
process. Attempt to get a feel for what is happening and how that might impact your
business. You want to end up being able to assess whether you feel good about the
software. If you have concerns, attempt to articulate them to the demonstrator as well as
possible to determine how the demonstrator responds and addresses those concerns.

To determine whether an individual has the appropriate skill level to use the software it is
recommended to involve one or more typical users of the software in software
demonstrations.

8.2.1.5 Evaluate the People Fit

The objective of this step is to determine whether your employees can use the software. This
step evaluates whether employees possess the skills necessary to effectively use computers in
their day-to-day work. The evaluation can be of current skills, or the program that will be put
into place to teach individuals the necessary skills. Note that this includes the owner or
president of the organization as well as the lowest-level employee in the organization.

The test is performed by selecting a representative sample of the people who will use the
software. The sample need not be large. This group is given training that may only involve
handing someone the manuals and software. The users will then attempt to use the software
for the purpose for which it was intended. The results of this test will show:

• The software can be used as is
• Additional training and support is necessary
• The software is not usable with the skill sets of the proposed users

8.2.1.6 Acceptance Test the COTS Software

There is little difference between acceptance testing in-house developed software and
acceptance testing acquired software. Acceptance testing is a user responsibility. Refer to Skill
Category 7 for information on the acceptance testing process.

8.3 Contracted Software Test Process
If developing software under contract allowed the acquiring organization’s testers to fully test
the software, the testers would follow the same process as used for in-house developed
software. However, the acquiring organization’s testers are limited in the amount and timing
of test by contractual provisions. For example, the contract may not allow reviews during
development by the acquiring organizational personnel, and the developer may not release
source code for test purposes.
October 25, 2006 8-11

Guide to the 2006 CSTE CBOK
Good test practices for software development involve the acquiring organization’s testers in
all phases of development and operation. Therefore, the following software tester
responsibilities are identified for the best practices test process:

• Assure the process for contracting software is adequate
• Assure that requirements and contract criteria are testable
• Review the adequacy of the contractors test plan
• Perform acceptance testing on the software
• Issue a report on the adequacy of the software to meet the needs of the organization
• Ensure knowledge transfer occurs, and intellectual property rights are protected
• Incorporate copyrighted material into the contracting organization’s manuals
• Assure the ongoing operation and maintenance of the contracted software
• Assure the effectiveness of contractual relations

8.3.1 Assure the Process for Contracting Software is Adequate
Without a process for contracting for software those processes would be subject to great
variability. One contract may work well, while other outside developed software contracts
may result in failure.

Testers are not lawyers, but they can test to determine whether or not the contracting process
includes addressing good contracting practices. The following is a guide for testers on what
should be addressed during the contracting process.

Contracts are legal documents. To fully understand the impact of provisions being included in,
or excluded from, the contract may require legal training. However, the following information
should be included in all contracts:

• What is done.
The contract should specify the deliverables to be obtained as a result of execution of
the contract. Deliverables should be specified in sufficient detail so that it can be
determined whether or not the desired product has been received.

• Who does it.
The obligations of both contractual parties should be spelled out in detail in the
contract.

• When it is done.
The dates on which the contractual obligations need to be filled should be specified in
the contract.

• How it is done.
The contract should specify the methods by which the deliverables are to be prepared
if that is important in achieving the contractual needs. For example, the contracting
organization may not want certain types of source instructions used in developing an
8-12 October 25, 2006

Testing Software Developed by Contractors
application system because they plan to perform the maintenance with the in-house
personnel.

• Where it is done.
The location where the deliverables are to be prepared, delivered, operated, and
maintained should be specified as part of the contract.

• Penalties for nonperformance.
If the contractual agreements are not followed, the penalties should be specified in the
contract. For example, if the contractor is late in delivering the work products, the
contract may specify a penalty of x dollars per day.

The concerns that need to be addressed by a contracting process include the following factors:
• Warranty

The guarantees provided by the contractor that the deliverables will meet the
specifications. This segment of the contract should state specifically what the
contractor warrants, and what the contractor will do if the deliverables fail to meet the
warranty guarantees. For example, if the contractor guarantees the application will
provide a one-second response, and the implemented application fails to meet those
specifications, the contract defines recourse against the contractor.

• Deliverables
The application system, documentation, and other products to be provided by the
contractor should be described in great detail. For example, a phrase like “provide for
adequate controls” is a meaningless phrase in that the deliverables are not measurable.
The contractor’s definition of “adequate controls” may be entirely different than that
of the contracting organization, but loose wording such as this, except in cases of gross
negligence, eliminates recourse. The product specifications should include as much
detail as practical, and as much as necessary to ensure that the organization gets the
product they want.

• Delivery date
The date on which the product is to be delivered should be specified in the contract.
This may be multiple dates, in that a product may be delivered for testing and then
another date specified for when those corrections will be made, etc.

• Commencement date
The date at which the contract becomes effective should be specified in the contract.
This is particularly important if delivery dates are keyed to the commencement date,
such as; a deliverable will be available sixty days after the contract is signed.

• Installation
The contractor’s and contracting organization’s commitment for installing the
application should be specified. If the contractor is to have personnel present to help
during the installation, that should be specified. If the contractor is to provide machine
time on certain days, that, too, should be specified in the contract.
October 25, 2006 8-13

Guide to the 2006 CSTE CBOK
• Updates
The type of continual maintenance provided by the contractor for the application
system should be specified. This is particularly important if the contracting
organization operates in an environment where operating systems are regularly
changed. The contract might specify that the contractor will provide necessary updates
so that the system will operate on new versions of the operating system being used by
the contracting organization.

• Contractor support
The types, quantity, and location of contractor support should be specified. In addition,
some contracting organizations specify the caliber of people that should provide that
support. For example, systems analysts should have a minimum of five years’
programming and systems experience, and at least one year experience with the
application system. It is also important to specify where the support will occur. For
example, is contractor support to be provided at the contracting organization’s place of
business, or must the contracting organization’s personnel go to the contractor’s place
of business to get that support.

• Costs
The amounts to be paid to the contractor by the contracting organization should be
specified, including payment terms. If there are penalty clauses for late payments, that
should be specified, as well as the rights of the contracting organization to withhold
payments if the contractor fails to provide individual deliverables or other support.
Ideally, the value for each deliverable should be specified so that the amounts withheld
are determined by contract for failure to perform. The more precise the description, the
fewer the problems.

• Foreign attachments
If the application system is interconnected with applications and/or other software
from different contractors, that interrelationship should be specified. It is important to
state in the contract who has the primary responsibility for tracing and correcting
errors. In a multi-contractor environment, when no contractor accepts primary
responsibility for error tracking, the contracting organization may need to expend large
amounts of funds to trace errors because of the unwillingness of contractors to accept
this responsibility.

• Penalties
Penalties assessed in the event of failure on the part of either the contractor or the
contracting organization to meet contractual obligations should be covered in the
contract. Where dollar penalties are to be assessed, the amount should be specified in
the contract. For example, if the contractor is late in delivering the product, a per-day
dollar penalty can be assessed, as well as a dollar penalty for failure of the contracting
organization to make computer time available, etc.

• Life of contract
8-14 October 25, 2006

Testing Software Developed by Contractors
The duration of the contract should be specified, including any rights to continue or
discontinue the contract at the end of its life. For example, the contracting organization
may have the right to extend the contract another year for X dollars.

• Modification capability
The contract should specify what type of modifications (to the application system) the
contractor is willing to make. This should include how promptly modifications will be
made, and the costs and other terms associated with making those modifications. The
contract should also state what type of modifications can be made by the contracting
organization, and which ones must be made by the contractor.

• Service discontinuance
If the contractor decides to discontinue service on the application system, the
contracting organization’s rights in those instances should be specified. For example,
if any of the training material or application system is copyrighted then those
copyrights should be passed to the contracting organization in the event that service on
the purchased products is discontinued.

• Manual/training discontinuance
If the contractor decides to discontinue training manuals, service manuals, or training
courses, the rights to that material should revert to the contracting organization. If this
is not included in the contract, the contracting organization may be prevented from
using material and training courses copyrighted by the contractor, without making
additional payments.

• Acceptance test criteria
The contract should specify the criteria which determine that the delivered product is
acceptable. The acceptance test criteria should not only cover the delivered application
system, but any documentation and training material to be included with the
application system. The contract should also state where and by whom the acceptance
test is to be performed.

• Purchase versus lease
The options of the contracting organization to either purchase or lease the application
system should be outlined in the contract. If it is a lease contract, the rights of the
contracting organization to purchase that application, if available, should be specified
in the contract.

• Fairness of contract
Both the contracting organization and the contractor should want a contract that is fair
to both parties. If the contract is extremely harsh, one or the other parties may find it
more desirable to terminate than to continue the contract. For example, if the penalty
clauses to the contractor are extremely harsh, and the contractor finds the effort to
prepare the deliverables is greater than anticipated, it may be more advantageous to the
contractor to terminate the contract than to be late and pay the unrealistic penalty
amounts. Thus, an unfair contract may not achieve the desired objectives on the part of
either or both parties.
October 25, 2006 8-15

Guide to the 2006 CSTE CBOK
• Performance of maintenance
The location, method, and timing of the performance of maintenance should be
specified in the contract. If it is important for the contracting organization that the
maintenance be performed at the contracting organization’s place of business, that
needs to be specified in the contract. If not, the contractor can provide maintenance at
the contractor’s convenience as opposed to the contracting organization’s
convenience.

• Contractor training
The type, frequency, caliber of instructors, and location of contractor training for the
application system should be included in the contract.

• Contractor manuals
The manuals needed to operate and maintain the application system should be
specified in the contract. These normally include computer operator manuals, user
manuals, learning manuals, and systems documentation manuals. The contract should
be as specific as possible regarding the size, content, method of presentation, and
continued maintenance of the material in the manual.

• Supplies
The types of supplies provided by the contractor should be specified in the contract.
This may include input forms, printer forms, and computer media. The cost,
availability, and rights of the contracting organization to reproduce any of the supplies
should the contractor be unable to make delivery, should be included in the contract.

• Transportability
The rights of the contracting organization to move the application system from
location to location should be stated in the contract. Transportability should also
include the rights of the contracting organization to run the application system in more
than one location. There may or may not be fees associated with the rights of the
contracting organization to move, duplicate, and run the application system in multiple
locations.

• Termination
In the event the contractor or contracting organization wishes to terminate the contract,
the methods of terminating the contract should be specified. The termination clause
should cover both cost and the return of deliverables provided under the contract.
Providing for the termination can avoid a lot of bad feelings if it becomes necessary to
end the contract. It also lets the organization know in advance the type of financial
commitments that are associated with the termination.

• Contractor employee rights
Contractor personnel may need to visit the premises of the contracting organization to
perform service on the application system. In providing this service, the contractor
needs to know if they have free access to the contracting organization’s place of
business, if they can use the contracting organization’s equipment for testing (with or
8-16 October 25, 2006

Testing Software Developed by Contractors
without charge), whether or not they can store books, manuals, supplies, in the
contractor’s place of business, etc. Also, if the contract is tied to usage, the contractor
may wish the right to examine logs and other evidence of usage.

• Governing law
The state under which the rules of the contract are binding should be defined. It is also
the laws of that state under which any dispute would be tried in court.

• Contractor inspection
The right of the contractor to look at the records of the contracting organization should
be stated. This would be necessary only in a lease arrangement if the rental is tied to
usage, revenue, or other criteria based on records maintained by the contracting
organization. In order to be assured that the contractor receives full and fair rental, the
contractor may wish the right to examine the contracting organization’s records.
Contracts usually indicate where these are available, and the procedures necessary to
obtain them.

• Access to developers and development documentation
What documentation testers need, and the test activities they desire to perform need to
be included in the contract.

• Assure that requirements and contract criteria are testable.
A common term used for contracting today is performance-based contracting. This
means that the performance criteria of the contractor will be defined and once defined
can be monitored and measured.

It is important that all the contract criteria and software requirements that are incorporated in a
contract for software development, be testable. That means as much as possible an objective
measurement can be made as to whether or not that requirement/criteria has or has not been
met. For example, easy-to-use criteria might specify the type and number of help screens
included within the software.

As a general rule if a requirement or criteria is not testable, the contractor has too much
discretion on how that requirement or criteria is implemented. It also limits the contracting
organization’s ability to have corrections made without additional cost for a requirement or
criteria that does not meet the contracting organization’s need. If it is a testable requirement, it
is easy to demonstrate that the contractor has failed to meet the component of the contract.

8.3.2 Review the Adequacy of the Contractor’s Test Plan
This responsibility is to evaluate the adequacy and completeness of testing that will be
performed. It is important for the software tester to develop an opinion on the contractor’s
ability to deliver software that meets the requirements or criteria in the contract. It can also
provide insight on the ability of the contractor to develop software at a reasonable cost. For
example if the test plan indicates that the defect removal efficiency at the requirements phase
is 95%, then the quality professional knows that only 5% of the requirement defects will move
October 25, 2006 8-17

Guide to the 2006 CSTE CBOK
to the design phase. On the other hand, if the contractor does not begin testing until after the
software is compiled, then there may be extensive rework and potential delays in getting the
software on the scheduled date.

The software tester should look for the type of comprehensive test plan that is included in
Skill Category 4. The extensiveness of that test plan would provide the software tester with
reasonable assurance that the delivered software will meet the contractual criteria.

8.3.3 Assure Development is Effective and Efficient
Verification is a much more effective means for identifying defects than validation. However
to perform verification practices during development the acquiring organization must have the
ability to interact with developers and have access to the developer documentation. To do this
the contract must allow for verification activities. Skill Category 1 includes the types of
verification activities testers could perform on software being developed under contract.

8.3.4 Perform Acceptance Testing on the Software
The software tester should not allow contracted software to be placed into operation without
some acceptance testing.

The software tester may or may not be involved in the actual acceptance testing. However, the
quality professional must determine that an approved acceptance test plan will be put into
place to test software developed by outside organizations. Refer to Skill Category 7 for what
should be included in a user acceptance test plan.

It has been demonstrated extensively that the cost of not acceptance testing is normally much
greater than the cost of acceptance testing. It only takes a few problems in acquired software
to far exceed the cost of acceptance testing.

The extent of acceptance testing software will be dependant upon the risk associated with the
use of that software. As the use and importance diminishes so does the amount of acceptance
testing. Likewise, the greater assurance the software tester has in the ability of a contractor of
software to produce high quality, defect-free software the fewer acceptance testings that need
to be conducted. At a minimum the acceptance testing should validate that:

• The documentation is consistent with the software execution
• The documentation is understandable
• Users will be adequately trained in the software prior to use of the software
• It is operable within the operational constraints of the organization (For example, all

the features and the platform that are needed to operate the software are in fact there.)
8-18 October 25, 2006

Testing Software Developed by Contractors
8.3.5 Issue a Report on the Adequacy of the Software to Meet
the Needs of the Organization

The software tester should prepare a report on the adequacy of the software to meet the needs
of the organization. The report should focus on two main issues. Does the software meet the
contractual requirements? Second, does it meet the needs of the organization?

The report should focus on the two definitions of quality. These are:
• Meets requirements
• Fit for use

For example as previously stated off-shore developed software fails to meet the needs of the
organization more than 50% of the time. However, these off-shore developed software may
meet the specifications of the contract, but not the true needs of the contracting organization.

This report is normally prepared after acceptance testing, if software is contracted for, and the
software tester has access to the developers, several reports can be prepared. For example it
would discuss the quality of the software at specific checkpoints. If there are problems, the
report might also address the probability of those problems being resolved during the
remainder of developmental time.

8.3.6 Ensure Knowledge Transfer Occurs and Intellectual
Property Rights are Protected

There are two concerns that the software tester must assure about software developed by
outside organizations. The first is that there is adequate knowledge transfer about the software
from the developer of the software to the acquirer. The second is that the intellectual property
rights of both the contractor and contracting organization are protected.

The amount of knowledge transfer that will occur will be dependant upon the purchase/
contractual arrangements for acquiring the software. For example, contractors may not release
source code to the contracting organization. The importance of this issue can change based on
the relationship with the developer and/or whether the developer stays in business. For
example, if the vendor goes out of business does the contracting organization then have the
right to obtain the source code so the software can be maintained even though the vendor of
the software is no longer in business?

Among the items that may be important in knowledge transfer are:
• Training programs for the contracting organization staff
• Being advised of defects uncovered by other organizations using the software
• Ability to contact a contractor help desk to resolve problems/get additional

information
October 25, 2006 8-19

Guide to the 2006 CSTE CBOK
There are legal aspects of protecting the intellectual property acquired from a contractor. The
contracting organization may not have the right to reproduce and distribute the software
without additional compensation to the contractor.

The contracting organization may have to exercise reasonable care to protect the rights of the
contractor, such as securing and providing adequate protection over the software and
associated documentation.

8.3.7 Incorporate Copyrighted Material into the Contractor’s
Manuals

The contracting organization may also have intellectual property that they want protected. For
example, they may share with the contractor proprietary material that they do not want the
contractor to use for any other purpose.

In some instances, the contracting organization wants access to the software, or developer
materials prior to acquiring or contracting for software. This and other aspects of protecting
intellectual property may be covered in a nondisclosure agreement between the contractor and
the contracting organization.

8.3.8 Assure the Ongoing Operation and Maintenance of the
Contracted Software

The contractual arrangements determine the ongoing relationship between the contractor and
the contracting organization. This relationship may continue as long as the contracting
organization continues to use the application system. It encompasses continued service and
maintenance. However, the ongoing relationship may only involve guarantee and warranty of
the product.

Frequently, organizations overlook contractual agreements after the application system has
gone operational. This is because problems may not occur initially, and when they do occur,
the organization neglects to go back to the contract to determine the obligation of the
contractor for these problems.

The major concern during the operation and maintenance of a purchased or leased application
system is that both parties to the agreement comply with the contractual requirements.
Contracts should be periodically reviewed to verify that the contractual requirements are
being met.

Software testers can evaluate negotiations over time to determine that the contractor fulfills
their part of the contract. There are also instances where the contracting organization is
obligated to meet ongoing contractual obligations and compliance to those obligations should
be verified.
8-20 October 25, 2006

Testing Software Developed by Contractors
The major concerns during the operation and maintenance of a purchased application include:
• Adequacy of control

Controls provided in the purchased application should be sufficient to assure that the
data processed by the application is accurate, complete, and authorized. Controls
should provide sufficient preventive, detective, and corrective controls to enable the
organization to be assured of processing integrity. Available review checklists, such as
the ones provided in previous sections of this manual, provide guidance for reviewers
in making this determination.

• Adequacy of documentation
The application system should be maintainable and operable with the documentation
provided by the contractor. If the organization is dependent upon the contractor for
help in the day-to-day operations, the documentation is probably inadequate. When
the user finds they cannot adequately operate or maintain the system, they should
request more documentation from the contractor.

• Speed of service
Service should be provided by the contractor on a basis such that the operations of the
organization are not seriously curtailed. In some instances, this may mean service
within a few hours, while in other instances several days may be adequate.

• Nearness of service
The contractor should have people located such that they can service the application
system in a reasonable period of time. Remote service that will be made available
quickly may be adequate to satisfy this need.

• Competency of service
The service personnel of the contractor should be sufficiently skilled to perform the
tasks for which they are assigned.

• Adequacy of hardware
The contracting organization should provide sufficient hardware so that the purchased
application can run in an efficient and economical mode.

• Skilled personnel
The contracting organization personnel should be adequately trained in the operation
of the application so that they are self-sufficient.

• Multi-contractor problem resolution
If application systems are provided by more than one contractor, procedures should be
established and agreed upon by all of the contractors as to who has the primary
problem resolution responsibility.

• Cost of services
The services to be provided by the contractor during the life of the contract should be
specified in terms of cost. The contracting organization should be able to anticipate the
approximate cost of required service.
October 25, 2006 8-21

Guide to the 2006 CSTE CBOK
• Cost of operations
If the application system is leased, and the cost of the lease is tied to usage, the cost
associated with usage should be easily measurable.

• Error diagnosis
The responsibility to diagnose problems should be documented. Those responsible
should do the error diagnosis. If the contracting organization’s personnel have that
responsibility, they should be sufficiently trained and have sufficient aids provided by
the contractor so that they can perform this function. If the contractor personnel accept
that responsibility, they must be responsive to the needs of the contracting
organization in error detection and correction.

• Error documentation
Procedures should be established to specify the type of documentation collected at the
time of errors. This should be collected for two purposes: first, to aid contractor
personnel in further diagnosis and correction of the problem; and second, as possible
recourse against the contractor for recovery of fees due to extra expenses incurred. The
contractor should agree that the type of documentation being collected is sufficient for
their error diagnosis and correction purposes.

8.3.9 Assure the Effectiveness of Contractual Relations
The relationship between the contractor and the contracting organization is an ongoing
relationship. Time and effort must be expended to keep that a viable and healthy relationship.
The relationship should not be considered fixed at the point in time the contract was signed
but, rather, a continual evolving relationship in which both the interest of the contractor and
the contracting organization are protected.

The contractor is anxious to sell more applications and service to the contracting organization.
Therefore, special needs and interests of the contracting organization are normally handled
even if they are above and beyond the contractual negotiations. These are normally performed
in an effort to continually improve the relationship in hopes of ongoing business.

The contracting organization hopefully has received a valuable product from the contractor. In
most instances, the contracting organization either could not produce this product, or produce
it at an equivalent cost or time span. Thus, it is normally within the best interest of the
contracting organization to gain more products of a similar nature.

The concerns that arise in maintaining a relationship of harmony and good that the testers
could evaluate will include:

• Contractor obligations met
The contractor should meet their requirements as specified in the contract.

• contracting organization obligations met
8-22 October 25, 2006

Testing Software Developed by Contractors
The contracting organization should meet their requirements as specified in the
contract.

• Needs met
It is to the benefit of both parties to have the contracting organization satisfied with the
application system. Even when the initial deliverables meet the contracting
organization’s need, there will be ongoing maintenance required to meet the
continually evolving needs of the contracting organization. The methods of doing this
should be specified in the contract, and those requirements should form the basis for
both parties specifying and delivering new contractual obligations.

• Limits on cost increases
The cost specified in the contract should include provisions for ongoing costs. In an
inflationary economy, it may be advantageous to have limits placed on cost increases.
For example, if service is provided at an hourly rate, the increases in that rate might be
specified in the contract.

• Exercising options (e.g., added features)
Many contracts contain options for additional features or work. When new
requirements are needed, it should first be determined if they can be obtained by
exercising some of the options already available in the contract.

• Renegotiation
Many contracts contain provisions to renegotiate in the event of some specified
circumstances. For example, if the contracting organization wants to extend the
contract, that extension may involve a renegotiation of the terms of the contract. The
renegotiation process should be conducted in accordance with the contractual
specifications.

• Compensation for error
If the contractor agrees to compensate for problems due to contractor causes, the
penalties should be specified in the contract.

• Returns on termination
If the contract is terminated, the contractual termination procedures should be
performed in accordance with the contract requirements.
October 25, 2006 8-23

Guide to the 2006 CSTE CBOK
This page intentionally left blank.
8-24 October 25, 2006

Testing Software Controls
and the Adequacy of
Security Procedures

key issue for software testing is testing internal control. Security is a component of
internal control that warrants special attention of testers. Interest in internal control
has been highlighted by publicized penetrations of security and the increased
importance of information systems and the data contained by those systems. In the

U.S., the passage of the Sarbanes-Oxley Act in particular, highlighted interest in internal
control. The Sarbanes-Oxley Act, sometimes referred to as SOX, was passed in response to the
numerous accounting scandals such as Enron and WorldCom. While much of the act relates to
financial controls, there is a major section relating to internal controls. For Securities and
Exchange Commission (SEC)-regulated corporations, both the CEO and the CFO must
personally attest to the adequacy of their organization’s system of internal control. Because
misleading attestation statements is a criminal offense, top corporate executives take internal
control as a very important topic. Many of those controls are incorporated into information
systems, and thus there is a need for testing those controls.

Several sections of this skill category discuss the processes used to develop software and,
although testers are not responsible for the development process, the more you know about the
process used to develop software, the more effective the testing process will become.

Principles and Concepts of Internal Control 9-2
Internal Control Models 9-17
Testing Internal Controls 9-23
Testing Security Controls 9-27

Skill
Category

9

A

October 25, 2006 9-1

Guide to the 2006 CSTE CBOK
9.1 Principles and Concepts of Internal Control
There are many definitions of internal control. Most of those definitions were developed by
accountants. Some of those definitions focus more on financial controls, but others take a
much broader view of internal control. Note that security is part of the system of internal
control.

In the 1990s, five major accounting organizations developed a framework for internal control.
The five members of the group known as the Committee of Sponsoring Organizations,
frequently referred to as COSO, include: Financial Executives International, American
Institute of Certified Public Accountants, American Accounting Association, The Institute of
Internal Auditors, and the Institute of Management Accountants.

The COSO Internal Control Framework has been widely accepted after the passage of the
Sarbanes-Oxley Act. This is because the Act requires organizations to have a “framework for
internal control” and the SEC, which oversees the Sarbanes-Oxley Act, only recognizes the
COSO Internal Control Framework.

There is no one generally accepted definition of internal control. Many have developed
definitions, some broad, some very specific. However, it is important to have a clear definition
of internal control.

COSO defines internal control as:

“ … A process, effected by an organization’s Board of Directors, management and other
personnel, designed to provide reasonable assurance regarding the achievement of objectives
in the following categories:

• Effectiveness and efficiency of operations
• Reliability of financial reporting
• Compliance with applicable laws and regulations.”

The following four key terms are used extensively in internal control and security:
• Risk – The probability that an undesirable event will occur.
• Exposure – The amount of loss that might occur if an undesirable event occurs.
• Threat – A specific event that might cause an undesirable event to occur.
• Control – Anything that will reduce the impact of risk.

Let’s look at an example of these terms using a homeowner’s insurance policy and focus on
one risk, which is the risk of fire. The exposure associated with a risk of fire would be the
value of your home. A threat that might cause that risk to turn into a loss might be an improper
electrical connection or children playing with matches. Controls that would minimize the loss
associated with that risk would include such things as fire extinguishers, sprinkler systems,
fire alarms, and non-combustible material used in construction.

In looking at IT, we might look at the risk of someone penetrating a banking system and
improperly transferring funds to the perpetrators personal account. The risk is the loss of
9-2 October 25, 2006

Testing Software Controls and the Adequacy of Security Procedures
funds in the account that was penetrated. The exposure is the amount of money in the account
(or the amount of money that the bank allows to be transferred electronically). The threat is
inadequate security systems, which allow the perpetrator to penetrate the banking system.
Controls can include limiting access to accounts with passwords, limiting the amount that can
be transferred at any one time, monitoring unusual transactions such as transfers of funds to an
overseas account, and controlling who can transfer money from the account.

9.1.1 Internal Control Responsibilities
While everyone in an organization, particularly Management, has some responsibility for
internal control, it is the chief executive officer that holds ultimately responsibility for the
organization’s internal control system. Financial and accounting officers are central to the way
management exercises control. All management personnel play important roles and are
accountable for controlling their units’ activities.

Internal auditors contribute to the ongoing evaluation of the internal control system, but they
do not have primary responsibility for establishing or maintaining it. The Board of Directors
and its audit committee provide important oversight to the internal control system. A number
of other parties, such as lawyers and external auditors, contribute to the achievement of the
organization’s objectives and provide information useful in improving internal control.
However, they are not responsible for the effectiveness of, nor are they a part of, the
organization’s internal control system.

9.1.2 Software Tester’s Internal Control Responsibilities
Software systems are controlled by a system of controls embedded in the software. This
section will describe that control system. Since the software system incorporates controls,
software testers should test that those controls exist and perform as specified.

9.1.3 Internal Auditor’s Internal Control Responsibilities
Internal auditors directly examine internal controls and recommend improvements. The
Institute of Internal Auditors, the professional association representing internal auditors
worldwide, defines internal auditing as:

“… an independent, objective assurance and consulting activity designed to add value and
improve an organization’s operations. It helps an organization accomplish its objectives by
bringing a systematic, disciplined approach to evaluate and improve the effectiveness of
risk management, control, and governance processes.”

The International Standards for the Professional Practice of Internal Auditing, established by
the Institute of Internal Auditors, specify that internal auditors should:
October 25, 2006 9-3

Guide to the 2006 CSTE CBOK
• Assist the organization by identifying and evaluating significant exposures to risk and
contributing to the improvement of risk management and control systems

• Monitor and evaluate the effectiveness of the organization’s risk management system
• Evaluate risk exposures relating to the organization’s governance, operations, and

information systems regarding the:
• Reliability and integrity of financial and operational information
• Effectiveness and efficiency of operations
• Safeguarding of assets
• Compliance with laws, regulations, and contracts

• Assist the organization in maintaining effective controls by evaluating their
effectiveness and efficiency and by promoting continuous improvement

All activities within an organization are potentially within the scope of the internal auditors’
responsibility. In some entities, the internal audit function is heavily involved with controls
over operations. For example, internal auditors may periodically monitor production quality,
test the timeliness of shipments to customers or evaluate the efficiency of the plant layout. In
other entities, the internal audit function may focus primarily on compliance or financial
reporting-related activities.

The Institute of Internal Auditors standards also set forth the internal auditors’ responsibility
for the roles they may be assigned. Those standards, among other things, state that internal
auditors should be independent of the activities they audit. They possess, or should possess,
such independence through their position and authority within the organization and through
recognition of their objectivity.

Organizational position and authority involve such matters as a reporting line to an individual
who has sufficient authority to ensure appropriate audit coverage, consideration and response;
selection and dismissal of the director of internal auditing only with Board of Directors or
audit committee concurrence; internal auditor access to the Board or audit committee; and
internal auditor authority to follow up on findings and recommendations.

Internal auditors are objective when not placed in a position of subordinating their judgment
on audit matters to that of others. The primary protection for this objectivity is appropriate
internal audit staff assignments. These assignments should be made to avoid potential and
actual conflicts of interest and bias. Staff assignments should be rotated periodically and
internal auditors should not assume operating responsibilities. Similarly, they should not be
assigned to audit activities with which they were involved in connection with prior operating
assignments.

It should be recognized that the internal audit function does not – as some people believe –
have primary responsibility for establishing or maintaining the internal control system. That,
as noted, is the responsibility of the CEO, along with key managers with designated
responsibilities. The internal auditors play an important role in evaluating the effectiveness of
control systems and thus contribute to the ongoing effectiveness of those systems.
9-4 October 25, 2006

Testing Software Controls and the Adequacy of Security Procedures
9.1.4 Risk versus Control
From an academic perspective, the sole purpose of control is to reduce risk. Therefore, if there
is no risk, there is no need for control. The formula for risk is as follows:

Risk = Frequency x Probable Loss

To calculate the loss due to risk, one must first determine:
• The frequency with which an unfavorable event will occur
• The probable loss associated with that unfavorable occurrence

Let’s look at a simple example. There is a risk that products shipped will not be invoiced. If
we were to assume that an average of two products will be shipped per day and not be
invoiced and the average billing per invoice is $500, then the risk associated with not
invoicing shipments is $1,000 per day.

Management has chosen to use a positive concept in addressing risk, rather than a negative
concept. In other words, they recognize that there will be a risk that products will be shipped
but not invoiced. To address risk such as this, management has chosen to define control
objectives rather than risks.

In our shipped but not billed risk example, management would define a control objective of
“All products shipped should be invoiced”. They would then implement controls to
accomplish that positive control objective.

9.1.5 Environmental versus Transaction Processing Controls
It is important for the quality professional to know that there are two components of controls.
The first is environmental (sometimes called general controls), and the second is the
transaction processing controls within an individual business application.

9.1.5.1 Environmental or General Controls

Environmental controls are the means by which management uses to manage the organization.
They include such things as:

• Organizational policies
• Organizational structure in place to perform work
• Method of hiring, training, supervising and evaluating personnel
• Processes provided to personnel to perform their day-to-day work activities, such as a

system development methodology for building and testing software systems.

Auditors state that without strong environmental controls the transaction processing controls
may not be effective. For example, if passwords needed to access computer systems are not
adequately protected the password system will not work. Individuals will either protect or not
protect their password based on environmental controls such as the attention management
October 25, 2006 9-5

Guide to the 2006 CSTE CBOK
pays to password protection, the monitoring of the use of passwords that exist, and
management’s actions regarding individual workers failure to protect passwords.

Two examples of management controls are the review and approval of a new system and
limiting computer room access.

• Review and Approval of a New System
This control should be exercised to ensure management properly reviews and
approves new IT systems and conversion plans. This review team examines requests
for action, arrives at decisions, resolves conflicts, and monitors the development and
implementation of system projects. It also oversees user performance to determine
whether objectives and benefits agreed to at the beginning of a system development
project are realized.

The team should establish guidelines for developing and implementing system
projects and define appropriate documentation for management summaries. They
should review procedures at important decision points in the development and
implementation process.

• Limiting Access to Computer Resources
Management controls involve limiting access to computer resources. It is necessary to
segregate the functions of systems analysts, programmers, and computer operators.
Systems analysts and programmers should not have physical access to the operating
programs, and the computer files. Use of production files should be restricted to
computer operating personnel. Such a restriction safeguards assets by making the
manipulation of files and programs difficult. For example, assume a bank’s
programmer has programmed the demand deposit application for the bank. With his
knowledge of the program, access to the files in the computer room on which
information about the demand depositors is contained may allow him to manipulate
the account balances of the bank’s depositors (including his own balance if he is a
depositor).

9.1.6 Transaction Processing Controls
The object of a system of internal control in a business application is to minimize business
risks. Risks are the probability that some unfavorable event may occur during processing.
Controls are the totality of means used to minimize those business risks.

There are two systems in every business application. As illustrated in Figure 9-1, the first is
the system that processes business transactions, and the second is the system that controls the
processing of business transactions. From the perspective of the system designer, these two
are designed and implemented as one system. For example, edits that determine the validity of
input are included in the part of the system in which transactions are entered. However, those
edits are part of the system that controls the processing of business transactions.
9-6 October 25, 2006

Testing Software Controls and the Adequacy of Security Procedures
Because these two systems are designed as a single system, most software quality analysts do
not conceptualize the two systems. Adding to the difficulty is that the system documentation
is not divided into the system that processes transactions and the system that controls the
processing of transactions.

Figure 9-1 The Two Systems in Every Business Application

When one visualizes a single system, one has difficulty in visualizing the total system of
internal control. For example, if one looks at edits of input data by themselves, it is difficult to
see how the totality of control over the processing of a transaction is controlled. For example,
there is a risk that invalid transactions will be processed. This risk occurs throughout the
system and not just during the editing of data. When the system of internal controls is viewed
it must address all of the risks of invalid processing from the point that a transaction is entered
into the system to the point that the output deliverable is used for business purposes.

A point to keep in mind when designing transaction processing controls is that some input
errors may be acceptable if they do not cause an interruption in the processing run. A simple
example of this would be a misspelled description of an item. In deciding on controls, it is
necessary to compare the cost of correcting an error to the consequences of accepting it. Such
trade-offs must be determined for each application. Unfortunately there are no universal
guidelines available.

It is important that the responsibility for control over transaction processing be separated as
follows:

• Initiation and authorization of a transaction
• Recording of the transaction
• Custody of the resultant asset

In addition to safeguarding assets, this division of responsibilities provides for the efficiencies
derived from specialization, makes possible a cross-check that promotes accuracy without
duplication or wasted effort, and enhances the effectiveness of a management control system.
October 25, 2006 9-7

Guide to the 2006 CSTE CBOK
9.1.7 Preventive, Detective and Corrective Controls
This section describes three different categories of transaction processing controls, preventive,
detective, and corrective and provides examples of those types of controls. Also provided is a
detailed process to follow when building controls within an information system. While this
activity falls outside the scope of a testing, knowing how the software is designed can greatly
improve your ability to design appropriate test plans and processes.

The objectives of transaction processing controls are to prevent, detect, or correct incorrect
processing. Preventive controls will stop incorrect processing from occurring; detective
controls identify incorrect processing; and corrective controls correct incorrect processing.
Since the potential for errors is always assumed to exist, the objectives of transaction
processing controls will be summarized in five positive statements:

• Assure that all authorized transactions are completely processed once and only once.
• Assure that transaction data is complete and accurate.
• Assure that transaction processing is correct and appropriate to the circumstances.
• Assure that processing results are utilized for the intended benefits.
• Assure that the application can continue to function.

In most instances controls can be related to multiple exposures. A single control can also
fulfill multiple control objectives. For these reasons transaction processing controls have been
classified according to whether they prevent, detect, or correct causes of exposure. The
controls listed in the next sections are not meant to be exhaustive but, rather, representative of
these types of controls.

9.1.7.1 Preventive Controls

Preventive controls act as a guide to help things happen as they should. This type of control is
most desirable because it stops problems from occurring. Computer application systems
designers put their control emphasis on preventive controls. It is more economical and better
for human relations to prevent a problem from occurring than to detect and correct the
problem after it has occurred.

Preventive controls include standards, training, segregation of duties, authorization, forms
design, pre-numbered forms, documentation, passwords, consistency of operations, etc.

One question that may be raised is, “At what point in the processing flow is it most desirable
to exercise computer data edits?” The answer to this question is simply, “As soon as possible,
in order to uncover problems early and avoid unnecessary computer processing.” Some input
controls depend on access to master files and so must be timed to coincide with file
availability. However, many input validation tests may be performed independently of the
master files. Preferably, these tests should be performed in a separate edit run at the beginning
of the computer processing. Normally, the input validation tests are included in programs to
perform data-conversion operations such as transferring data files from one application to
9-8 October 25, 2006

Testing Software Controls and the Adequacy of Security Procedures
another. By including the tests in programs performing such operations, the controls may be
employed without significantly increasing the computer run time.

Preventive controls are located throughout the entire IT system. Many of these controls are
executed prior to the data entering the computer programs. The following preventive controls
will be discussed in this section:

• Source-data authorization
• Data input
• Source-data preparation
• Turn-around documents
• Pre-numbered forms
• Input validation
• Computer updating of files
• Controls over processing

9.1.7.1.1 Source-Data Authorization

Once data has been recorded properly, there should be control techniques to ensure that the
source data has been authorized. Typically, authorization should be given for source data such
as credit terms, prices, discounts, commission rates, overtime hours, and so forth.

The input documents, where possible, should have evidence of authorization and should be
reviewed by the internal control group in data processing. To the extent practical, the
computer should be utilized as much as possible to authorize input. This may be done through
programmed controls.

9.1.7.1.2 Data Input

Data input is the process of converting data in non-machine-readable form (such as hard-copy
source documents) into a machine-readable form so that the computer can update files with
the transactions. Since the data input process is typically a manual operation, control is needed
to ensure that the data input has been performed accurately.

9.1.7.1.3 Source-Data Preparation

In many automated systems, conventional source documents are still used and, therefore, no
new control problems are presented prior to the conversion of source documents into
machine-readable form. Specially designed forms promote the accuracy of the initial
recording of the data. A pre-audit of the source documents by knowledgeable personnel to
detect misspellings, invalid codes, unreasonable amounts, and other improper data helps to
promote the accuracy of input preparation.

In IT systems where the source document is eliminated or is in a form which does not permit
human review, control over source-data preparation should be such that access to, and use of,
the recording and transmitting equipment is properly controlled to exclude unauthorized or
improper use.
October 25, 2006 9-9

Guide to the 2006 CSTE CBOK
9.1.7.1.4 Turn-Around Document

Other control techniques to promote the accuracy of input preparation include the use of turn-
around documents which are designed to eliminate all or part of the data to be recorded at the
source. A good example of a turn-around document is the bill which you may receive from a
utility company. Normally the bill has two parts: one part is torn off and included with the
remittance you send back to the utility company as payment for your bill; the other you keep
for your records. The part you send back normally includes pre-recorded data for your account
number and the amount billed so that this returned part can be used as the input medium for
computer processing of the cash receipts for the utility company.

9.1.7.1.5 Pre-Numbered Forms

Sequential numbering of the input transaction form with full accountability at the point of
document origin is another traditional control technique. This can be done by using pre-
numbered forms or by having the computer issue sequential numbers.

9.1.7.1.6 Input Validation

An important segment of input processing is the validation of the input itself. This is an
extremely important process because it is really the last point in the input preparation where
errors can be detected before files are updated. The primary control techniques used to
validate the data are associated with the editing capabilities of the computer. Because of the
characteristics of the computer, an IT system has unusual capabilities to examine or edit each
element of information processed by it. This editing involves the ability to inspect and accept
(or reject) transactions according to validity or reasonableness of quantities, amounts, codes,
and other data contained in input records. The editing ability of the computer can be used to
detect errors in input preparation that have not been detected by other control techniques
discussed previously.

The editing ability of the computer is achieved by installing checks in the program of
instructions, hence the term program checks. They include:

• Validity tests
Validity tests are used to ensure that transactions contain valid transaction codes, valid
characters, and valid field size. For example, in an accounts receivable system, if only
input coded PB through PL were valid transaction codes, then input with other codes
would be rejected by the computer. In a labor data collection system, all time
transactions and job transactions could be checked by the computer against the
random-access file of active job numbers, and non-matches indicated on a report to the
shop foreman.

• Completeness tests
Completeness checks are made to ensure that the input has the prescribed amount of
data in all data fields. For example, a particular payroll application requires that each
new employee hired have a unique User ID and password. A check may also be
included to see that all characters in a field are either numeric or alphabetic.
9-10 October 25, 2006

Testing Software Controls and the Adequacy of Security Procedures
• Logical tests
Logical checks are used in transactions where various portions, or fields, of the record
bear some logical relationship to one another. A computer program can check these
logical relationships to reject combinations that are erroneous even though the
individual values are acceptable.

• Limit tests
Limit tests are used to test record fields to see whether certain predetermined limits
have been exceeded. Generally, reasonable time, price, and volume conditions can be
associated with a business event. For example, on one payroll application, the
computer is programmed to reject all payroll rate changes greater than 15 percent of the
old rate. The labor hour’s field is checked to see if the number of hours worked exceeds
44. In another application, an exception report is generated when a customer’s
receivable balance plus the total of his unfilled orders exceeds his credit limit.

• Self-checking digits
Self-checking digits are used to ensure the accuracy of identification numbers such as
account numbers. A check digit is determined by performing some arithmetic
operation on the identification number itself. The arithmetic operation is formed in
such a way that typical errors encountered in transcribing a number (such as
transposing two digits) will be detected.

• Control totals
Control totals serve as a check on the completeness of the transaction being processed
and ensure that all transactions have been transmitted properly from the source to the
data processing center. Control totals are normally obtained from batches of input data.
The computer can be programmed to accumulate control totals internally and make a
comparison with those provided as input.

9.1.7.1.7 Computer Updating of Files

The updating phase of the processing cycle entails the computer updating files with the
validated transactions. Normally computer updating involves sequencing transactions,
comparing transaction records with master-file records, computations, and manipulating and
reformatting data, for the purpose of updating master files and producing output data for
distribution to user departments for subsequent computerized processing.

Another control technique for the proper updating of files is file maintenance. File
maintenance consists of those procedures involved in making changes to the permanent-type
information contained in master files such as name, address, employee number, and pay rate
information in a payroll file. Since this data is so important to the proper computerized
processing of files, formalized procedures are required to make changes to this type of
permanent information. All master file changes should be authorized in writing by the
department initiating the change. A notice or register of all changes should be furnished to the
initiating department to verify that the changes were made.
October 25, 2006 9-11

Guide to the 2006 CSTE CBOK
9.1.7.1.8 Controls over Processing

When we discussed input validation, we saw that programmed controls are a very important
part of application control. Programmed controls in computer updating of files are also very
important since they are designed to detect loss of data, check arithmetic computation, and
ensure the proper posting of transactions.

Three examples of programmed controls are:
• A control total is made from amount or quantity fields in a group of records and is

used to check against a control established in previous or subsequent manual or
computer processing.

• A hash total is another form of control total made from data in a non-quantity field
(such as vendor number or customer number) in a group of records.

• Programmed checks of arithmetic calculations include limit checks, cross-footing
balance checks, and overflow tests.

Let us examine some of these programmed controls.

Programmed checks to detect loss or non-processing of data are record counts, control totals
and hash totals. A record count is the number of records processed by the computer. The
resulting total can then be compared with a predetermined count. Normally a record count is
established when the file is assembled, and the record count is carried as a control total at the
end of the file or reel and is adjusted whenever records are added or deleted. For example, a
record count may be established for all new hiring’s or terminations processed. This record
count can then be compared internally or manually to predetermined totals of new hiring’s or
terminations. Each time the file is processed, the records are recounted and the quantity is
balanced to the original or adjusted total. Although the record count is useful as a proof of
processing accuracy, it is difficult to determine the cause of error if the counts are out of
balance.

Some calculations produce illogical results such as million-dollar payroll checks or negative
payroll checks. Such calculations can be highlighted in exception reports with the use of limit
checks, which test the results of a calculation against predetermined limits. For example, a
payroll system may include limit checks to exclude, from machine payroll check preparation,
all employees with payroll amounts greater than $1000 or less than $0.

Cross-footing balance checks can be programmed so that totals can be printed out and
compared manually or totals can be compared internally during processing. For example, a
computer-audit program is used in testing accounts receivable and in selecting accounts for
confirmation. Each account is aged according to the following categories: current, 30, 60, and
90 days. The aged amounts for each account are temporarily stored in accumulators in the
central processing unit. When all open items for the account have been aged, the aged totals
for the account are compared to the account balance stored elsewhere in the central processing
unit. Any difference, results in an error indication. The program also includes the
9-12 October 25, 2006

Testing Software Controls and the Adequacy of Security Procedures
accumulation and printout of aged amounts for all accounts which can be manually compared
with the total accounts receivable balance.

The overflow test is a widely used test to determine whether the size of a result of a
computation exceeds the registered size allocated to hold it. If so, there must be a means of
saving the overflow portion of the results which would otherwise be lost. Overflow control
may be programmed or may be available as a hardware or software control provided by the
equipment manufacturer.

Programmed checks for proper postings may be classified as file checks. Basically, these are
controls used to ensure that the correct files and records are processed together. The problem
of using the correct file is a significant one in IT systems because of the absence of visible
records and because of the ease with which wrong information can be written on magnetic
tapes and disks. The increase in the size and complexity of modern data processing systems
has resulted in the growth of large system libraries containing data that can cost thousands of
dollars to generate. For the purpose of preserving the integrity of data, various labeling
techniques have been devised to provide maximum protection for a file to prevent accidental
destruction or erasure and to ensure proper posting, updating, and maintenance. Two types of
labels are used, external and internal.

External labels are a physical safeguard which properly falls under the category of
documentation and operating practices. They are attached to the exterior data processing
media.

9.1.7.2 Detective Controls

Detective controls alert individuals involved in a process so that they are aware of a problem.
Detective controls should bring potential problems to the attention of individuals so that
action can be taken. One example of a detective control is a listing of all paychecks for
individuals who worked over 80 hours in a week. Such a transaction may be correct, or it may
be a systems error, or even fraud.

Detective controls will not prevent problems from occurring, but rather will point out a
problem once it has occurred. Examples of detective controls are batch control documents,
batch serial numbers, clearing accounts, labeling, and so forth.

The following detective controls will be discussed here:
• Data transmission
• Control totals
• Control register
• Documentation and testing
• Output Checks
October 25, 2006 9-13

Guide to the 2006 CSTE CBOK
9.1.7.2.1 Data Transmission

Once the source data has been prepared, properly authorized, and converted to machine-
processable form, the data usually is transmitted from the source department to the data
processing center. Data transmission can be made by conventional means (such as messenger
and mail) or by data transmission devices which allow data transmission from remote
locations on a much timelier basis.

One important control technique in data transmission is batching, the grouping of a large
number of transactions into small groups. Batching typically is related more to sequential-
processing systems where transactions have to be put into the same order as the master files;
however, batching may also apply to many direct-access systems where it may be desirable to
batch input for control purposes.

Let us examine a payroll application as an illustration of batching. In such an example, the
source document may include time cards (source-data preparation) which should have been
approved by a foreman (data authorization). For batching, these data time cards could be
divided into groups of 25, with a control total for hours worked developed for each batch
along with the total for all batches. Each batch transaction and its control totals could then be
sent (data transmission) to the internal control group in the IT department for reconciliation
with their batch control totals. Thus batching and control totals are useful techniques for the
control of both data conversion and data transmission. These control totals could also be used
during the computer-processing phase where the payroll files would be updated.

Control totals should be developed on important fields of data on each record to ensure that all
records have been transmitted properly from the source to the data processing center. Controls
might be developed on the number of records in each batch or could be based on some
quantitative field of data such as invoice amount or hours worked, etc. Such controls serve as
a check on the completeness of the transaction being processed and ensure that all transactions
have been received in the data processing center.

9.1.7.2.2 Control Register

Another technique to ensure the transmission of data is the recording of control totals in a log
so that the input processing control group can reconcile the input controls with any control
totals generated in subsequent computer processing.

9.1.7.2.3 Control Totals

Control totals are normally obtained from batches of input data. These control totals are
prepared manually, prior to processing, and then are incorporated as input to the computer-
processing phase. The computer can be programmed to accumulate control totals internally
and make a comparison with those provided as input. A message confirming the comparison
should be printed out, even if the comparison did not disclose an error. These messages are
then reviewed by the internal processing control group.
9-14 October 25, 2006

Testing Software Controls and the Adequacy of Security Procedures
9.1.7.2.4 Documentation and Testing

Accuracy of programming is ensured by proper documentation and extensive program testing
procedures. Good documentation will aid in locating programming errors and will facilitate
correction even in the absence of the original designer or programmer. Extensive program
testing under real-life conditions, and testing all possible exceptions without actual
programmer involvement, will minimize possibilities of hidden program bugs and facilitate a
smooth running system.

9.1.7.2.5 Output Checks

The output checks consist of procedures and control techniques to:
• Reconcile output data, particularly control totals, with previously established control

totals developed in the input phase of the processing cycle
• Review output data for reasonableness and proper format
• Control input data rejected by the computer during processing and distribute the

rejected data to appropriate personnel
• Distribute output reports to user departments on a timely basis

Proper input controls and file-updating controls should give a high degree of assurance that
the computer output generated by the processing is correct. However, it is still useful to have
certain output controls to achieve the control objectives associated with the processing cycle.
Basically, the function of output controls is to determine that the processing does not include
any unauthorized alterations by the computer operations section and that the data is
substantially correct and reasonable. The most basic output control is the comparison of
control totals on the final output with original input control totals such as record counts or
financial totals. Systematic sampling of individual items affords another output control. The
testing can be done by the originating group or the control group.

One of the biggest controls in any system occurs when the originating group reviews reports
and output data and takes corrective action. Review normally consists of a search for unusual
or abnormal items. The programmed controls discussed above, coupled with exception
reporting, actually enhance the ability of responsible personnel to take necessary corrective
action.

Another form of output control in some organizations is the periodic and systematic review of
reports and output data by internal audit staff. This group normally has the responsibility to
evaluate operating activities of the company, including computer operations, to determine that
internal policies and procedures are being followed.

9.1.7.2.6 Corrective Controls

Corrective controls assist individuals in the investigation and correction of causes of risk
exposures that have been detected. These controls primarily collect evidence that can be
utilized in determining why a particular problem has occurred. Corrective action is often a
difficult and time-consuming process; however, it is important because it is the prime means
October 25, 2006 9-15

Guide to the 2006 CSTE CBOK
of isolating system problems. Many system improvements are initiated by individuals taking
corrective actions on problems.

It should be noted that the corrective process itself is subject to error. Many major problems
have occurred in organizations because corrective action was not taken on detected problems.
Therefore detective control should be applied to corrective controls. Examples of corrective
controls are: error detection and re-submission, audit trails, discrepancy reports, error
statistics, and backup and recovery. Error detection and re-submission, and audit trails
controls are discussed below.

• Error Detection and Re-submission
Until now we have talked about data control techniques designed to screen the
incoming data in order to reject any transactions that do not appear valid, reasonable,
complete, etc. Once these errors have been detected, we need to establish specific
control techniques to ensure that all corrections are made to the transactions in error
and that these corrected transactions are reentered into the system. Such control
techniques should include:

• Having the control group enter all data rejected from the processing cycle
in an error log by marking off corrections in this log when these
transactions are reentered; open items should be investigated periodically.

• Preparing an error input record or report explaining the reason for each
rejected item. This error report should be returned to the source department
for correction and re-submission. This means that the personnel in the
originating or source department should have instructions on the handling
of any errors that might occur.

• Submitting the corrected transactions through the same error detection and
input validation process as the original transaction.

• Audit Trails Controls
Another important aspect of the processing cycle is the audit trail. The audit trail
consists of documents, journals, ledgers, and worksheets that enable an interested party
(e.g., the auditor) to trail an original transaction forward to a summarized total or from
a summarized total backward to the original transaction. Only in this way can they
determine whether the summary accurately reflects the business’s transactions.

9.1.7.2.7 Cost versus Benefit of Controls

In information systems there is a cost associated with each control. The cost of these controls
needs to be evaluated as no control should cost more than the potential errors it is established
to detect, prevent, or correct. Also, if controls are poorly designed or excessive, they become
burdensome and may not be used. The failure to use controls is a key element leading to major
risk exposures.

Preventive controls are generally the lowest in cost. Detective controls usually require some
moderate operating expense. On the other hand, corrective controls are almost always quite
9-16 October 25, 2006

Testing Software Controls and the Adequacy of Security Procedures
expensive. As noted above, prior to installing any control, a cost/benefit analysis should be
made.

Controls need to be reviewed continually. This is a prime function of the auditor. The auditor
should determine if controls are effective. As the result of such a review, an auditor may
recommend adding, eliminating, or modifying system controls.

9.2 Internal Control Models
There are three generally accepted models for risk and internal control. These are the COSO
Enterprise Risk Management Model, the COSO Internal Control Model, and the CobiT
Model.

9.2.1 COSO Enterprise Risk Management (ERM) Model

9.2.1.1 The ERM Process

In Fall 2001, the Committee of Sponsoring Organizations of the Treadway Commission
(COSO) launched a landmark study designed to provide guidance in helping organizations
manage risk. Despite an abundance of literature on the subject, COSO concluded there was a
need for this study to design and build a framework and application guidance.
PricewaterhouseCoopers was engaged to lead this project.

The framework defines risk and enterprise risk management, and provides a foundational
definition, conceptualizations, objectives categories, components, principles and other
elements of a comprehensive risk management framework. It provides direction for
companies and other organizations in determining how to enhance their risk management
architectures, providing context for and facilitating application in the real world. This
document is also designed to provide criteria for companies’ use in determining whether their
enterprise risk management is effective and, if not, what is needed to make it so.

9.2.1.2 Components of ERM

ERM consists of eight interrelated components. These are derived from the way management
runs a business, and are integrated with the management process. The following components
are illustrated in Figure 9-2:
October 25, 2006 9-17

Guide to the 2006 CSTE CBOK
Figure 9-2 The Eight ERM Components

• Internal Environment
Management sets a philosophy regarding risk and establishes a risk appetite. The
internal environment sets the foundation for how risk and control are viewed and
addressed by an organization’s people.
9-18 October 25, 2006

Testing Software Controls and the Adequacy of Security Procedures
• Objective Setting
Objectives must exist before management can identify events potentially affecting
their achievement. ERM ensures that management has a process in place to set
objectives and that the chosen objectives support and align with the organization’s
mission/vision and are consistent with the organization’s risk appetite.

• Event Identification
Potential events that might have an impact on the organization must be identified.
Event identification includes identifying factors – internal and external – that
influence how potential events may affect strategy implementation and achievement of
objectives.

• Risk Assessment
Identified risks are analyzed in order to form a basis for determining how they should
be managed. Risks are associated with related objectives that may be affected.

• Risk Response
Management selects an approach or set of actions to align assessed risks with the
organization’s risk appetite, in the context of the strategy and objectives.

• Control Activities
Policies and procedures are established and executed to help ensure that the risk
responses management selected are effectively carried out.

• Information and Communication
Relevant information is identified, captured and communicated in a form and
timeframe that enable people to carry out their responsibilities.

• Monitoring
The entire enterprise risk management process must be monitored, and modifications
made as necessary.

9.2.2 COSO Internal Control Framework Model
In the COSO internal control framework, those developing the framework chose to use
“control objectives” as opposed to defining risk. However, it is important to recognize that in
accomplishing the control objectives, the control designers may have to go through a risk
assessment process.

In understanding and using COSO to evaluate internal control, the internal auditor must
evaluate whether controls are adequate to achieve the defined control objectives. Throughout
the internal control framework only control objective will be defined. Even in the category
that COSO defines as “risk”, positive control objectives will be stated rather than defining
risks.
October 25, 2006 9-19

Guide to the 2006 CSTE CBOK
COSO uses the term “framework” to indicate an integrated system of internal controls. While
the COSO framework defines specific control objectives, the framework also indicates that
these control objectives are integrated vertically and horizontally.

Internal auditors are normally involved in auditing what COSO refers to as “control activity.”
For example, payroll is a control activity. Within the payroll system there are procedures,
which produce paychecks and the appropriate records, associated with payroll. In conjunction
with this process is the system of controls that commences as transactions are initiated and
concludes when those transactions are completed and incorporated into the appropriate
organizational financial records. Thus, there are single controls and systems of controls.

COSO’s internal control framework consists of five interrelated components. These are
derived from the way management runs a business, and are integrated with the management
process. The components are:

• Control Environment – The core of any business is its people – their individual
attributes, including integrity, ethical values and competence – and the environment in
which they operate. They are the engine that drives the organization and the
foundation on which everything rests.

• Risk Assessment – The organization must be aware of, and deal with, the risks it faces.
It must set objectives, integrated with the sales, production, marketing, financial and
other activities so that the organization is operating in concert. It also must establish
mechanisms to identify, analyze and manage the related risks.

• Control Activities – Control policies and procedures must be established and executed
to help ensure that the actions identified by management as necessary to address risks
to the organization’s objectives are effectively carried out. The control activities
component controls transaction processing.

• Information and Communication – Surrounding these activities are information and
communication systems. These enable the organization’s people to capture and
exchange the information needed to conduct, manage and control its operations.

• Monitoring – The entire process must be monitored, and modifications made as
necessary. In this way, the system can react dynamically, changing as conditions
warrant.

These internal control components and their linkages are depicted in a model, presented in
Figure 9-3. The model depicts the dynamics of internal control systems. Internal control is not
a serial process, where one component affects only the next. It is a multidirectional interactive
process in which almost any component can and will influence another.
9-20 October 25, 2006

Testing Software Controls and the Adequacy of Security Procedures
Figure 9-3 COSO Internal Control Framework Components

No two entities will, or should, have the same internal control system. Companies and their
internal control needs differ dramatically by industry, size, culture, and management
philosophy. Thus, while all entities need each of the components to maintain control over their
activities, one company’s internal control system often will look very different from another’s.

9.2.2.1 Example of a Transaction Processing Internal Control System

Control objectives are defined to minimize risk. Many controls may be implemented to
achieve a control objective. All the controls used to accomplish a control objective must be
viewed as integrated, that is, a system of internal controls.

In understanding the COSO framework, and the interrelationship of control objectives, you may
find it helpful to visualize the framework as a cause/effect diagram like the one shown in
Figure 9-4. In viewing this cause/effect diagram from an internal control perspective the effect
is the achievement of a control objective. A previously discussed control example was “All
products shipped are invoiced”. This is the effect that is wanted. Figure 9-4 lists four causes,
which if effectively implemented, should achieve the control objective. These causes are that
pre-numbered invoices will be used, pre-numbered shipping documents will be used, invoices
will be prepared prior to shipment and invoices will be matched to shipping documents.
October 25, 2006 9-21

Guide to the 2006 CSTE CBOK
Figure 9-4 Cause and Effect Diagram Example

In understanding the COSO framework, and the interrelationship of control objectives, you
may find it helpful to visualize the framework as a cause/effect diagram. The desired product
of the COSO framework is the accomplishment of these three control objectives:

• Effective and efficient use of organization’s resources
• Preparation of reliable public financial statements
• Organization’s compliance to applicable laws and regulations

Using the COSO internal control framework to evaluate internal control is a two-step process
as follows:

1. Evaluate the organization’s system of controls to assure that each control objective is
achieved

2. Assure that for all five components there is an effective integration into the
organization’s system of controls

9.2.3 CobiT Model
The CobiT model is a generally applicable and accepted standard for IT security and control
practices that provides a reference framework for management, users, and IT audit, control and
9-22 October 25, 2006

Testing Software Controls and the Adequacy of Security Procedures
security practitioners. CobiT enables an enterprise to implement effective governance over IT
that is pervasive and intrinsic throughout the enterprise.

The CobiT Model is comprised of the following four-part cycle. The components of the four
parts of the CobiT cycle can best be explained by listing the tasks within each component as
follows:

• Part 1: Plan and Organize
The tasks in this part include: Define strategic IT plan.

• Part 2: Acquire and Implement
The tasks in this part include: Identify automated solutions.

• Part 3 – Deliver and Support
The tasks in this part include: Defining and managing service levels, performance,
problems and incidences.

• Part 4 – Monitor
The tasks in this part include: Managing the processes and internal control practices.

9.3 Testing Internal Controls
Internal control models emphasize the importance of environmental controls. However, these
controls are specified by management and assessed by auditors. Software testers need to focus
on testing to determine whether or not the control requirements are effectively implemented.
However, testers still have the responsibility to challenge incomplete, incorrect control
requirements.

There is a significant difference between auditors and testers. Auditors have the responsibility
to assess the adequacy of internal controls. To do this they need to examine all five
components of the COSO internal control model. Software testers do not assess adequacy,
software testers test to assure control requirements are testable, and then test to determine
whether or not the controls were implemented as specified.

Testing the controls in a software system involves accomplishing these objectives:
• The requirements for the controls have been defined. These are normally the risks that

need to be minimized or eliminated.
• The defined controls are in place and working, which is traditional testing.
• Test that the “enterprise” controls are included in the software system and are working.

Enterprise controls are those controls specified by the enterprise for all software
systems. Examples of enterprise controls include security controls and control
documentation.

The best practices for testing the controls in a software system involve two tasks:
October 25, 2006 9-23

Guide to the 2006 CSTE CBOK
• Perform Risk Assessment
Test the completeness of the control requirements, which involves evaluating the
software system risks.

• Test Transaction Processing Controls
Follow the flow of transaction processing to test whether or not the defined controls
are in place, working, and that the transactions are controlled throughout transaction
processing.

9.3.1 Perform Risk Assessment
Building controls starts with risk assessment because reduction in risk is the requirement for a
control. Risk assessment allows an organization to consider the extent to which potential
events might have an impact on achievement of objectives. Management should assess events
from two perspectives; first, the likelihood of an event occurring and second, the impact of
that event. The assessment normally uses a combination of qualitative and quantitative
methods.

The positive and negative impacts of potential events should be examined, individually or by
category, across the organization. Potentially negative events are assessed on both an inherent
and residual basis.

In risk assessment, management considers the mix of potential future events relevant to the
organization and its activities. This entails examining factors including organization size,
complexity of operations and degree of regulation over its activities that shape the
organization’s risk profile and influence the methodology it uses to assess risks.

The risk assessment component of Enterprise Risk Management or ERM is comprised of
these sub-components:

• Inherent and Residual Risk
Management considers both inherent and residual risk. Inherent risk is the risk to an
organization in the absence of any actions management might take to alter either the
risk’s likelihood or impact. Residual risk is the risk that remains after management
responds to the risk.

• Estimating Likelihood and Impact
Likelihood represents the possibility that a given event will occur, while impact
represents its affect. Estimating the likelihood and impact will determine how much
attention the organization should give to a specific event.

• Qualitative and Quantitative Methodology and Techniques
Qualitative techniques such as categorizing an event into high, medium and low are
used where risks do not lend themselves to quantification or when sufficient data is not
available for quantification. Quantitative assessment techniques usually require a
higher degree of effort and rigor.
9-24 October 25, 2006

Testing Software Controls and the Adequacy of Security Procedures
• Correlation of Events
Management may assess how events correlate, where sequences of events combine
and interact to create significantly different probabilities or impacts. While the impact
of a single event might be slight, a sequence of events might have more significant
impact.

Risk assessment is important because it is the process that enables management to determine
both the likelihood and potential impact from the materialization of risk. Until the potential
impact of an event is known, management may provide too much attention to an event or not
enough attention.

Let’s look at an example of the risk of customers leaving a Web site because it is too difficult
to navigate. If few customers leave because of navigation problems and their purchase
potential is minimal, no navigation improvements are needed. On the other hand, if there is a
likelihood that many customers will leave with a potentially large loss of orders, resources
should be allocated for navigation improvement.

Note that if the software development team performed this task, they can
provide the testers with control requirements. If they did not, the testers should
work with the users and developers to define the control requirements for test
purposes.

9.3.2 Test Transaction Processing Controls
System controls for computer applications involve automated and manual procedures.
Automated procedures may include data entry performed in user areas, as well as the control
of the data flow within a computer system. Manual procedures in user areas are developed to
ensure that the transactions processed by IT are correctly prepared, authorized, and submitted
to IT.

Manual application control procedures are also required within IT. For example, the IT input/
output control section frequently balances and reconciles input to output. File retention and
security procedures may be required and specified for individual computer applications. Such
controls are unique to the requirements of the application and complement management
controls that govern input/output controls and the media library.

Figure 9-5 shows the six steps of a transaction flow through a computer application system.
Transaction flow is used as a basis for classifying transaction processing controls, because it
provides a framework for testing the controls for transaction processing. Refer to “Principles
and Concepts of Internal Control” for a discussion of the types of controls testers should
expect to find in software systems.
October 25, 2006 9-25

Guide to the 2006 CSTE CBOK
Figure 9-5 Model for Testing Transaction Processing Controls

The two shaded boxes on the figure involve mostly the user organization. Each box is
described below.

9.3.2.1 Transaction Origination

Transaction origination controls govern the origination, approval, and processing of source
documents and the preparation of data processing input transactions and associated error
detection and correction procedures.

9.3.2.2 Transaction Entry

Transaction entry controls govern the data entry via remote terminal or batch, data validation,
transaction or batch proofing and balancing, error identification and reporting, and error
correction and reentry.
9-26 October 25, 2006

Testing Software Controls and the Adequacy of Security Procedures
9.3.2.3 Transaction Communications

Transaction communication controls govern the accuracy and completeness of data
communications, including message accountability, data protection hardware and software,
security and privacy, and error identification and reporting.

9.3.2.4 Transaction Processing

Transaction processing controls govern the accuracy and completeness of transaction
processing, including the appropriateness of machine-generated transactions, validation
against master files, and error identification and reporting.

9.3.2.5 Database Storage and Retrieval

Transaction database storage and retrieval controls govern the accuracy and completeness of
database storage, data security and privacy, error handling, backup, recovery, and retention.

9.3.2.6 Transaction Output

Transaction output controls govern the manual balancing and reconciling of input and output
(within the input/output control section and at user locations), distribution of data processing
output, control over negotiable documents (within data processing and user areas), and output
data retention.

As a general rule, if risks are significant, controls should be strong. If the quality assurance
analysts and/or the individual developing the adequacy opinion can match the risks with
controls, the opinion can be based on that documentation.

9.4 Testing Security Controls
Testers are not security experts. However, security is too important to organizations for testers
to ignore. The following test tasks can add value to the tester’s activities:

1. Understand the points where security is most frequently penetrated; and understand the
difference between accidental and intentional loss.

2. Build a penetration point matrix to identify software system vulnerabilities; and then
investigate the adequacy of the security controls at the point of greatest potential
penetration.

3. Assess the security awareness training program to assure the stakeholders in security
are aware of their security responsibilities.
October 25, 2006 9-27

Guide to the 2006 CSTE CBOK
4. Understand the attributes of an effective security control.

5. Understand the process for selecting techniques to test security.

9.4.1 Task 1 –Where Security is Vulnerable to Penetration
Data and report preparation areas and computer operations facilities with the highest
concentration of manual functions are areas most vulnerable to having security penetrated.
Nine primary IT locations are listed, described, and ranked according to vulnerability in
Figure 9-6

.

Figure 9-6 Vulnerability to Computer Security According to IT Location

1. Data and Report Preparation Facilities
Vulnerable areas include key, computer job setup, output control and distribution, data
collection, and data transportation. Input and output areas associated with remote
terminals are excluded here.

2. Computer Operations
All locations with computers in the immediate vicinity and rooms housing central
computer systems are included in this category. Detached areas that contain peripheral
equipment connected to computers by cable and computer hardware maintenance areas or
offices are also included. Online remote terminals (connected by telephone circuits to
computers) are excluded here.

IT
 L

oc
at

io
ns

Vulnerable Areas Rank

Data and report preparation facilities 1

Computer operations 2

Non-IT areas 3

Online storage 4

Programming offices 5

Online data and report preparation 6

Digital media storage facilities 7

Online operations 8

Central processors 9
9-28 October 25, 2006

Testing Software Controls and the Adequacy of Security Procedures
3. Non-IT Areas
Security risks also derive from business decisions in such non-IT areas as management,
marketing, sales, and business offices; and primary abusive acts may originate from these
areas.

4. Online Systems
The vulnerable functional areas are within online systems, where acts occur by execution
of programmed instructions as generated by terminal commands.

5. Programming Offices
This area includes office areas in which programmers produce and store program listings
and documentation.

6. Online Data and Report Preparation
This category includes the functions for preparing online scripts.

7. Digital Media Storage Facilities
This area includes data libraries and any storage place containing usable data.

8. Online Operations
This category is the equivalent of the computer operations discussed previously, but
involves the online terminal areas.

9. Central Processors
These IT areas are within computer systems themselves, and abusive acts may originate
from within the computer operating system (not from terminals).

9.4.1.1 Accidental versus Intentional Losses

Errors generated during labor-intensive detailed work lead to vulnerabilities. The errors are
usually data errors, computer program errors (bugs), and damage to equipment or supplies.
Such errors often require running of jobs multiple times, error correction, and replacement or
repair of equipment and supplies.

An accidental loss is when someone makes a mistake; an intentional loss is when that mistake
is intentional. It is often difficult to distinguish between accidental loss and intentional loss. In
fact, some reported intentional loss is due to perpetrators discovering and making use of errors
that result in their favor. When loss occurs, employees and managers tend to blame the
computer hardware first, in order to absolve themselves from blame and to pass the problem
along to the vendor to solve. The problem is rarely a hardware error, but proof of this is
usually required before searching elsewhere for the cause. The next most common area of
suspicion is users or the source of data generation because, again, the IT department can
blame another organization. Blame is usually next placed on the computer programming staff.
Finally, when all other targets of blame have been exonerated, IT employees suspect their own
work.

It is not uncommon to see informal meetings between computer operators, programmers,
maintenance engineers, and users arguing over who should start looking for the cause of a
October 25, 2006 9-29

Guide to the 2006 CSTE CBOK
loss. The thought that the loss was intentional is remote because they generally assume they
function in a benign environment.

In many computer centers, employees do not understand the significant difference between
accidental loss from errors and intentionally caused losses. Organizations using computers
have been fighting accidental loss for 40 years, since the beginning of automated data
processing. Solutions are well known and usually well applied relative to the degree of
motivation and cost-effectiveness of controls. They anticipate, however, that the same
controls used in similar ways also have an effect on people engaged in intentional acts that
result in losses. They frequently fail to understand that they are dealing with an intelligent
enemy who is using every skill, experience, and access capability to solve the problem or
reach a goal. This presents a different kind of vulnerability, one that is much more challenging
and that requires adequate safeguards and controls not yet fully developed or realized, let
alone adequately applied.

9.4.2 Task 2 – Building a Penetration Point Matrix
There is a dilemma in the question where to test security. Security is needed to protect the
resources of the organization. People are the security problem and therefore security should be
placed over people. Watching people is not a practical or desirable way to control people.

Computer security is best achieved through controlling activities. The activities in turn control
people. For example, we want to stop people from removing computer media from the media
library unless they are so authorized. This can best be accomplished by placing controls over
the computer media in the form of a librarian; we can then exercise our security procedures
through the computer media library and librarian.

This task identifies the activities that need control, as well as the data flow points where
penetration is most likely to occur. These concepts are used to build a penetration point matrix
that helps identify computer security vulnerabilities for management action. The creation of
the penetration point matrix answers the question as to where security is needed and whether
or not security controls exist at the most likely point of penetration.

9.4.2.1 Controlling People by Controlling Activities

The computer security challenge in any organization is to control people – not only employees
but vendors, customers, passers-by, and ex-employees. The only effective way to control
people is to continually monitor their activities. To control an individual we would have to
hire another individual to watch him first, and then hire a third individual to watch the second
individual watching the first individual. Not only is this not practical, but it would be resented
by a large percentage of employees and customers. Thus, another approach is needed to
accomplish the same objective.

The solution to the computer security dilemma is to establish activities that control people.
For example, it would be difficult to keep unauthorized individuals out of the computer center,
9-30 October 25, 2006

Testing Software Controls and the Adequacy of Security Procedures
unless strategies like card-access control were initiated. Control designers refer to this concept
as division of responsibilities. The activities that appropriately divide responsibilities also
introduce the controls that monitor people activities on a continuous basis. The monitoring
through activities is not considered objectionable, though constant surveillance would be.

The following challenges exist to building an effective security system and determining the
scope or magnitude of the program:

• The identification of the appropriate activities
• The number and types of activities selected for control

9.4.2.2 Selecting Computer Security Activities

The activities requiring security controls can be divided into the following three areas:
• Interface to the computer environment

These are the activities and individuals who utilize the computer resources in the
performance of their work. The specific activities relate to functions either needed by
the computer environment or furnished to the computer environment.

• Development activities
These are the activities relating to the acquisition, creation, and maintenance of the
software needed to accomplish the processing requirements established by users of
computer facilities to meet business needs.

• Computer operations
These are the procedures and methods used to process data on the computer using the
software developed for that purpose as initiated by the activities that interface to the
computer center. Activities also include supporting tasks necessary to ensure the
integrity of the mainline operations.

The specific activities included within these three areas are listed in Table 9-1and then
discussed in more detail.
October 25, 2006 9-31

Guide to the 2006 CSTE CBOK
Table 9-1: Activities Requiring Security Controls

Organizations may wish to divide their activities into different categories, or add other
categories of activities subject to control. It is generally advisable to select activities that
closely relate to the organizational structure of the company. For example, if the records
retention program and media library are under the same individual, it would not be necessary
to break these into two distinct activities. On the other hand, the policies, procedures, and
standards activities may involve several organizational units and therefore should be broken
into two or more different activities.

9.4.2.2.1 Interface Activities
• Users of application data and programs

Users are the operational activities for which the applications have been developed
and for which the processing results are needed. The primary users of computer
resources are the operational areas responsible for the application being processed.
Secondary users include various staff units in the organization.

• Technical interface to the computer environment
The computer environment includes many system software packages, for example,
operating systems, database management systems and administrative scheduling
systems. These individual packages need to be generated and installed; then the
interfaces between the packages need to be established. Many of the technical
interfaces are performed by systems programmers and other specialists such as
database administrators.

• Development and maintenance of application systems
Application systems are the software packages that process user data to produce the
results needed by the users. These application systems can be developed from
internally generated specifications, acquired as commercially available software, or
developed under contract to vendors who develop applications on a fee basis. The
activity includes testing to ensure that the application functions correctly, and then

Interface Activities Development Activities Operations Activities

Users of application data and
programs

Policies, procedures, and
standards

Computer processing

Technical interface to the
computer environment

Training Media libraries

Development and maintenance of
application systems

Database administration Error handling

Privileged users Communications Production library control

Vendor interfaces Documentation Computer operations

Program Change Control Disaster planning

Records retention program Privileged utilities and
commands
9-32 October 25, 2006

Testing Software Controls and the Adequacy of Security Procedures
making any change necessary to ensure the operational currentness of the application.
These applications can be developed by the professional data processing staff or by the
users themselves.

• Privileged users
Each organization has a group of users who by their stature in the organization are
privileged. This means that they may not be subject to the same level of control as
non-privileged users. The two primary categories of privileged users are senior
management and auditors. Other privileged users may be specialists within the data
processing area or senior data processing management.

• Vendor interfaces
Organizations contract with a variety of vendors for special services. These include the
vendors of hardware, software, and other support services such as contract
maintenance, contract cleaning, and contract consulting services. In the performance
of vendors’ duties, it may be necessary for vendor personnel to interact with computer
operations during normal operating periods.

9.4.2.2.2 Development Activities
• Policies, procedures, and standards

The data processing organization develops policies on how the function is to be
performed. These policies are implemented through procedures, such as system
development methods by which data processing work is performed. These standards
can apply to both the professional data processing area and other users of data
processing resources, such as microcomputer users.

• Training
Training is one of the key attributes of a quality data processing organization. Dr. W.
Edwards Deming, the individual given credit for the turnaround of the Japanese
economy after the Second World War, states that training is one of the keys to quality
data processing. Dr. Deming’s philosophy states that individuals should be fully
trained in how to perform their job and then evaluated by supervision to ensure that
they have mastered those skills. Once fully trained, the individual can then operate
with minimal supervision and be expected to produce high-quality work.

• Database administration
Databases are groupings of data that are managed independently of the application
programs that utilize the data. The creation of the databases requires a new
organization structure to manage and administer the use of this new development. In
many organizations, the database also includes the definition of data and the use of the
data dictionary software documentation tool.

• Communications
This activity encompasses the electronic movement of data between one computer
facility and another. In most organizations, the communication facilities involve the
use of common carrier lines. When common carrier facilities are used, the
October 25, 2006 9-33

Guide to the 2006 CSTE CBOK
organization loses control over the security of information from the time it passes into
the hands of the common carrier until it is again returned to the organization.

• Documentation
Documentation includes all of the narrative information developed and maintained
about data processing activities. In the developmental application, it involves record
definitions, system specifications, program listings, test conditions and results,
operator manuals, user manuals, control documentation, flow charts, and other
pictorial representations. Note that the documentation may be in hard copy format, or
may be maintained on electronic media.

• Program change control
The maintenance activity has the responsibility to define, implement and test changes
to application systems. Nevertheless, the control of those changes should be
independent of the activity that actually performs the program maintenance. The
program change control activity involves logging changes, monitoring their
implementation, and verifying that all of the changes to programs are appropriately
authorized and that all authorized changes are made.

• Records retention program
This activity is designed both to retain needed computer-related documents and to
appropriately destroy unneeded computer documents. While the computer media is
designed to physically store the data, the records retention program relates to the
amount of time that the information will be retained. The records retention program
includes both manual and computer media. The time and method by which data will be
destroyed is an important part of the records retention program. Many organizations
either shred or burn key hard-copy computer documentation. In addition, some
organizations have custodians to retain and control important records.

9.4.2.2.3 Operations Activities
• Computer processing

This is the activity of processing data to produce desired results. Processing is used in
this context to indicate the totality of steps performed between the initiation of a
transaction and the final termination of that transaction. Processing includes both
manual and automated functions that manipulate data.

• Media libraries
Media libraries are repositories for computer media. The most common media are
disks, and diskettes. The media libraries may be on-site and off-site. Off-site libraries
are used to protect data in the event of a disaster to the on-site media library.

• Error handling
This activity begins when data is rejected from normal processing and continues until
the time the problem has been resolved and the transaction has been correctly
processed. Error handling normally involves a logging of errors and then a monitoring
9-34 October 25, 2006

Testing Software Controls and the Adequacy of Security Procedures
of the correction and reentry process. It is a particularly vulnerable point in many
application systems because the reentry may only be subject to minimal control.

• Production library control
The production library is the repository for computer programs and program-related
parameters. For example, job control language statements are necessary to support
programs, but are retained in libraries other than the production library. There are
many libraries, but the emphasis in this activity is on control over those libraries that
affect the integrity of computer processing.

• Computer operations
These are the steps involved in ensuring that the desired results are achieved through
computer processing. Operations involve terminal usage, support operations such as
off-line printers and office systems, and the central computer facility. Operations can
also occur at off-site service centers.

• Disaster planning
Disaster planning encompasses the retention of data for purposes other than normal
operations, and all of the procedures and methods needed to restore the integrity of
operation in the event that it is lost. Since disasters can occur at any point of activity –
for example, at a terminal operation – there may be many different activities included
within the disaster plan. It is generally advisable to involve users in the development
of the plan affecting their operations.

• Privileged utilities and commands
Various aids are employed to assist the technicians, operators, and developers in the
performance of their job responsibilities. Many of these utilities and aids are designed
to circumvent the normal operation controls in order to resolve a problem.

9.4.2.3 Controlling Business Transactions

The second dimension of the security program concerns controlling application processing.
The activities are designed to support transaction processing. The primary objective of the
data processing function is to process data, or process business transactions.

The security of transaction processing occurs at those points where there is transaction
activity. Any time a transaction is originated, moved, stored, retrieved, or processed it is
subject to unauthorized and unintentional manipulation.

When developing security over transaction processing, it is important to identify the point
where the transaction could be manipulated. These points are where the risk of manipulation
is greatest and thus where control should be established. Most organizations refer to these
points as control points. These ten control points represent the points at which transactions are
vulnerable to penetration. If security is to be broken, it will be broken at one of these points.
Invariably, the system will be penetrated at the weakest point.
October 25, 2006 9-35

Guide to the 2006 CSTE CBOK
The ten control points in transaction processing are as follows (note that this is an expanded
list for security testing from the control model in Figure 9-6):

• Transaction origination
The creation of a business transaction through the normal conduct of business
activities is the first opportunity for manipulation. An order received from a customer
would originate from the business transaction of filling a customer order.

• Transaction authorization
It is management’s responsibility to ensure that transactions are only processed in
accordance with the intent of management. The method by which this is achieved is to
require transactions to be authorized prior to processing. In some instances, this
requires a special authorization, such as signing a purchase order; in other instances,
management has authorized a transaction if it meets predetermined criteria, such as an
order from a customer whose credit has been approved by management.

• Data entry
This process transcribes transactions onto computer media. In some instances, the
transaction is both originated and authorized at the point where it is entered.
Nevertheless, these are still distinct control events to be performed.

• Transaction communication
This control point relates to all the movement activities of transactions. Although
shown as a single control point, it may be repeated several times during the life of a
single transaction. For example, a transaction can be moved between the origination
and authorization step, as well as from the output control point to the usage control
point.

• Transaction storage
This point involves placing transactions in a location to wait further processing. Like
communication, it is shown as a single control point but may occur several times in the
transaction life cycle. For example, the paper document that originates the transaction
may be stored in a file cabinet, whereas the electronic image of that transaction is
stored in a database.

• Transaction processing
Processing encompasses all mathematical and logical manipulations on data, as well
as the updating of information stored in computer files. Processing can be automated
(by computer) or manual (by people).

• Transaction retrieval
This control point involves the removal of transactions from storage. As with the
storage function, this can be a manual storage cabinet or a computerized file. The
removal can be the electronic image; in this case, the image is retained on file. There is
also a form of retrieval in which no document or image is retained after the retrieval
action is concluded.

• Transaction preparation (output)
9-36 October 25, 2006

Testing Software Controls and the Adequacy of Security Procedures
This action involves the conversion of electronic media to a format usable by people.
It may involve the display of a single transaction on a terminal, or it may involve the
consolidation, summarization, and presentation of large volumes of transactions on
reports. The content may be altered in this process; for example, state codes may be
converted to the formal spelling of the state name.

• Transaction usage
This involves actions taken on computer-produced results by either people or
programs to meet user needs. Actions can range from doing nothing, which in many
instances is a definitive action, to initiating a whole series of steps, for example,
reordering products.

• Transaction destruction
This final action on a transaction is the destruction of the transaction itself. In many
instances, organization policy and/or the law specifies the time that a transaction must
be retained before it can be destroyed. In other instances, the destruction of a
transaction is up to the individual responsible for the transaction processing.

There is a close relationship between the processing activities and the control points in
transaction processing. The transactions are processed by the previously described activities.
These activities either directly contribute to the processing (for example, the communication
activity) or support the processes that carry out the transaction (for example, the program
change control activity ensures that the programs that perform the processing are current with
business requirements).

9.4.2.4 Characteristics of Security Penetration

Many hundreds of years ago, the Chinese built a great wall around their entire civilization to
protect themselves from penetrators. This was a costly and time-consuming exercise, and in
the end proved futile. The French tried the same tactic by building the Maginot line after
World War I, only to find that the Germans went around these great fortifications, which in the
end proved to be a useless defense.

A smarter strategy is to locate security defenses at the point where penetration could be the
greatest. To select those points, we need to analyze the history of penetrations and develop
hypotheses that tell us where our systems are most vulnerable.

We need to explore two premises to understand where penetration will occur. First,
penetration will occur at the weakest point in transaction processing. Penetrations aimed at
manipulating transaction processing will pick the weakest control point in the processing
cycle for penetration. The term hacking means a continual probing to identify a weakness.
Penetrators invariably hack until they find the weak point and then penetrate at that point.
Therefore, if the weakest point in the cycle is strengthened, the effort required to penetrate the
system increases. Each time the weak point is strengthened, the ante to play the penetration
game goes up.
October 25, 2006 9-37

Guide to the 2006 CSTE CBOK
Second, penetration will occur in the least-controlled activity. The activity in which there is
the greatest opportunity to manipulate is the activity that is most subject to manipulation. For
example, if it is easiest to manipulate training, then that is the activity that will be used to
penetrate the system. In one of the classic computer fraud cases, the head teller in a bank
trained new tellers to ignore the warning messages that indicated unauthorized manipulation
was occurring.

The two variables described, control points and controllable activities, hold the key to
determining where security is needed. If either a control point or an activity is weak, it needs
to be strengthened; and if activities and control points that are related are both weak, the
opportunity for penetration is even greater. By looking at these variables and showing the
relationship, we can identify the point where the computer processes are most likely to be
penetrated.

The Computer Security Penetration-Point Matrix is directed at data manipulation. It is not
designed to identify all security threats. For example, natural disasters are a threat, but not a
people threat. Disgruntled employees may wish to sabotage the computer center by destroying
equipment; this is a threat to computer processing, but not a threat to transaction processing.
On the other hand, most of the day-to-day security threats are data related and are identifiable
through the use of the Computer Security Penetration-Point Matrix as shown in Table 9-2,
“Computer Security Penetration-Point Matrix - Interface Activities”, Table 9-3, “Computer
Security Penetration-Point Matrix - Development Activities”, and Table 9-4, “Computer
Security Penetration-Point Matrix - Operation Activities”.

These three tables or matrices divide the 19 controllable activities by their management
security control groupings. This matrix lists the ten transaction control points in the vertical
column and the controllable activities in the horizontal column.

The matrix can be completed for each major business transaction. If the organization has a
control design methodology, the insight gained from completing the form for the organization
will suffice to identify the major penetration points. If each application is uniquely controlled,
the matrix should be prepared for each transaction.

The matrix is completed control point by control point. The processing at each control point is
viewed in relation to the activities that are involved in that processing. In most instances,
many of the activities will be involved. Several questions need to be asked when looking at
each activity. First, is there a high probability that this control point could be penetrated
through this activity? For example, the first control point is transaction origination, and the
first controllable activity is users of that application. The question then becomes: Do the users
have a high probability of penetrating the point where the transaction is originated? If so, three
points are allocated and recorded in the intersection of the lines from that control point and
controllable activity.

If there is not a high probability of penetration, the question must be asked whether there is an
average probability. If so, a score of two is put in the intersection between the control point
and controllable activity. If there is a low probability, but still a probability, of penetration,
then a score of one should be recorded in the matrix intersection. If there is no probability of
penetration, or a minimal probability of penetration, a dash or zero should be put in the
9-38 October 25, 2006

Testing Software Controls and the Adequacy of Security Procedures
intersection. This procedure is continued until all the control points have been evaluated
according to each of the 19 controllable activities.

The scores allocated for each intersection should be totaled vertically and horizontally. This
will result in a minimum horizontal score of 0, and a maximum score of 57 (for example, 3
points x 19 = 57). The vertical scores will total a minimum of 0 and a maximum of 30 (for
example, 3 points x 10 control points = 30). Circle the high scores in the vertical and
horizontal Total columns. These will indicate the high-risk control points and the high-risk
activities. Circle the intersections for which there are high scores for the transaction control
point, and a high score for the controllable activity and either a two or three in the intersection
between those high total scores.

The most probable penetration points should be listed in this order:
• First priority is given to the intersection at which both the controllable activity and the

control point represent high probabilities of penetration through high total scores.
These are the points where there is the greatest risk of penetration.

• Second priority is given to the high-risk controllable activities. The activities are
general controls, which usually represent a greater risk than application control points.

• Third priority is given to the high-risk control points as indicated by high total scores
for the control point.

At the end of this security practice, the project leader will have indication of where security is
needed most. Because security will be placed on activities and at transaction control points
through activities, this identification process is important in determining the magnitude of the
computer security program.
October 25, 2006 9-39

Guide to the 2006 CSTE CBOK
Table 9-2: Computer Security Penetration-Point Matrix - Interface Activities
9-40 October 25, 2006

Testing Software Controls and the Adequacy of Security Procedures
Table 9-3: Computer Security Penetration-Point Matrix - Development Activities
October 25, 2006 9-41

Guide to the 2006 CSTE CBOK
Table 9-4: Computer Security Penetration-Point Matrix - Operation Activities
9-42 October 25, 2006

Testing Software Controls and the Adequacy of Security Procedures
9.4.3 Task 3 – Assess Security Awareness Training
The best approach for testers to assess the adequacy of their organization’s security awareness
program is to compare that program against a world-class security awareness program. This
section describes a world-class security awareness program. The assessment will identify
activities in the world-class security program that are not included in your organization’s
security awareness program. Based on the results of this assessment, IT management can
decide the merits of enhancing their security awareness program.

IT organizations cannot protect the confidentiality, integrity, and availability of information in
today’s highly networked systems environment without ensuring that all the people involved
in using and managing IT:

• Understand their roles and responsibilities related to the organizational mission
• Understand the organization’s IT security policy, procedures, and practices
• Have at least adequate knowledge of the various management, operational, and

technical controls required and available to protect the IT resources for which they are
responsible

• Fulfill their security responsibilities

As cited in audit reports, periodicals, and conference presentations, it is generally agreed by
the IT security professional community that people are the weakest link in attempts to secure
systems and networks.

The “people factor” – not technology – is the key to providing an adequate and appropriate
level of security. If people are the key, but are also a weak link, more and better attention must
be paid to this “component of security”. A robust and enterprise-wide awareness and training
program is paramount to ensure that people understand their IT security responsibilities,
organizational policies, and how to properly use them to protect the IT resources entrusted to
them.

This practice provides a strategy for building and maintaining a comprehensive awareness and
training program, as part of an organization’s IT security program. The strategy is presented in
a life cycle approach, ranging from designing, developing, and implementing an awareness
and training program, through post-implementation evaluation of the program. The security
awareness program includes guidance on how IT security professionals can identify awareness
and training needs, develop a training plan, and get organizational buy-in for the funding of
awareness and training program efforts.

While there is no one best way to develop a security awareness program, the process that
follows is an all inclusive process of the best security awareness training program. This
example includes these three steps:

1. IT management creates a security awareness policy.

2. Develop the strategy that will be used to implement that policy. (Note that this practice
focuses on that strategy. Other practices will explain how to implement the steps in that
strategy.)
October 25, 2006 9-43

Guide to the 2006 CSTE CBOK
3. Assign the roles for security and awareness to the appropriate individuals.

9.4.3.1 Step 1 – Create a Security Awareness Policy

The CIO and/or the IT Director need to establish a security awareness policy. The policy
needs to state management’s intension regarding security awareness. Experience has shown
that unless senior management actively supports security awareness, there will be a lack of
emphasis on security among the staff involved in using information technology and
information.

Management support for security awareness begins with the development and distribution of a
security awareness policy. Once that policy has been established, management makes security
awareness happen through supporting the development of a strategy and tactics for security
awareness, appropriately funding those activities, and then becoming personally involved in
ensuring the staff knows of management’s support for security awareness.

A security awareness policy can be as simple as ensuring that all stakeholders involved in the
use of information technology and the information controlled by that technology, be made
aware of their role and responsibility in assuring the security over that technology and
information. Generally that policy would be clarified and expanded with statements such as:

 “Ensure that all individuals are appropriately trained in how to fulfill their
security responsibilities before allowing them access to the system. Such training
shall ensure that employees are versed in the rules of the system and apprise
them about available technical assistance and technical security products and
techniques. Behavior consistent with the rules of the system and periodic
refresher training shall be required for continued access to the system. Before
allowing individuals access to the application, ensure that all individuals receive
specialized training focused on their responsibilities and the application rules.
This may be in addition to the training required for access to a system. Such
training may vary from a notification at the time of access (e.g., for members of
the public usage of an information retrieval application) to formal training (e.g.,
for an employee that works with a high-risk application).”

“Ensure that the organization has trained personnel sufficient to assist the
agency in complying with these requirements and related policies, procedures,
standards, and guidelines. Delegate to the agency CIO the authority to ensure
compliance with the responsibilities for information security. The required
agency-wide information security program shall include security awareness
training to inform personnel, including contractors and other users of
information systems that support the operations and assets of the agency, or
information security risks associated with their activities.”
9-44 October 25, 2006

Testing Software Controls and the Adequacy of Security Procedures
9.4.3.2 Step 2 – Develop a Security Awareness Strategy

A successful IT security program consists of:

1. developing an IT security policy that reflects business needs tempered by known risks

2. informing users of their IT security responsibilities, as documented in the security
policy and procedures

3. establishing processes for monitoring and reviewing the program.

Security awareness and training should be focused on the organization’s entire user
population. Management should set the example for proper IT security behavior within an
organization. An awareness program should begin with an effort that can be deployed and
implemented in various ways and is aimed at all levels of the organization including senior
and executive managers. The effectiveness of this effort will usually determine the
effectiveness of the awareness and training program. This is also true for a successful IT
security program.

An effective IT security awareness and training program explains proper rules of behavior for
the use of an organization’s IT systems and information. The program communicates IT
security policies and procedures that need to be followed. This must precede and lay the basis
for any sanctions imposed due to noncompliance. Users should first be informed of the
expectations. Accountability must be derived from a fully informed, well-trained, and aware
workforce.

This step describes the relationship between awareness, training, and education. An effective
IT security awareness and training program can succeed only if the material used in the
program is firmly based on the IT security awareness policy and IT issue-specific policies. If
policies are written clearly and concisely, then the awareness and training material – based on
the policies – will be built on a firm foundation. Learning is a continuum; it starts with
awareness, builds to training, and evolves into education – the awareness-training-education
continuum. The continuum shown in Figure 9-7 illustrates the conceptual relationship between
awareness, training, and education. For the purpose of this practice, clear boundaries are
established between the three methods of learning.
October 25, 2006 9-45

Guide to the 2006 CSTE CBOK
Figure 9-7 The IT Security Learning Continuum

9.4.3.2.1 Awareness

Security awareness efforts are designed to change behavior or reinforce good security
practices.

Awareness is not training. The purpose of awareness presentations is simply to focus attention
on security. Awareness presentations are intended to allow individuals to recognize IT security
concerns and respond accordingly. In awareness activities, the learner is the recipient of
information, whereas the learner in a training environment has a more active role. Awareness
9-46 October 25, 2006

Testing Software Controls and the Adequacy of Security Procedures
relies on reaching broad audiences with attractive packaging techniques. Training is more
formal, having a goal of building knowledge and skills to facilitate the job performance.

An example topic for an awareness session (or awareness material to be distributed) is virus
protection. The subject can simply and briefly be addressed by describing what a virus is,
what can happen if a virus infects a user’s system, what the user should do to protect the
system, and what the user should do if a virus is discovered.

9.4.3.2.2 Training

Training strives to produce relevant and needed security skills and competencies. Training is
defined as follows: The ‘training’ level of the learning continuum strives to produce relevant
and needed security skills and competencies by practitioners of functional specialties other
than IT security (e.g., management, systems design and development, acquisition, auditing).
The most significant difference between training and awareness is that training seeks to teach
skills, which allow a person to perform a specific function, while awareness seeks to focus an
individual’s attention on an issue or set of issues. The skills acquired during training are built
upon the awareness foundation, in particular, upon the security basics and literacy material.

An example of training is an IT security course for system administrators, which should
address in detail the management controls, operational controls, and technical controls that
should be implemented. Management controls include policy, IT security program
management, risk management, and life cycle awareness and training, computer support and
operations, and physical and environmental security issues. Technical controls include
identification and authentication, logical access controls, audit trails, and cryptography.

9.4.3.2.3 Education

Education is defined as follows: The ‘education’ level integrates all of the security skills and
competencies of the various functional specialties into a common body of knowledge, adds a
multi-disciplinary study of concepts, issues, and principles (technological and social), and
strives to produce IT security specialists and professionals capable of vision and pro-active
response.

An example of education is a degree program at a college or university. Some people take a
course or several courses to develop or enhance their skills in a particular discipline. This is
training as opposed to education. Many colleges and universities offer certificate programs,
wherein a student may take two, six, or eight classes, for example, in a related discipline, and
is awarded a certificate upon completion. Often, these certificate programs are conducted as a
joint effort between schools and software or hardware vendors. These programs are more
characteristic of training than education. Those responsible for security training need to assess
both types of programs and decide which one better addresses identified needs.

9.4.3.2.4 Professional Development

Professional development is intended to ensure that users, from beginner to the career security
professional, possess a required level of knowledge and competence necessary for their roles.
Professional development validates skills through certification. Such development and
October 25, 2006 9-47

Guide to the 2006 CSTE CBOK
successful certification can be termed “professionalization.” The preparatory work to test such
a certification normally includes study of a prescribed body of knowledge or technical
curriculum, and may be supplemented by on-the-job experience.

The movement toward professionalization within the IT security field can be seen among IT
security officers, IT security auditors, IT contractors, and system/network administrators, and
is evolving. There are two types of certification: general and technical. The general
certification focuses on establishing a foundation of knowledge on the many aspects of the IT
security profession. The technical certification focuses primarily on the technical security
issues related to specific platforms, operating systems, vendor products, etc.

Some organizations focus on IT security professionals with certifications as part of their
recruitment efforts. Other organizations offer pay raises and bonuses to retain users with
certifications and encourage others in the IT security field to seek certification.

9.4.3.3 Step 3 – Assign the Roles for Security Awareness

While it is important to have a policy that requires the development and implementation of
security and training, it is crucial that IT organizations understand who has responsibility for
IT security awareness and training. This step identifies and describes those within an
organization that have responsibility for IT security awareness and training.

Some organizations have a mature IT security program, while other organizations may be
struggling to achieve basic staffing, funding, and support. The form that an awareness and
training program takes can vary greatly from organization to organization. This is due, in part,
to the maturity of that program. One way to help ensure that a program matures is to develop
and document IT security awareness and training responsibilities for those key positions upon
which the success of the program depends.

9.4.3.3.1 IT Director/CIO

The IT Director and/or the CIO must ensure that high priority is given to effective security
awareness and training for the workforce. This includes implementation of a viable IT
security program with a strong awareness and training component. The IT Director should:

• Assign responsibility for IT security
• Ensure that an organization-wide IT security program is implemented, is well-

supported by resources and budget, and is effective
• Ensure that the organization has enough sufficiently trained personnel to protect its IT

resources
• Establish overall strategy for the IT security awareness and training program
• Ensure that senior managers, system and data owners, and others understand the

concepts and strategy of the security awareness and training program, and are
informed of the progress of the program’s implementation

• Ensure that the IT security awareness and training program is funded
• Ensure the training of personnel with significant security responsibilities
9-48 October 25, 2006

Testing Software Controls and the Adequacy of Security Procedures
• Ensure that all users are sufficiently trained in their security responsibilities
• Ensure that effective tracking and reporting mechanisms are in place.

9.4.3.3.2 IT Security Program Manager

The IT Security Program Manager has tactical-level responsibility for the awareness and
training program. In this role, the program manager should:

• Ensure that awareness and training material developed is appropriate and timely for
the intended audiences

• Ensure that awareness and training material is effectively deployed to reach the
intended audience

• Ensure that users and managers have an effective way to provide feedback on the
awareness and training material and its presentation

• Ensure that awareness and training material is reviewed periodically and updated
when necessary

• Assist in establishing a tracking and reporting strategy

9.4.3.3.3 IT Managers

IT Managers have responsibility for complying with IT security awareness and training
requirements established for their users. IT Managers should:

• Work with the CIO and IT security program manager to meet shared responsibilities
• Serve in the role of system owner and/or data owner, where applicable
• Consider developing individual development plans (IDPs) for users in roles with

significant security responsibilities
• Promote the professional development and certification of the IT security program

staff, full-time or part-time security officers, and others with significant security
responsibilities

• Ensure that all users (including contractors) of their system (i.e., general support
systems and major applications) are appropriately trained in how to fulfill their
security responsibilities before allowing them access

• Ensure that users (including contractors) understand specific rules of each system and
application

• Work to reduce errors and omissions by users due to lack of awareness and/or training.

9.4.3.3.4 Users

Users are the largest audience in any organization and are the single most important group of
people who can help to reduce unintentional errors and IT vulnerabilities. Users may include
employees, contractors, foreign or domestic guest researchers, other agency personnel,
visitors, guests, and other collaborators or associates requiring access. Users must:

• Understand and comply with the IT security policies and procedures
• Be appropriately trained in the rules of behavior for the systems and applications to

which they have access
October 25, 2006 9-49

Guide to the 2006 CSTE CBOK
• Work with management to meet training needs
• Keep software/applications updated with security patches
• Be aware of actions they can take to better protect their information. These actions

include, but are not limited to: proper password usage, data backup, proper anti-virus
protection, reporting any suspected incidents or violations of security policy, and
following rules established to avoid social engineering attacks and rules to deter the
spread of spam or viruses and worms.

9.4.4 Task 4 – Understand the Attributes of an Effective
Security Control

When testers evaluate a security control they need to understand what makes an effective
security control. The following eight security control attributes of an effective security control
are designed to help testers determine whether or not a security control is effective.

• Simplicity
Security mechanisms (and information systems in general) should be as simple as
possible. Complexity is at the root of many security issues.

• Fail Safe
If a failure occurs, the system should fail in a secure manner. That is, if a failure
occurs, security should still be enforced. It is better to lose functionality than lose
security.

• Complete Mediation
Rather than providing direct access to information, mediators that enforce access
policy should be employed. Common examples include file system permissions, web
proxies and mail gateways.

• Open Design
System security should not depend on the secrecy of the implementation or its
components. “Security through obscurity” does not work.

• Separation of Privilege
Functions, to the degree possible, should be separate and provide as much granularity
as possible. The concept can apply to both systems and operators and users. In the case
of system operators and users, roles should be as separate as possible. For example, if
resources allow, the role of system administrator should be separate from that of the
security administrator.

• Psychological Acceptability
Users should understand the necessity of security. This can be provided through
training and education. In addition, the security mechanisms in place should present
users with sensible options that will give them the usability they require on a daily
basis. If users find the security mechanisms too cumbersome, they find ways to work
9-50 October 25, 2006

Testing Software Controls and the Adequacy of Security Procedures
around or compromise them. An example of this is using random passwords that are
very strong but difficult to remember; users may write them down or look for methods
to circumvent the policy.

• Layered Defense
Organizations should understand that any single security mechanism is generally
insufficient. Security mechanisms (defenses) need to be layered so that compromise of
a single security mechanism is insufficient to compromise a host or network. There is
no “magic bullet” for information system security.

• Compromise Recording
When systems and networks are compromised, records or logs of that compromise
should be created. This information can assist in security of the network and host after
the compromise and assist in identifying the methods and exploits used by the attacker.
This information can be used to better secure the host or network in the future. In
addition, the records and logs can assist organizations in identification and
prosecution.

9.4.5 Task 5 – Selecting Techniques to Test Security
Some security testing techniques are predominantly manual, requiring an individual to initiate
and conduct the test. Other tests are highly automated and require less human involvement.
Regardless of the type of testing, testers that plan and conduct security testing should have
significant security and networking knowledge, including expertise in the following areas:
network security, firewalls, intrusion detection system, operating systems, programming and
networking protocols (such as TCP/IP).

The following security testing techniques are recommended for testing security:
• Network scanning
• Vulnerability scanning
• Password cracking
• Log review
• Integrity checkers
• Virus detection
• War dialing
• War driving (wireless LAN testing)
• Penetration testing

Often, several of these testing techniques are used together to gain more comprehensive
assessment of the overall network security posture. For example, penetration testing usually
includes network scanning and vulnerability scanning to identify vulnerable hosts and
services that may be targeted for later penetration. Some vulnerability scanners incorporate
October 25, 2006 9-51

Guide to the 2006 CSTE CBOK
password cracking. None of these tests by themselves will provide a complete picture of the
network or its security posture.

The selection of security testing techniques involves the following three steps which are
described below:

• Understand security testing techniques
• Select security testing techniques based on the strengths and weaknesses of those

techniques
• Determine the frequency of use of security testing techniques based on the system

category

9.4.5.1 Step 1 – Understand Security Testing Techniques

The individual selecting the security testing techniques should be knowledgeable in both
security and the available testing techniques for security. Testing information security is a
specialized test competency. Table 9-5 on page 53 contains the description of nine frequently
used software testing techniques. The description of the technique should be adequate for
knowledgeable software security testers but may be inadequate for testers new to the security
testing area.

9.4.5.2 Step 2 – Select Security Testing Techniques Based on the Strengths and
Weaknesses of Those Techniques

Security testers should have identified a testing objective prior to selecting the security testing
techniques. The selection of the technique should be based on the strengths and weaknesses of
the technique as it applies to the security test objective. Table 9-5, “Comparisons of Network
Testing Techniques” lists the strengths and weaknesses of the nine security testing techniques
described in Step 1. The selection of the technique can be accomplished by reviewing those
strengths and weaknesses to determine the applicability of that security testing technique to
the security testing objective.
9-52 October 25, 2006

Testing Software Controls and the Adequacy of Security Procedures

Table 9-5: Comparisons of Network Testing Techniques
Type of
Technique Strengths Weaknesses

Network Scanning • Fast (as compared to vulnerability
scanners or penetration testing)

• Efficiently scans hosts, depending on
number of hosts in network

• Many excellent freeware tools available
• Highly automated (for something

component)
• Low cost

• Does not directly identify known
vulnerabilities (although will
identify commonly used Trojan
ports)

• Generally used as a prelude to
penetration testing not as final test

• Requires significant expertise to
interpret results

Vulnerability
Scanning

• Can be fairly fast depending on number
of hosts scanned

• Some freeware tools available
• Highly automated (for scanning)
• Identifies known vulnerabilities
• Often provides advice on mitigating

discovered vulnerabilities
• High cost (commercial scanners) to low

(freeware scanners)
• Easy to run on a regular basis

• Has high false positive rate
• Generates large amount of traffic

aimed at a specific host (which can
cause the host to crash or lead to a
temporary denial of service)

• Not stealthy (e.g., easily detected
by IDS, firewall and even end-
users [although this may be useful
in testing the response of staff and
altering mechanisms])

• Can be dangerous in the hands of
a novice (especially DOS attacks)

• Often misses latest vulnerabilities
• Identifies only surface

vulnerabilities
Penetration
Testing

• Tests network using the methodologies
and tools that attackers employ

• Verifies vulnerabilities
• Goes beyond surface vulnerabilities and

demonstrates how these vulnerabilities
can be exploited iteratively to gain
greater access

• Demonstrates that vulnerabilities are not
purely theoretical

• Can provide the realism and evidence
needed to address security issues

• Social engineering allows for testing of
procedures and the human element
network security

• Requires great expertise
• Very labor intensive
• Slow, target hosts may take hours/

days to “crack”
• Due to time required, not all hosts

on medium or large sized networks
will be tested individually

• Dangerous when conducted by
inexperienced testers

• Certain tools and techniques may
be banned or controlled by agency
regulations (e.g., network sniffers,
password crackers, etc.)

• Expensive
• Can be organizationally disruptive

Password
Cracking

• Quickly identifies weak passwords
• Provides clear demonstration of

password strength or weakness
• Easily implemented
• Low cost

• Potential for abuse
• Certain organizations restrict use
October 25, 2006 9-53

Guide to the 2006 CSTE CBOK

9.4.5.3 Step 3 – Determine the Frequency of Use of Security Testing Techniques
Based on the System Category

This step proposes two categories of systems subject to security testing. Table 9-6,
“Summarized Evaluation and Frequency Factors” describes a general schedule and list of
evaluation factors for testing categories. Category 1 systems are those sensitive systems that
provide security for the organization that provide other critical functions. These systems often
include:

• Firewalls, routers, and perimeter defense systems such as for intrusion detection,
• Public access systems such as web and e-mail servers,
• DNS and directory servers and other internal systems that would likely be intruder

targets.

Category 2 systems are generally all other systems, such as those systems that are protected by
firewalls, etc., but still must be tested periodically. Use Table 9-6, “Summarized Evaluation

Log Reviews • Provides excellent information
• Only data source that provides historical

information

• Cumbersome to manually review
• Automated tools not perfect can

filter out important information
File Integrity
Checkers

• Reliable method of determining whether
a host has been compromised

• Highly automated
• Low cost

• Does not detect any compromise
prior to installation

• Checksums need to be updated
when the system is updated

• Checksums need to be protected
(e.g., read only (CD-ROM)
because they provide no protection
if they can be modified by an
attacker

Virus Detectors • Excellent at preventing and removing
viruses

• Low/Moderate cost

• Require constant updates to be
effective

• Some false positive issues
• Ability to react to new, fast

replicating viruses is often limited
War Dialing • Effective way to identify unauthorized

modems
• Legal and regulatory issues

especially if using public switched
network

• Slow
War Driving • Effective way to identify unauthorized

wireless access points
• Possible legal issues if other

organization’s signals are
intercepted

• Requires some expertise in
computing, wireless networking
and radio engineering

Table 9-5: Comparisons of Network Testing Techniques (Continued)
Type of
Technique Strengths Weaknesses
9-54 October 25, 2006

Testing Software Controls and the Adequacy of Security Procedures

and Frequency Factors” to determine the frequency of security testing based on one of those
two system categories.

Table 9-6: Summarized Evaluation and Frequency Factors

Test
Technique

Category 1
Frequency

Category 2
Frequency Benefit

Network
scanning

Continuously to
Quarterly

Semi-Annually • Enumerates the network structure and
determines the set of active hosts, and
associated software

• Identifies unauthorized hosts connected to a
network

• Identifies open ports
• Identifies unauthorized services

Vulnerability
Scanning

Quarterly or bi-
monthly (more
often for certain
high risk
systems), when
the vulnerability
database is
updated

Semi-Annually • Enumerates the network structure and
determines the set of active hosts, and
associated software

• Identifies a target set of computers to focus
vulnerability analysis

• Identifies potential vulnerabilities on the target
set

• Validates that operation systems and major
applications are up-to-date with security patches
and software versions

Penetration
Testing

Annually Annually • Determines how vulnerable an organization’s
network is to penetration and the level of
damage that can be incurred

• Tests IT staff’s response to perceived security
incidents and their knowledge of an
implementation of the organization’s security
policy and system’s security requirements

Password
Cracking

Continuously to
same frequency
as expiration
policy

Same
frequency as
expiration
policy

• Verifies that the policy is effective in producing
passwords that are more or less difficult to break

• Verifies that users select passwords that are
compliant with the organization’s security policy

Log Reviews Daily for critical
systems, (e.g.,
firewalls)

Weekly • Validates that the system is operating according
to policies

Integrity
Checkers

Monthly and in
case of
suspected
incidents

Monthly • Detects unauthorized file modifications

Virus
Detectors

Weekly or as
required

Weekly or as
required

• Detects and deletes viruses before successful
installation on the system

War Dialing Annually Annually • Detects unauthorized modems and prevents
unauthorized access to a protected network

War Driving Continuously to
weekly

Semi-Annually • Detects unauthorized wireless access points and
prevents unauthorized access to a protected
network
October 25, 2006 9-55

Guide to the 2006 CSTE CBOK
This page intentionally left blank.
9-56 October 25, 2006

Testing New Technologies
esters require skills in their organization’s current technology, as well as a general
understanding of the new information technology that might be acquired by their
organization. The new technology skills are required because test plans need to be

based on the types of technology used. Also technologies new to the organization and the
testers pose technological risks which must be addressed in test planning and test execution.
This section addresses the newer IT technologies, but any technology new to the testers or the
organization must be addressed in the test plan.

10.1 Risks Associated with New Technology
Testers need to answer the following questions when testing a new project:

• Is new technology utilized on the project being tested?
• If so, what are the concerns and risks associated with using that technology?
• If significant risks exist how will the testing process address those risks?

The following are the more common risks associated with the use of technology new to an IT
organization. Note that this list is not meant to be comprehensive but rather representative of
the types of risks frequently associated with using new technology:

• Unproven technology

Risks Associated with New Technology 10-1
Newer IT Technologies that Impact Software Testing 10-3
Testing the Effectiveness of Integrating New Technology 10-12

Skill
Category

10

T

October 25, 2006 10-1

Guide to the 2006 CSTE CBOK
The technology is available but there is not enough experience with the use of that
technology to determine whether or not the stated benefits for using that technology can
actually be received.
• Technology is defective

The technology as acquired does not work in the specified manner. For example there
could be incompatible processes in building software using agile development, or a
flaw in the hardware circuitry.

• Inefficient technology
The technology fails to achieve the productivity gains associated with that technology.

Technology incompatible with other implemented technologies

The technologies currently in place in the IT organization are incompatible with the
new technology acquired. Therefore, the new technology may meet all of its stated
benefits but the technology cannot be used because of incompatibility with currently
implemented technologies.

• New technology obsoletes existing implemented technologies
Many times when vendors develop new technologies, such as a new version of
software, they discontinue support of the existing software version. Thus, the
acquisition of new technology involves deleting the existing technologies and
replacing it with the new technologies. Sometimes vendors do not declare the current
technologies obsolete until there has been general acceptance with the new
technology. If testers do not assume that older technologies will become obsolete they
fail to address the significant new technology risk.

• Variance between documentation and technology execution
The manuals and instructions associated with using new technologies may differ from
the actual performance of the technologies. Thus when organizations attempt to use
the new technologies with the documented procedures the new technologies will fail
to perform as specified.

• Staff not competent to use new technology
Training and deployment processes may be needed to assure the organization has the
adequate competency to use the new technology effectively and efficiently. If the
organization’s staff does not possess the necessary skill sets, they will not gain the
benefits attributable to the new technology.

• Lack of understanding how to optimize the new technology
Studies show that most organizations only use limited aspects of new technology.
They do not take the time and effort to learn the technology well enough to optimize
the use of the technology. Therefore, while some benefits may be received, the
organization may miss some of the major benefits associated with using a new
technology.

• Technology not incorporated into the organization’s work processes
10-2 October 25, 2006

Testing New Technologies
This is typical implementation of new technologies at technology maturity Level 1. At
this level, management cannot control how the new technology will be used in the IT
organization. Because staff has the decision over whether or not to use technology and
how to use it, some significant benefits associated with that technology may be lost.

• Obsolete testing tools
The implementation of new technology may obsolete the use of existing testing tools.
New technologies may require new testing methods and tools.

• Inadequate vendor support
The IT staff may need assistance in using and testing the technology, but are unable to
attain that assistance from the vendor.

10.2 Newer IT Technologies that Impact Software
Testing

The following is a list of newer IT technologies that increase the risk associated with testing
software systems. The list is not meant to be exhaustive but rather representative of the types
of technologies that many IT organizations consider new that impact software testing.

10.2.1 Web-Based Applications
A Web-based system consists of hardware components, software components, and users.
Having an understanding of a Web application's internal components and how those
components interface with one another, even if only at a high level, leads to better testing.

Such knowledge allows for the analysis of a program from its developer's perspective – which
is invaluable in determining test strategy and identifying the cause of errors. Furthermore,
analyzing the relationships between the components leads to an understanding of the
interaction of the work product from the perspective of several independent developers, as
opposed to from only the individual developer's perspective.

The work product is analyzed from a perspective that is not evident from the analysis of any
individual component. You analyze how all these components interact with each other to
make up the system. The gray-box tester provides this capability. You look at the system at a
level that is different from that of the developer. Just like the black-box tester, you add a
different perspective and, therefore, value. Generally, we learn about an application's
architecture from its developers during a walkthrough.

An alternate approach is to do your own analysis by tracing communication traffic between
components. For example, tests can be developed that hit a database server directly, or on
behalf of actual user activities, via browser-submitted transactions. Regardless, we need to
October 25, 2006 10-3

Guide to the 2006 CSTE CBOK
have a firm grasp of typical Web-based application architecture at the component level if we
are to know what types of errors to look for and what questions to ask.

This discussion will focus on the software components of a typical Web-based system:
• Client-based components on the front end, such as Web browsers, plug-ins, and

embedded objects
• Server-side components on the back end, such as application server components,

database applications, third-party modules, and cross-component communication

It offers insight to what typically happens when users click buttons on browser-based
interfaces. It also explores pertinent testing questions such as:

• Which types of plug-ins are used by the application under test?
• What are the testing implications associated with these plug-ins?
• What issues should be considered during functionality and compatibility testing once

the plug-ins have been integrated into the system?
• How should the distribution of server-side components affect test design and strategy?
• Which Web and database servers are supported by the application?
• How Web-to-database connectivity is implemented and what are the associated testing

implications?
• How can testing be partitioned to focus on problematic components?

10.2.2 Distributed Application Architecture
In a distributed architecture, components are grouped into clusters of related services.
Distributed architectures are used for both traditional client-server systems and Internet-based
client-server systems.

10.2.2.1 Traditional Client-Server Systems

A database access application typically consists of four elements:
• User interface (UI) code – the end-user or input/output (I/O) devices interact with this

for I/O operations.
• Business logic code – applies rules, computes data, and manipulates data.
• Data-access service code – handles data retrieval and updates to the database, in

addition to sending results back to the client.
• Data storage – holds the information.
10-4 October 25, 2006

Testing New Technologies
10.2.2.2 Thin- versus Thick-Client Systems

When the majority of processing is executed on the server-side, a system is considered to be a
thin-client system. When the majority of processing is executed on the client-side, a system is
considered to be a thick-client system.

In a thin-client system, the user interface runs on the client host while all other components
run on the server host(s). The server is responsible for all services. After retrieving and
processing data, only a plain HTML page is sent back to the client.

By contrast, in a thick-client system, most processing is done on the client-side; the client
application handles data processing and applies logic rules to data. The server is responsible
only for providing data access features and data storage. Components such as ActiveX
controls and Java applets, which are required for the client to process data, are hosted and
executed on the client machine.

Each of these systems calls for a different testing strategy. In thick-client systems, testing
should focus on performance and compatibility. If Java applets are used, the applets will be
sent to the browser with each request, unless the same applet is used within the same instance
of the browser. If the applet is a few hundred kilobytes in size, it will take a fair amount of
bandwidth to download it with reasonable response time.

Compatibility issues in thin-client systems are less of a concern. Performance issues do,
however, need to be considered on the server-side, where requests are processed, and on the
network where data transfer takes place (sending bitmaps to the browser). The thin-client
system is designed to solve incompatibility problems as well as processing-power limitations
on the client-side. Additionally, thin-client systems ensure that updates happen immediately,
because the updates are applied at that server only.

Personal Digital Assistants (PDAs), for example, due to their small size, are not capable of
handling much processing. The thin-client model serves PDAs well because it pushes the
work to servers, which perform the processing and return results back to the client, or the
PDA.

Desktop computers in which the operating systems deliver a lot of power and processing
enable much more processing to be executed locally; therefore, the thick-client approach is
commonly employed to improve overall performance.

10.2.3 Wireless Technologies
Wireless technologies represent a rapidly emerging area of growth and importance by
providing ever-present access to the Internet and e-mail. It seems everyone wants unrestrained
network access from general-purpose information to high-bandwidth applications. Even in the
education world there is interest in creating mobile computing labs utilizing laptop computers
equipped with wireless Ethernet cards.
October 25, 2006 10-5

Guide to the 2006 CSTE CBOK
The IT industry has made significant progress in resolving some issues to the widespread
adoption of wireless technologies. Some of those issues have included non-existent standards,
low bandwidth, and high infrastructure and service cost. Wireless is being adopted for many
new applications: to connect computers, to allow remote monitoring and data acquisition, to
provide access control and security, and to provide a solution for environments where wires
may not be the best solution.

10.2.3.1 Important Issues for Wireless

As with any relatively new technology, there are many issues that affect implementation and
utilization of wireless networks. There are both common and specific issues depending on the
type of wireless network. Some of the common issues include: electromagnetic interference
and physical obstacles that limit coverage of wireless networks. Some of the more specific
issues are: standards, data security, throughput, and ease of use. The following issues are
discussed further:

• Standards
• Coverage
• Security

10.2.3.1.1 Standards

A major obstacle for deployment of wireless networks is the existence of multiple standards.
While GSM is the only widely supported standard in Europe and Asia, multiple standards are
in use in the U.S. As a result, the U.S. has lagged in wireless networks deployment. Just
recently, organizations have been formed to ensure network and device interoperability. For
example, the adoption of the 802.11g standard has made wireless data networks one of the
hottest newcomers in the current wireless market.

10.2.3.1.2 Coverage

Coverage mainly depends on the output power of the transmitter, its location and frequency
used to transmit data. For example, lower frequencies are more forgiving when it comes to
physical obstacles, like walls and stairways, while high frequencies require clear line of sight.
For each particular application, throughput decreases as distance from the transmitter or
access point increases.

10.2.3.1.3 Security

Data security is a major issue for wireless due to the nature of the transmission mechanism,
which are the electromagnetic signals passing through the air. It is commonly believed that
voice applications are less secure than data applications. This is due to limited capabilities of
existing technologies to protect information that is being transmitted. For example, in
metropolitan areas, users are at risk in that simple scanning devices can highjack cell phone
numbers and be maliciously used.
10-6 October 25, 2006

Testing New Technologies
In WLANs, authentication and encryption provide data security. Current implementations
include:

• MAC address-based access lists on access points, where only registered and
recognized MAC addresses are accepted and allowed to join the network.

• A closed wireless system, where users have to know the non-advertised network name
to join.

• RADIUS server-based authentication, where users are authenticated against a
centralized RADIUS server based on their MAC address or their user name and
password.

• Wireless Equivalency Privacy (WEP) utilizes data encryption with 40-bit or 128-bit
keys that are hidden from users. WEP provides three options, depending on the level
of security needed: no encryption of data, combination of encrypted and non-
encrypted data, and forced data encryption.

• High security solutions for encryption are proprietary. Both the Cisco AP-350 and
Lucent/Agere AS-2000 offer per user/per session encryption keys and authenticates
users based on a user name/password scheme.

It is important to understand that in WLANs, data is encrypted only between the wireless
adapter and the access point. Data travels through a wired LAN un-encrypted. Therefore, data
transmitted by wireless is not more secure than data transmitted through the wire, but
probably not less secure. Application-level encryption mechanisms, like secure web
transactions SSL and SSH, are responsible for further protection of data.

10.2.4 New Application Business Models

10.2.4.1 e-Commerce

The best way to look at e-commerce is to think of it as the conducting of business
communication and transactions over networks and through computers. Some may even
define electronic commerce (e-commerce) as the buying and selling of goods and services,
and the transfer of funds, through digital communications. However e-commerce may also
include all inter-company and intra-company functions (such as marketing, finance,
manufacturing, selling, and negotiation) that enable commerce and use electronic mail, file
transfer, fax, video conferencing, workflow, or interaction with a remote computer. Electronic
commerce also includes buying and selling over the Web, electronic funds transfer, smart
cards, digital cash, and all other ways of doing business over digital networks

10.2.4.2 e-Business

Electronic business (e-business) is, in its simplest form, the conduct of business on the
Internet. It is a more generic term than e-commerce because it refers to not only buying and
selling but also servicing customers and collaborating with business partners.
October 25, 2006 10-7

Guide to the 2006 CSTE CBOK
IBM, in 1997, was one of the first to use the term when it launched a campaign built around
the term. Today, many corporations are rethinking their businesses in terms of the Internet and
its capabilities. Companies are using the Web to buy parts and supplies from other companies,
to collaborate on sales promotions, and to do joint research. Exploiting the convenience,
availability, and global reach of the Internet, many companies, both large and small have
already discovered how to use the Internet successfully.

Almost any organization can benefit from doing electronic business over the Internet. A larger
company might launch a Web site as an extra marketing channel to increase sales by a few per
cent. An individual with a computer and a modem or high speed cable might build an Internet-
only business from nothing.

But you don’t actually have to sell products from a Web site to benefit from Internet
technology. For example, a factory could use the Web to make production information
instantly available to sales offices hundreds of miles away, quite apart from selling products.

It doesn’t take too much surfing on the Web to realize that most business sites today are little
more than pretty brochures. They don’t really do anything; they allow window-shopping only.
But this, too, is e-business. Companies spend thousands of dollars perfecting their company
image. By building better brand awareness, they hope to increase demand for their products.

10.2.5 New Communication Methods

10.2.5.1 Wireless Applications

There are numerous applications for all the different wireless technologies. To gain a better
understanding the applications of wireless technologies are divided into the following groups:

• Voice and messaging
• Hand-held and other Internet-enabled devices
• Data networking

10.2.5.1.1 Voice and Messaging

Cell phones, pagers, and commercial two-way business radios can provide voice and
messaging services. These devices will use either analog or digital standards that differ
primarily in the way in which they process signals and encode information.

• The analog standard is the Advanced Mobile Phone Service (AMPS).
• The digital standards are: Global System for Mobile Communications (GSM), Time

Division Multiple Access (TDMA), or Code Division Multiple Access (CDMA).

Normally, devices operate within networks that provide local, statewide, national or
worldwide coverage. In the US, these large and costly networks are operated by carriers such
as Sprint, Verizon, Cingular and local phone companies. They operate in different frequency
bands allocated by the Federal Communications Commission (FCC).
10-8 October 25, 2006

Testing New Technologies
Throughput depends on the standard being used, but presently in the U.S., these networks
operate throughput rates up to 16 kilobits-per-second (Kbps). New digital standards, also
referred to as Third-Generation Services or 3G, provide 30-times faster transfer rates and
enhanced capabilities. Interoperability issues exist between networks, carriers, and devices
because of the many standards. Generally, carriers charge their customers based on per minute
utilization or per number of messages.

10.2.5.1.2 Hand-Held and Internet-Enabled Devices

Internet-enabled cell phones and Personal Digital Assistants (PDAs) have emerged as the
newest products that can connect to the Internet across a digital wireless network. Available
protocols, such as Wireless Application Protocol (WAP), and languages, such as WML
(Wireless Markup Language) have been developed specifically for these devices to connect to
the Internet.

However, the majority of current Internet content is not optimized for these devices; presently,
e-mail, stock quotes, news, messages, and simple transaction-oriented services are optimally
suited. Other limitations include:

• low bandwidth
• low quality of service
• high cost
• the need for additional equipment
• high utilization of devices' battery power

Nevertheless, this type of wireless technology is growing rapidly with better and more
interoperable products.

10.2.5.1.3 Data Networking

This area focuses on pure data applications in wireless local area networks (WLANs) and
data, voice, and video converged in broadband wireless. Also addressed briefly is Bluetooth,
an emerging wireless technology.

• Wireless Local Area Networks
Wireless Local Area Networks (WLAN) are implemented as an extension to wired
LANs within a building and can provide the final few meters of connectivity between
a wired network and the mobile user.

WLANs are based on the IEEE 802.11 standard. There are three physical layers for
WLANs: two radio frequency specifications (RF - direct sequence and frequency
hopping spread spectrum) and one infrared (IR). Most WLANs operate in the 2.4 GHz
license-free frequency band and have throughput rates up to 2 Mbps. The older
802.11b standard is direct sequence only, and provides throughput rates between 2
Mbps to 54 Mbps.
October 25, 2006 10-9

Guide to the 2006 CSTE CBOK
Currently the predominant standard is widely supported by vendors such as Cisco,
Lucent, Apple, etc. The new standard, 802.11g, will operate in the 5 GHz license-free
frequency band and is expected to provide throughput rates between 54 Mbps to 108
Mbps.

WLAN configurations vary from simple, independent, peer-to-peer connections
between a set of PCs, to more complex, intra-building infrastructure networks. There
are also point-to-point and point-to-multipoint wireless solutions. A point-to-point
solution is used to bridge between two local area networks, and to provide an
alternative to cable between two geographically distant locations (up to 30 miles).
Point-to-multipoint solutions connect several, separate locations to one single location
or building.

In a typical WLAN infrastructure configuration, there are two basic components:

• Access Points

An access point/base station connects to a LAN by means of Ethernet cable.
Usually installed in the ceiling, access points receive, buffer, and transmit data
between the WLAN and the wired network infrastructure. A single access point
supports on average twenty users and has a coverage varying from 60+ feet in areas
with obstacles (walls, stairways, elevators) and up to 300+ feet in areas with clear
line of sight. A building may require several access points to provide complete
coverage and allow users to roam seamlessly between access points.

• Wireless Client Adapter

A wireless adapter connects users via an access point to the rest of the LAN. A
wireless adapter can be a PC card in a laptop, a USB adapter or a PCI adapter in a
desktop computer, or can be fully integrated within a handheld device.

• Broadband Wireless
Broadband wireless (BW) is an emerging wireless technology that allows
simultaneous wireless delivery of voice, data, and video. BW is considered a
competing technology with Digital Subscriber Line (DSL). It is generally
implemented in metropolitan and urban areas and requires clear line of sight between
the transmitter and the receiving end. BW provides the following two services, both of
which operate in FCC-licensed frequency bands:

• Local multi-point distribution service (LMDS)

• Multi-channel multi-point distribution service (MMDS)

LMDS is a high-bandwidth wireless networking service in the 28-31 GHz range of the
frequency spectrum and has sufficient bandwidth to broadcast all the channels of
direct broadcast satellite TV, all of the local over-the-air channels, and high speed full
duplex data service. Average distance between LMDS transmitters is approximately
one mile apart.
10-10 October 25, 2006

Testing New Technologies
MMDS operates at lower frequencies, in the 2 GHz licensed frequency bands. MMDS
has wider coverage than LMDS, up to 35 miles, but has lower throughput rates.
Companies such as Sprint and Verizon own MMDS licenses in the majority of U.S.
metropolitan areas. Broadband wireless still involves costly equipment and
infrastructures. However, as it is more widely adopted, it is expected that the service
cost will decrease.

• Bluetooth
Bluetooth is a technology specification for small form factor, low-cost, short-range
wireless links between mobile PCs, mobile phones, and other portable handheld
devices, and connectivity to the Internet. The Bluetooth Special Interest Group (SIG)
is driving development of the technology and bringing it to market and includes
promoter companies such as, 3Com, Ericsson, IBM, Intel, Lucent, Motorola, Nokia,
and over 1,800 Adopter/Associate member companies.

Bluetooth covers a range of up to 30+ feet in the unlicensed 2.4GHz band. Because
802.11 WLANs also operate in the same band, there are interference issues to
consider. Although Bluetooth technology and products started being available in 2001,
interoperability still seems to be a big problem.

10.2.6 New Testing Tools

10.2.6.1 Test Automation

Test automation is the use of software to control the execution of tests, the comparison of
actual outcomes to predicted outcomes, the setting up of test preconditions, and other test
control and test reporting functions.

Over the past few years, tools that help developers quickly create applications with graphical
user interfaces (GUI) have dramatically improved their productivity. This improved
productivity has increased the pressure on testers, who are often perceived as bottlenecks to
the delivery of software products. Testers are being asked to test more and more code in less
and less time. Test automation is one way to help testers quickly create and execute tests, as
manual testing is time consuming.

New test automation tools are now available that help testers dramatically improve their
productivity by reducing the test time as well as the cost. Other test automation tools support
execution of performance tests. Many test automation tools provide record and playback
features that allow users to record interactively user actions and replay it back any number of
times, comparing actual results to those expected.

A growing trend in software development is to use testing frameworks, such as the JUnit or
NUnit frameworks. These allow the code to conduct unit tests to determine whether various
sections of the code are acting as expected in various circumstances. Test cases describe tests
October 25, 2006 10-11

Guide to the 2006 CSTE CBOK
that need to be run on the program to verify that the program runs as expected. In a properly
tested program, there is at least test in the code designed to satisfy a unit test requirement.

JUnit is a unit test framework for the Java programming language. JUnit was created by Kent
Beck along with Erich Gamma. Since then, JUnit has served as an inspiration and a role
model for a variety of other unit test frameworks for other languages, such as (in alphabetical
order):

• AsUnit for ActionScript
• NUnit for Microsoft.Net
• PHPUnit for PHP
• PyUnit for Python
• SimpleTest for PHP
• Test:Class for Perl (among others)

Experience gained with JUnit has been important in the development of test-driven
development. As a result, some knowledge of JUnit is often presumed in discussions of test-
driven development as can be seen in the book, Test-Driven Development: By Example, by
Kent Beck.

Another important aspect of test automation is the idea of partial test automation, or
automating parts but not all of the software testing process. If, for example, an oracle cannot
reasonably be created, or if fully automated tests would be too difficult to maintain, then a
software tools engineer can create testing tools to help testers perform their jobs more
efficiently.

Testing tools can help automate tasks without necessarily automating tests in an end-to-end
fashion such as in the following tasks:

• product installation
• test data creation
• GUI interaction
• problem detection (consider parsing or polling agents equipped with oracles)
• defect logging

10.3 Testing the Effectiveness of Integrating New
Technology

The mission assigned to software testers will determine whether or not testers need to assess
the impact of new technologies on their software testing roles and responsibilities. That
responsibility can be assigned to software testers, software developers or process engineering
and quality assurance groups. If the responsibility is assigned to testers they need to develop
the competencies to fulfill that responsibility.
10-12 October 25, 2006

Testing New Technologies
This skill category has been included in the software testing CBOK because it is a testing
activity performed by many software testing groups. It also represents an opportunity for
software testers to provide more value to their IT organizations. The material in this skill
category has been designed to define a potential role for software testers and provide insight
into how that responsibility might be fulfilled.

This integration effectiveness test involves these two tasks:
• Determine the process maturity level of the technology
• Test the adequacy of the controls over implementing the new technology

10.3.1 Determine the Process Maturity Level of the Technology
The high productivity increases associated with the use of IT are partially attributable to the
new technologies organizations use. Since the early days of computing the computing power
of systems increases ten-fold every few years. New supporting work processes and methods
are needed to benefit from that change in technology.

Any change has risk associated with it. However, those risks should not discourage
organizations from acquiring and implementing new technologies. What is important is that
the appropriate infrastructure and processes are in place to control the use of the new
technologies effectively and efficiently.

The SEI capability maturity model uses five levels of maturity. The model shows a normal
evolution from a state that many refer to as “chaos” which is Level 1 to a very mature level in
which the use of technology and processes is optimized.

Each time new technology is acquired an IT organization’s ability to optimize the use of that
technology reverts to Level 1. The maturity process needs to be repeated to mature the use of
that technology until it is optimized into the organization’s systems. Depending on the
technology acquired the time span to mature the use of that technology can vary from days to
years.

The maturing of technology occurs through building and implementing work processes. At
lower levels there is significant variance in performing work using new technologies while at
higher levels that variance is significantly reduced. For example if an IT organization acquired
an agile process for building software one would expect that shortly after acquiring the agile
technology the implementation effort to implement like projects would vary significantly
from project to project. As the agile technology is implemented into the work processes and
training programs, that variance is reduced so that at higher maturity levels the effort to
implement like projects should be very similar.

The following is a version of SEI’s capability maturing model that focuses on maturing the
use of the newer IT technologies. Testers should have a high-level knowledge of how to
mature a new technology so they can determine the level of risk associated with a specific
technology. Knowing the maturity level of a new technology should aid in building a test plan
that focuses on the level of risk, testers must address when building their test plan.
October 25, 2006 10-13

Guide to the 2006 CSTE CBOK
10.3.1.1 Level 1 – People-Dependent Technology

At Level 1 the technology is available for use by individuals at their discretion. Generally they
are not required to use the technology, nor are there specific defined methods for using the
technology. The individual must understand the technology, become competent in its use, and
utilize it for building and operating information systems. The effectiveness and efficiency of
technology at Level 1 is solely people-dependent.

10.3.1.2 Level 2 – Use Description-Dependent Technology Processes

At Level 2 there are processes in how to use the technology, but projects using that technology
can, at their discretion, vary from the process. For example, security “handshaking” routines
are proposed for wireless technology, but if project leaders do not believe that level of security
is needed, they can implement the system without the security. Level 2 recognizes the
processes are defective and enables project personnel to make changes they deem appropriate.

10.3.1.3 Level 3 – Use of Technology

At this level the processes are determined to be effective and compliance to those processes
are required. Any variance from the process must be approved by management. Normally
quality control procedures are in place to check compliance and report variance from the
process. For example, if security “handshaking” procedures were required for wireless
technology no wireless system could be implemented without those handshaking processes in
place.

10.3.1.4 Level 4 – Quantitatively Measured Technology

Once the processes for using new technology are deemed effective, they should be measured.
Generally measurement for process optimization is not effective until the processes are
stabilized and complied with. When they are stabilized and complied with the quantitative
data collected is reliable. Measurement theory states that until measurement data is reliable it
cannot be used to optimize the work processes.

10.3.1.5 Level 5 – Optimized Use of Technology

At this level the quantitative data produced at Level 4 will enable the optimization of the use
of technology. Variance is reduced to close to zero, defects are minimal, and the organization
has maximized the use of technology. Generally by the time technology has matured to Level
5, new technology is available which moves the technology maturity level back to Level 1.
10-14 October 25, 2006

Testing New Technologies
10.3.2 Test the Controls over Implementing the New
Technology

Testing the adequacy of the controls over the new technology to evaluate the effectiveness of
the implementation involves these three tasks:

• Testing actual performance versus stated performance
Does the technology accomplish its stated benefits?

• Test the adequacy of the current processes to control the technology
Do implemented work processes assure the technology will be used in an effective and
efficient manner?

• Assess whether staff skills are adequate to effectively use the technology
Are the users of the technology sufficiently trained to use the technology effectively?

10.3.2.1 Test Actual Performance versus Stated Performance

Software systems are built based on assumptions. For example, the assumptions that:
• hardware technology can perform at predefined speeds
• the staff assigned to a project can do the defined tasks
• if a specific work process is followed it will produce a predefined desired result

With currently implemented technology there is experience to support these assumptions. For
example, if a specific individual is to use a specific developmental or testing tool, and those
who have graduated from a specified training class can perform tasks using those tools, it is
reasonable to assume that if project personnel had that training they can perform the defined
work tasks.

When new technologies are introduced there are no experiences to support project
assumptions. For example, if a software package was stated to search a database and retrieve
desired information within X% of a second, that assumption would have to be tested. If the
software failed to meet the performance specifications, a software system objective might not
be met. For example if a system objective was that a customer online to the organization’s
database could determine the availability of a specific product within two seconds, and the
hardware and software used to make that determination took 15 seconds the customer might
leave the Web site and the sale would be lost.

The following is a list of some of the tests that testers may want to perform to evaluate
whether or not a new technology can or cannot meet the specified performance criteria:

• Documentation represents actual technology execution.
• Training courses transfer the needed knowledge to use the technology.
• New technology is compatible with existing technology.
• Stated performance criteria represent actual performance criteria.
• Promised vendor support equals actual vendor support.
October 25, 2006 10-15

Guide to the 2006 CSTE CBOK
• Expected test processes and tools are effective in testing new technologies.

10.3.2.2 Test the Adequacy of the Current Processes to Control the Technology

The underlying premise of process engineering is that the method the IT organization
performs to do work will be controlled. Work processes are the means for controlling the use
of new technologies. Work processes include these three process attributes:

• Standard
This is the objective to be achieved using new technology.

• Procedure
The step-by-step methods that will be performed to utilize the new technology.

• Quality Control
The means that will be used to determine that the procedures to do work are performed
in the manner specified in those procedures.

If new technologies are to be used effectively and efficiently the work processes governing the
use of those technologies must include the standard, the procedures and the quality control
procedures. Without an objective the workers do not know the purpose for using the
technology, without procedures they do not know how to use the technology, without quality
control they do not know if they used the procedures correctly.

If the new technology lacks any of these three important process engineering components
additional testing should be performed to assess the risk associated with using that
technology:

• Process
Requires the three process attributes: Standard, Procedure and Quality Control

• Compliance
Management’s desire that workers follow the procedures to do work and procedures to
check work.

• Enforcement
If workers do not follow the appropriate work procedures management needs to take
action to enforce compliance to those procedures.

Any new technology that is deemed “out of control” requires additional attention. Out of
control meaning any or all of the key process engineering components are not present in the
use of that technology. Out of control from a test perspective means that testers cannot make
assumptions that work will be performed as specified, and the software will not execute as
specified.

If the testers determine that processes are not adequate to control new technology, they can
take any one of the following three actions:
10-16 October 25, 2006

Testing New Technologies
• Identify the new technology risk and report that risk to the appropriate software
system stakeholder.

• Identify the potentially ineffective parts of the work process as related to that new
technology. This might include presenting the technology maturity level and/or any of
the missing key process engineering components.

• Conduct tests to identify specific problems uncovered associated with the new
technology, and assessing the potential impact of that problem on the operational
system.

10.3.3 Test the Adequacy of Staff Skills to Use the Technology
There are two components to any professional process. The components are the process itself,
and the competency of the process user to use that process effectively. The two components
must be properly coordinated for the new technology governed by that process to be used
effectively.

Figure 10-1 shows the relationship of the competency of the user technology to the process
controlling the use of that technology. The figure shows the five levels of technology process
maturity, and the competency of the user to use the technology from high to low.

The key concept of Figure 10-1 is when using technology do you rely more on the
competency of the user or the effectiveness of the process. When the technology process
maturity is low there is greater reliance on the competency of the user. When the technology
process maturity is high there is more reliance on the process effectiveness and less reliance
on the user competency.
October 25, 2006 10-17

Guide to the 2006 CSTE CBOK
This page intentionally left blank.

Figure 10-1 Relationship of Competency to Process

The reason for the changing reliance between user and process is transfer of knowledge. At
technical process maturity Level 1 most of the ability to use new technology effectively
resides with the user. As the user(s) learns to use the technology more effectively there is a
knowledge transfer from the user to the process. For example, if the user of an agile software
development process learned that agile technology was only effective with small software
systems, that knowledge could be incorporated into the agile software development process.
For example, prior to using the process the user would assess the size of the system and, if it
was large, use another software development methodology to build the software.

In assessing the adequacy of the staff competency to use new technology the tester should
evaluate:

• Technological process maturity level
At lower levels more user competency is needed than at higher levels.

• Training available in the new technology
Testers need to determine the type of training available, the experience of the
effectiveness of that training and whether or not the users of the new technology have
gone through that training.

• The performance evaluation of individuals to use the new technology effectively
This looks at the individual’s past experience while working with that technology on
projects and then assessing the effectiveness of the projects in using that technology.
10-18 October 25, 2006

Vocabulary
Access Modeling Used to verify that data requirements (represented in the form

of an entity-relationship diagram) support the data demands of
process requirements (represented in data flow diagrams and
process specifications.)

Affinity Diagram A group process that takes large amounts of language data,
such as a list developed by brainstorming, and divides it into
categories.

Application A single software product that may or may not fully support a
business function.

Audit This is an inspection/assessment activity that verifies
compliance with plans, policies, and procedures, and ensures
that resources are conserved. Audit is a staff function; it serves
as the "eyes and ears" of management.

Backlog Work waiting to be done; for IT this includes new systems to be
developed and enhancements to existing systems. To be
included in the development backlog, the work must have been
cost-justified and approved for development.

Baseline A quantitative measure of the current level of performance.

Benchmarking Comparing your company’s products, services, or processes
against best practices, or competitive practices, to help define
superior performance of a product, service, or support process.

Benefits Realization
Test

A test or analysis conducted after an application is moved into
production to determine whether it is likely to meet the
originating business case.

Black-Box Testing A test technique that focuses on testing the functionality of the
program, component, or application against its specifications

Appendix

A

October 25, 2006 A-1

Guide to the 2006 CSTE CBOK
without knowledge of how the system is constructed; usually
data or business process driven.

Boundary Value
Analysis

A data selection technique in which test data is chosen from the
“boundaries” of the input or output domain classes, data
structures, and procedure parameters. Choices often include
the actual minimum and maximum boundary values, the
maximum value plus or minus one, and the minimum value
plus or minus one.

Brainstorming A group process for generating creative and diverse ideas.
Branch Testing
A test method that requires that each possible branch on each
decision point be executed at least once.

Bug A general term for all software defects or errors.

Candidate An individual who has met eligibility requirements for a
credential awarded through a certification program, but who
has not yet earned that certification through participation in the
required skill and knowledge assessment instruments.

Cause-Effect
Graphing

A tool used to derive test cases from specifications. A graph
that relates causes (or input conditions) to effects is generated.
The information in the graph is converted into a decision table
where the columns are the cause-effect combinations. Unique
rows represent test cases.

Certificant An individual who has earned a credential awarded through a
certification program.

Certification A voluntary process instituted by a nongovernmental agency by
which individual applicants are recognized for having achieved
a measurable level of skill or knowledge. Measurement of the
skill or knowledge makes certification more restrictive than
simple registration, but much less restrictive than formal
licensure.

Checklists A series of probing questions about the completeness and
attributes of an application system. Well-constructed checklists
cause evaluation of areas, which are prone to problems. It both
limits the scope of the test and directs the tester to the areas in
which there is a high probability of a problem.

Checkpoint Review Held at predefined points in the development process to
evaluate whether certain quality factors (critical success
factors) are being adequately addressed in the system being
built. Independent experts for the purpose of identifying
problems conduct the reviews as early as possible.

Checksheet A form used to record data as it is gathered.
A-2 October 25, 2006

Vocabulary
Client The customer that pays for the product received and receives
the benefit from the use of the product.

Coaching Providing advice and encouragement to an individual or
individuals to promote a desired behavior.

Code Comparison One version of source or object code is compared to a second
version. The objective is to identify those portions of computer
programs that have been changed. The technique is used to
identify those segments of an application program that have
been altered as a result of a program change.

Compiler-Based
Analysis

Most compilers for programming languages include diagnostics
that identify potential program structure flaws. Many of these
diagnostics are warning messages requiring the programmer to
conduct additional investigation to determine whether or not the
problem is real. Problems may include syntax problems,
command violations, or variable/data reference problems.
These diagnostic messages are a useful means of detecting
program problems, and should be used by the programmer.

Complete Test Set A test set containing data that causes each element of pre-
specified set of Boolean conditions to be true. In addition, each
element of the test set causes at least one condition to be true.

Completeness The property that all necessary parts of an entity are included.
Often, a product is said to be complete if it has met all
requirements.

Complexity-Based
Analysis

Based upon applying mathematical graph theory to programs
and preliminary design language specification (PDLs) to
determine a unit's complexity. This analysis can be used to
measure and control complexity when maintainability is a
desired attribute. It can also be used to estimate test effort
required and identify paths that must be tested.

Compliance Checkers A parse program looking for violations of company standards.
Statements that contain violations are flagged. Company
standards are rules that can be added, changed, and deleted
as needed.

Condition Coverage A white-box testing technique that measures the number of, or
percentage of, decision outcomes covered by the test cases
designed. 100% condition coverage would indicate that every
possible outcome of each decision had been executed at least
once during testing.

Configuration
Management Tools

Tools that are used to keep track of changes made to systems
and all related artifacts. These are also known as version
control tools.
October 25, 2006 A-3

Guide to the 2006 CSTE CBOK
Configuration Testing Testing of an application on all supported hardware and
software platforms. This may include various combinations of
hardware types, configuration settings, and software versions.

Consistency The property of logical coherence among constituent parts.
Consistency can also be expressed as adherence to a given
set of rules.

Consistent Condition
Set

A set of Boolean conditions such that complete test sets for the
conditions uncover the same errors.
Control Flow Analysis
Based upon graphical representation of the program process.
In control flow analysis, the program graph has nodes, which
represent a statement or segment possibly ending in an
unresolved branch. The graph illustrates the flow of program
control from one segment to another as illustrated through
branches. The objective of control flow analysis is to determine
potential problems in logic branches that might result in a loop
condition or improper processing.

Conversion Testing Validates the effectiveness of data conversion processes,
including field-to-field mapping, and data translation.

Correctness The extent to which software is free from design and coding
defects (i.e., fault-free). It is also the extent to which software
meets its specified requirements and user objectives.

Cost of Quality (COQ) Money spent beyond expected production costs (labor,
materials, equipment) to ensure that the product the customer
receives is a quality (defect free) product. The Cost of Quality
includes prevention, appraisal, and correction or repair costs.

Coverage-Based
Analysis

A metric used to show the logic covered during a test session,
providing insight to the extent of testing. The simplest metric for
coverage would be the number of computer statements
executed during the test compared to the total number of
statements in the program. To completely test the program
structure, the test data chosen should cause the execution of
all paths. Since this is not generally possible outside of unit
test, general metrics have been developed which give a
measure of the quality of test data based on the proximity to
this ideal coverage. The metrics should take into consideration
the existence of infeasible paths, which are those paths in the
program that have been designed so that no data will cause the
execution of those paths.

Customer The individual or organization, internal or external to the
producing organization that receives the product.
Cyclomatic Complexity
The number of decision statements, plus one.
A-4 October 25, 2006

Vocabulary
Data Dictionary Provides the capability to create test data to test validation for
the defined data elements. The test data generated is based
upon the attributes defined for each data element. The test
data will check both the normal variables for each data element
as well as abnormal or error conditions for each data element.

DD (Decision-to-
Decision) Path

A path of logical code sequence that begins at a decision
statement or an entry and ends at a decision statement or an
exit.

Debugging The process of analyzing and correcting syntactic, logic, and
other errors identified during testing.

Decision Coverage A white-box testing technique that measures the number of, or
percentage of, decision directions executed by the test case
designed. 100% decision coverage would indicate that all
decision directions had been executed at least once during
testing. Alternatively, each logical path through the program
can be tested. Often, paths through the program are grouped
into a finite set of classes, and one path from each class is
tested.

Decision Table A tool for documenting the unique combinations of conditions
and associated results in order to derive unique test cases for
validation testing.

Defect Operationally, it is useful to work with two definitions of a
defect:
• From the producer's viewpoint a defect is a product

requirement that has not been met or a product attribute
possessed by a product or a function performed by a
product that is not in the statement of requirements that
define the product;

• From the customer's viewpoint a defect is anything that
causes customer dissatisfaction, whether in the statement
of requirements or not.

Defect Tracking Tools Tools for documenting defects as they are found during testing
and for tracking their status through to resolution.

Design Level The design decomposition of the software item (e.g., system,
subsystem, program, or module).

Desk Checking The most traditional means for analyzing a system or a
program. Desk checking is conducted by the developer of a
system or program. The process involves reviewing the
complete product to ensure that it is structurally sound and that
the standards and requirements have been met. This tool can
also be used on artifacts created during analysis and design.

Driver Code that sets up an environment and calls a module for test.
October 25, 2006 A-5

Guide to the 2006 CSTE CBOK
Dynamic Analysis Analysis performed by executing the program code. Dynamic
analysis executes or simulates a development phase product,
and it detects errors by analyzing the response of a product to
sets of input data.

Dynamic Assertion A dynamic analysis technique that inserts into the program
code assertions about the relationship between program
variables. The truth of the assertions is determined as the
program executes.

Empowerment Giving people the knowledge, skills, and authority to act within
their area of expertise to do the work and improve the process.

Entrance Criteria Required conditions and standards for work product quality that
must be present or met for entry into the next stage of the
software development process.

Equivalence
Partitioning

The input domain of a system is partitioned into classes of
representative values so that the number of test cases can be
limited to one-per-class, which represents the minimum
number of test cases that must be executed.

Error or Defect A discrepancy between a computed, observed, or measured
value or condition and the true, specified, or theoretically
correct value or condition.

Human action that results in software containing a fault (e.g.,
omission or misinterpretation of user requirements in a
software specification, incorrect translation, or omission of a
requirement in the design specification).

Error Guessing Test data selection technique for picking values that seem likely
to cause defects. This technique is based upon the theory that
test cases and test data can be developed based on the
intuition and experience of the tester.

Exhaustive Testing Executing the program through all possible combinations of
values for program variables.

Exit Criteria Standards for work product quality, which block the promotion
of incomplete or defective work products to subsequent stages
of the software development process.

File Comparison Useful in identifying regression errors. A snapshot of the
correct expected results must be saved so it can be used for
later comparison.

Flowchart Pictorial representations of data flow and computer logic. It is
frequently easier to understand and assess the structure and
logic of an application system by developing a flow chart than
to attempt to understand narrative descriptions or verbal
A-6 October 25, 2006

Vocabulary
explanations. The flowcharts for systems are normally
developed manually, while flowcharts of programs can be
produced.

Force Field Analysis A group technique used to identify both driving and restraining
forces that influence a current situation.

Formal Analysis Technique that uses rigorous mathematical techniques to
analyze the algorithms of a solution for numerical properties,
efficiency, and correctness.

Functional Testing Application of test data derived from the specified functional
requirements without regard to the final program structure.

Histogram A graphical description of individually measured values in a
data set that is organized according to the frequency or relative
frequency of occurrence. A histogram illustrates the shape of
the distribution of individual values in a data set along with
information regarding the average and variation.

Infeasible Path A sequence of program statements that can never be
executed.

Inputs Materials, services, or information needed from suppliers to
make a process work, or build a product.

Inspection A formal assessment of a work product conducted by one or
more qualified independent reviewers to detect defects,
violations of development standards, and other problems.
Inspections involve authors only when specific questions
concerning deliverables exist. An inspection identifies defects,
but does not attempt to correct them. Authors take corrective
actions and arrange follow-up reviews as needed.

Instrumentation The insertion of additional code into a program to collect
information about program behavior during program execution.

Integration Testing This test begins after two or more programs or application
components have been successfully unit tested. It is conducted
by the development team to validate the technical quality or
design of the application. It is the first level of testing which
formally integrates a set of programs that communicate among
themselves via messages or files (a client and its server(s), a
string of batch programs, or a set of online modules within a
dialog or conversation.)

Invalid Input Test data that lays outside the domain of the function the
program represents.

Leadership The ability to lead, including inspiring others in a shared vision
of what can be, taking risks, serving as a role model,
October 25, 2006 A-7

Guide to the 2006 CSTE CBOK
reinforcing and rewarding the accomplishments of others, and
helping others to act.

Life Cycle Testing The process of verifying the consistency, completeness, and
correctness of software at each stage of the development life
cycle.

Management A team or individuals who manage(s) resources at any level of
the organization.

Mapping Provides a picture of the use of instructions during the
execution of a program. Specifically, it provides a frequency
listing of source code statements showing both the number of
times an instruction was executed and which instructions were
not executed. Mapping can be used to optimize source code by
identifying the frequently used instructions. It can also be used
to determine unused code, which can demonstrate code, which
has not been tested, code that is infrequently used, or code
that is non-entrant.

Mean A value derived by adding several quantities and dividing the
sum by the number of these quantities.
Metric-Based Test Data Generation
The process of generating test sets for structural testing based
on use of complexity or coverage metrics.

Model Animation Model animation verifies that early models can handle the
various types of events found in production data. This is
verified by “running” actual production transactions through the
models as if they were operational systems.

Model Balancing Model balancing relies on the complementary relationships
between the various models used in structured analysis (event,
process, data) to ensure that modeling rules/standards have
been followed; this ensures that these complementary views
are consistent and complete.

Mission A customer-oriented statement of purpose for a unit or a team.

Mutation Analysis A method to determine test set thoroughness by measuring the
extent to which a test set can discriminate the program from
slight variants (i.e., mutants) of it.

Network Analyzers A tool used to assist in detecting and diagnosing network
problems.

Oracle A (typically automated) mechanism or principle by which a
problem in the software can be recognized. For example,
automated test oracles have value in load testing software (by
signing on to an application with hundreds or thousands of
A-8 October 25, 2006

Vocabulary
instances simultaneously), or in checking for intermittent errors
in software.

Outputs Products, services, or information supplied to meet customer
needs.

Pass/Fail Criteria Decision rules used to determine whether a software item or
feature passes or fails a test.

Path Expressions A sequence of edges from the program graph that represents a
path through the program.

Path Testing A test method satisfying the coverage criteria that each logical
path through the program be tested. Often, paths through the
program are grouped into a finite set of classes and one path
from each class is tested.

Performance Test Validates that both the online response time and batch run
times meet the defined performance requirements.

Performance/Timing
Analyzer

A tool to measure system performance.

Phase (or Stage)
Containment

A method of control put in place within each stage of the
development process to promote error identification and
resolution so that defects are not propagated downstream to
subsequent stages of the development process. The
verification, validation, and testing of work within the stage that
it is created.

Policy Managerial desires and intents concerning either process
(intended objectives) or products (desired attributes).

Population Analysis Analyzes production data to identify, independent from the
specifications, the types and frequency of data that the system
will have to process/produce. This verifies that the specs can
handle types and frequency of actual data and can be used to
create validation tests.

Procedure The step-by-step method followed to ensure that standards are
met.

Process The work effort that produces a product. This includes efforts of
people and equipment guided by policies, standards, and
procedures.

The process or set of processes used by an organization or
project to plan, manage, execute, monitor, control, and improve
its software related activities. A set of activities and tasks. A
statement of purpose and an essential set of practices
(activities) that address that purpose.
October 25, 2006 A-9

Guide to the 2006 CSTE CBOK
Process Improvement To change a process to make the process produce a given
product faster, more economically, or of higher quality. Such
changes may require the product to be changed. The defect
rate must be maintained or reduced.

Product The output of a process: the work product. There are three
useful classes of products: Manufactured Products (standard
and custom), Administrative/Information Products (invoices,
letters, etc.), and Service Products (physical, intellectual,
physiological, and psychological). A statement of requirements
defines products; one or more people working in a process
produce them.

Product Improvement To change the statement of requirements that defines a product
to make the product more satisfying and attractive to the
customer (more competitive). Such changes may add to or
delete from the list of attributes and/or the list of functions
defining a product. Such changes frequently require the
process to be changed. Note: This process could result in a
very new product.

Production Costs The cost of producing a product. Production costs, as currently
reported, consist of (at least) two parts; actual production or
right-the-first time costs (RFT) plus the Cost of Quality (COQ).
RFT costs include labor, materials, and equipment needed to
provide the product correctly the first time.

Productivity The ratio of the output of a process to the input, usually
measured in the same units. It is frequently useful to compare
the value added to a product by a process, to the value of the
input resources required (using fair market values for both input
and output).

Proof of Correctness The use of mathematical logic techniques to show that a
relationship between program variables assumed true at
program entry implies that another relationship between
program variables holds at program exit.

Quality A product is a quality product if it is defect free. To the producer,
a product is a quality product if it meets or conforms to the
statement of requirements that defines the product. This
statement is usually shortened to: quality means meets
requirements. From a customer’s perspective, quality means
“fit for use.”

Quality Assurance
(QA)

The set of support activities (including facilitation, training,
measurement, and analysis) needed to provide adequate
confidence that processes are established and continuously
improved to produce products that meet specifications and are
fit for use.
A-10 October 25, 2006

Vocabulary
Quality Control (QC) The process by which product quality is compared with
applicable standards, and the action taken when
nonconformance is detected. Its focus is defect detection and
removal. This is a line function; that is, the performance of
these tasks is the responsibility of the people working within the
process.

Quality Function
Deployment (QFD)

A systematic matrix method used to translate customer wants
or needs into product or service characteristics that will have a
significant positive impact on meeting customer demands.

Quality Improvement To change a production process so that the rate at which
defective products (defects) are produced is reduced. Some
process changes may require the product to be changed.

Recovery Test Evaluates the contingency features built into the application for
handling interruptions and for returning to specific points in the
application processing cycle, including checkpoints, backups,
restores, and restarts. This test also assures that disaster
recovery is possible.

Regression Testing Testing of a previously verified program or application following
program modification for extension or correction to ensure no
new defects have been introduced.

Requirement A formal statement of:
1. An attribute to be possessed by the product or a function to

be performed by the product
2. The performance standard for the attribute or function;

and/or
3. The measuring process to be used in verifying that the

standard has been met.

Risk Matrix Shows the controls within application systems used to reduce
the identified risk, and in what segment of the application those
risks exist. One dimension of the matrix is the risk, the second
dimension is the segment of the application system, and within
the matrix at the intersections are the controls. For example, if
a risk is “incorrect input” and the systems segment is “data
entry,” then the intersection within the matrix would show the
controls designed to reduce the risk of incorrect input during
the data entry segment of the application system.

Run Chart A graph of data points in chronological order used to illustrate
trends or cycles of the characteristic being measured to
suggest an assignable cause rather than random variation.

Scatter Plot Diagram A graph designed to show whether there is a relationship
between two changing variables.
October 25, 2006 A-11

Guide to the 2006 CSTE CBOK
Self-validating Code Code that makes an explicit attempt to determine its own
correctness and to proceed accordingly.

Services See Product.

Simulation Use of an executable model to represent the behavior of an
object. During testing, the computational hardware, the
external environment, and even code segments may be
simulated.

Software Feature A distinguishing characteristic of a software item (e.g.,
performance, portability, or functionality).

Software Item Source code, object code, job control code, control data, or a
collection of these.

Special Test Data Test data based on input values that are likely to require special
handling by the program.

Standardize Procedures that are implemented to ensure that the output of a
process is maintained at a desired level.

Standards The measure used to evaluate products and identify
nonconformance. The basis upon which adherence to policies
is measured.

Statement of
Requirements

The exhaustive list of requirements that define a product. Note
that the statement of requirements should document
requirements proposed and rejected (including the reason for
the rejection) during the requirement determination process.

Statement Testing A test method that executes each statement in a program at
least once during program testing.

Static Analysis Analysis of a program that is performed without executing the
program. It may be applied to the requirements, design, or
code.

Statistical Process
Control

The use of statistical techniques and tools to measure an
ongoing process for change or stability.

Stress Testing This test subjects a system, or components of a system, to
varying environmental conditions that defy normal
expectations. For example, high transaction volume, large
database size or restart/recovery circumstances. The intention
of stress testing is to identify constraints and to ensure that
there are no performance problems.

Structural Testing A testing method in which the test data is derived solely from
the program structure.
A-12 October 25, 2006

Vocabulary
Stub Special code segments that when invoked by a code segment
under testing, simulate the behavior of designed and specified
modules not yet constructed.

Supplier An individual or organization that supplies inputs needed to
generate a product, service, or information to a customer.
Symbolic Execution
A method of symbolically defining data that forces program
paths to be executed. Instead of executing the program with
actual data values, the variable names that hold the input
values are used. Thus, all variable manipulations and decisions
are made symbolically. This process is used to verify the
completeness of the structure, as opposed to assessing the
functional requirements of the program.

System One or more software applications that together support a
business function.

System Test During this event, the entire system is tested to verify that all
functional, information, structural and quality requirements
have been met. A predetermined combination of tests is
designed that, when executed successfully, satisfy
management that the system meets specifications. System
testing verifies the functional quality of the system in addition to
all external interfaces, manual procedures, restart and
recovery, and human-computer interfaces. It also verifies that
interfaces between the application and the open environment
work correctly, that JCL functions correctly, and that the
application functions appropriately with the Database
Management System, Operations environment, and any
communications systems.

Test 1. A set of one or more test cases.
2. A set of one or more test cases and procedures.

Test Case Generator A software tool that creates test cases from requirements
specifications. Cases generated this way ensure that 100% of
the functionality specified is tested.

Test Case
Specification

An individual test condition, executed as part of a larger test
that contributes to the test’s objectives. Test cases document
the input, expected results, and execution conditions of a given
test item. Test cases are broken down into one or more detailed
test scripts and test data conditions for execution.

Test Cycle Test cases are grouped into manageable (and schedulable)
units called test cycles. Grouping is according to the relation of
objectives to one another, timing requirements, and on the best
way to expedite defect detection during the testing event. Often
test cycles are linked with execution of a batch process.
October 25, 2006 A-13

Guide to the 2006 CSTE CBOK
Test Data Generator A software package that creates test transactions for testing
application systems and programs. The type of transactions
that can be generated is dependent upon the options available
in the test data generator. With many current generators, the
prime advantage is the ability to create a large number of
transactions to volume test application systems.

Test Data Set Set of input elements used in the testing process.

Test Design
Specification

A document that specifies the details of the test approach for a
software feature or a combination of features and identifies the
associated tests.

Test Driver A program that directs the execution of another program
against a collection of test data sets. Usually, the test driver
also records and organizes the output generated as the tests
are run.

Test Harness A collection of test drivers and test stubs.

Test Incident Report A document describing any event during the testing process
that requires investigation.

Test Item A software item that is an object of testing.

Test Item Transmittal
Report

A document that identifies test items and includes status and
location information.

Test Log A chronological record of relevant details about the execution
of tests.

Test Plan A document describing the intended scope, approach,
resources, and schedule of testing activities. It identifies test
items, the features to be tested, the testing tasks, the personnel
performing each task, and any risks requiring contingency
planning.

Test Procedure
Specification

A document specifying a sequence of actions for the execution
of a test.

Test Scripts A tool that specifies an order of actions that should be
performed during a test session. The script also contains
expected results. Test scripts may be manually prepared using
paper forms, or may be automated using capture/playback
tools or other kinds of automated scripting tools.

Test Stubs Simulates a called routine so that the calling routine’s functions
can be tested. A test harness (or driver) simulates a calling
component or external environment, providing input to the
called routine, initiating the routine, and evaluating or
displaying output returned.
A-14 October 25, 2006

Vocabulary
Test Suite Manager A tool that allows testers to organize test scripts by function or
other grouping.

Test Summary Report A document that describes testing activities and results and
evaluates the corresponding test items.
Tracing
A process that follows the flow of computer logic at execution
time. Tracing demonstrates the sequence of instructions or a
path followed in accomplishing a given task. The two main
types of trace are tracing instructions in computer programs as
they are executed, or tracing the path through a database to
locate predetermined pieces of information.

Unit Test Testing individual programs, modules, or components to
demonstrate that the work package executes per specification,
and validate the design and technical quality of the application.
The focus is on ensuring that the detailed logic within the
component is accurate and reliable according to pre-
determined specifications. Testing stubs or drivers may be
used to simulate behavior of interfacing modules.

Usability Test The purpose of this event is to review the application user
interface and other human factors of the application with the
people who will be using the application. This is to ensure that
the design (layout and sequence, etc.) enables the business
functions to be executed as easily and intuitively as possible.
This review includes assuring that the user interface adheres to
documented User Interface standards, and should be
conducted early in the design stage of development. Ideally, an
application prototype is used to walk the client group through
various business scenarios, although paper copies of screens,
windows, menus, and reports can be used.

User The customer that actually uses the product received.
User Acceptance Test
User Acceptance Testing (UAT) is conducted to ensure that the
system meets the needs of the organization and the end user/
customer. It validates that the system will work as intended by
the user in the real world, and is based on real world business
scenarios, not system requirements. Essentially, this test
validates that the right system was built.

Valid Input Test data that lie within the domain of the function represented
by the program.

Validation Determination of the correctness of the final program or
software produced from a development project with respect to
the user needs and requirements. Validation is usually
accomplished by verifying each stage of the software
development life cycle.
October 25, 2006 A-15

Guide to the 2006 CSTE CBOK
Values (Sociology) The ideals, customs, instructions, etc., of a society toward
which the people have an affective regard. These values may
be positive, as cleanliness, freedom, or education, or negative,
as cruelty, crime, or blasphemy. Any object or quality desired
as a means or as an end in itself.

Verification The process of determining whether the products of a given
phase of the software development cycle fulfill the
requirements established during the previous phase.
The act of reviewing, inspecting, testing, checking, auditing, or
otherwise establishing and documenting whether items,
processes, services, or documents conform to specified
requirements.

Vision A vision is a statement that describes the desired future state of
a unit.

Walkthroughs During a walkthrough, the producer of a product “walks
through” or paraphrases the products content, while a team of
other individuals follow along. The team’s job is to ask
questions and raise issues about the product that may lead to
defect identification.

White-Box Testing A testing technique that assumes that the path of the logic in a
program unit or component is known. White-box testing usually
consists of testing paths, branch by branch, to produce
predictable results. This technique is usually used during tests
executed by the development team, such as Unit or
Component testing,
A-16 October 25, 2006

References
t is each candidate’s responsibility to stay current in the field and to be aware of published
works and materials available for professional study and development. Software
Certifications recommends that candidates for certification continually research and stay

aware of current literature and trends in the field. There are many valuable references that
have not been listed here. These references are for informational purposes only.

Beck, Kent. Test Driven Development: By Example. Addison-Wesley Professional, First
Edition, 2002.

Beizer, Boris. Black-Box Testing: Techniques for Functional Testing of Software and Systems.
John Wiley & Sons, Inc., 1995.

Black, Rex. Managing the Testing Process: Practical Tools and Techniques for Managing
Hardware and Software Testing. John Wiley & Sons, Inc., Second Edition, 2002.

Copeland, Lee. A Practitioner’s Guide to Software Test Design. Artech House Publishers,
2003.

Craig, Rick D. Systematic Software Testing. Artech House Computer Library, 2003.

Dustin, Elfriede. Automated Software Testing: Introduction, Management, and Performance.
Addison-Wesley, 1999.

Dustin, Elfriede, et al. Quality Web Systems: Performance, Security, and Usability. Addison-
Wesley, First Edition, 2001.

Hayes, Linda G. Automated Testing Handbook. Software Testing Institute, 1996.

Hetzel, Bill. The Complete Guide to Software Testing. John Wiley & Sons, Inc., Second
Edition, 1993.

Jorgensen, Paul C. Software Testing: A Craftsman’s Approach. CRC Press, 1995.

Appendix

B

I

October 25, 2006 B-1

Guide to the 2006 CSTE CBOK
Kaner, Cem, et al. Lessons Learned in Software Testing. John Wiley & Sons, Inc., First
Edition, 2001.

Kit, Edward. Software Testing in the Real World. Addison-Wesley, First Edition, 1995.

Lewis, William E. Software Testing and Continuous Quality Improvement. Auerbach
Publishers, Second Edition, 2000.

Li, Kanglin. Effective Software Test Automation: Developing an Automated Software Testing
Tool. Sybex Inc., First Edition, 2004.

Marick, Brian. Craft of Software Testing: Subsystems Testing Including Object-Based and
Object-Oriented Testing. Prentice Hall, 1994.

Marshall, Steve, et al. Making E-Business Work: A Guide to Software Testing in the Internet
Age. Newport Press Publications, 2000.

Mosley, Daniel J. Client Server Software Testing on the Desktop and the Web. Prentice Hall,
First Edition, 1999.

Mosley, Daniel J. and Bruce A. Posey. Just Enough Software Test Automation. Prentice Hall,
First Edition, 2002.

Nguyen, Hung Q. Testing Applications on the Web: Test Planning for Internet-Based Systems.
John Wiley & Sons, Inc., First Edition, 2000.

Patton, Ron. Software Testing. Sams, 2000.

Perry, William E. Effective Methods for Software Testing, John Wiley & Sons, Inc., 2000.

Perry, William E. and Randall W. Rice. Surviving the Top Ten Challenges of Software
Testing: A People-Oriented Approach. Dorset House Publishing Company, Inc., 1997.

Pham, Hoang. Software Reliability and Testing. IEEE Computer Society Press, First Edition,
1995.

Poston, Robert M. Automating Specification-Based Software Testing. Institute of Electrical &
Electronics Engineers, Inc., 1996.

Siegel, Shel. Object-Oriented Software Testing: A Hierarchical Approach. John Wiley &
Sons, Inc., First Edition, 1996.

Sykes, David A. and John D. McGregor. Practical Guide to Testing Object-Oriented
Software. Addison-Wesley, First Edition, 2001.
B-2 October 25, 2006

How to Take the CSTE
Examination

the Introduction of this preparation guide explained a process for you to follow to
prepare for the examination. It emphasized familiarizing yourself with a Common
Body of Knowledge (CBOK), the vocabulary of software quality, the activities

performed by testing professionals, and reviewing several other different references that are
included on the software certifications Web site. Other references you might look at include
articles in professional IT publications.

If you feel you are ready to take the examination, you need to schedule the examination. Be
sure to visit www.softwarecertifications.org for up-to-date CSTE examination dates and
places. Once scheduled, the remaining event is to take the examination.

C.1 CSTE Examination Overview
The four and a half hour examination consists of four written parts, including multiple-choice and
essay questions. A typical CSTE examination is comprised of two parts for Software Testing
Theory and two parts for Software Testing Practice:

CSTE Examination Overview C-1
Guidelines to Answer Questions C-2
Sample CSTE Examination C-5

Appendix

C

T

October 25, 2006 C-1

Guide to the 2006 CSTE CBOK
C.1.1 Software Testing Theory
Part 1 50 multiple-choice questions. Complete within 45 minutes.

Part 2 10 essay questions. Complete within 1 hour, 15 minutes.

Software testing theory evaluates your understanding of testing principles, practices, vocabulary
and concepts. In other words, do you have a solid foundation in testing basics? For example, can
you differentiate between verification and validation?

C.1.2 Software Testing Practice
Part 3 50 multiple-choice questions. Complete within 45 minutes.

Part 4 10 essay questions. Complete within 1 hour, 15 minutes.

Software testing practice evaluates whether you can apply testing basics to real-world situations.
For example, a question may be: “What methods of quality control would you use to reduce defects
for a software system under development? During which phase of development would you use
those methods?”

You cannot bring any study or supporting materials to the examination site other than a pencil.
Each individual will have an assigned seat. You may take a 15-minute break between each
examination part, but not during the examination.

Proctors for the examination are not required to be certified. If not certified, they are ineligible to
take the examination for at least two years after proctoring. Proctors follow specific instructions to
conduct the examination. Software Certifications’ policies and procedures enforce confidentiality
and security of the examination instrument, prior to and after the examination.

C.2 Guidelines to Answer Questions
The examination proctor will give you one part of the examination at a time. As you receive each
part, use the following steps to answer the questions:

1. Read the entire examination part before answering any questions.
• For multiple-choice parts, only read each question’s stem, not the four to five

responses.
• For essay parts, read all of the essay questions thoroughly.

2. As you read through each question (multiple-choice and essay) determine whether:
• You absolutely know the answer to this question.
• You believe you know the answer to this question.
C-2 October 25, 2006

How to Take the CSTE Examination
• You are not sure you know the answer, or it would take time to develop an answer.

3. For both multiple-choice and essay questions, answer the questions that you know the
answers; they should not take you much time to complete. This will give you the
majority of the examination time for the other questions you may need more time to
answer.

4. Answer the questions that you believe you know the answer.
• For multiple-choice questions, answer all of the questions.
• For essay questions, answer the questions worth the most points first, followed by

those worth less points. Note that the points equal the percentage of score allocated
to that essay question.

5. Answer the questions that you do not know the answer.
• For multiple-choice questions, answer all of the questions.
• For essay questions, answer the questions worth the most points first, followed by

those worth less points.

Follow these recommended guidelines for answering essay questions. Remember that an
individual grades your examination. Make your thoughts and ideas clear and concise. Also, be
sure to write legibly.

• Those questions worth the most points should be the longest essay response. For
example, if an essay question is worth 25 points, the response should be at least twice
as long as an essay response for a question worth 10 points.

• You need not write complete sentences. Those grading your examination are looking
for key phrases and concepts. You can highlight them in a bulleted form, underlined or
capitalized. This will help ensure that the individual scoring your examination can
readily understand your knowledge of the correct response to that essay question.

• Charts, graphs, and examples enhance your responses and enable the individual
grading your examination to evaluate your understanding of the question. For
example, use a control chart example to clearly indicate your knowledge of statistical
process control.

Follow these recommended guidelines for answering multiple-choice questions.
• Each multiple-choice question is comprised of a stem statement (or stem) and multiple

responses to the stem. Read the stem carefully to assure you understand what is being
asked. Then without reading the given responses to the stem, create in your mind what
you believe would be the correct response. Look for that response in the list of
responses.

• You will be given four or five responses to each stem.
• If you cannot create a response to the stem prior to reading the responses, attempt to

eliminate those responses which are obviously wrong. In most cases, after that you
will only have two responses remaining.

• To select between what appears to be correct responses, rethink the subject matter in
the stem and document what you know about that subject. This type of analysis should
October 25, 2006 C-3

Guide to the 2006 CSTE CBOK
help you to eliminate a response or select the correct response among what should be
two responses.

Follow these recommended guidelines when you do not know the answer to a question. Usually
you can take a few minutes to look over the choices or write down some key points to help you
answer the questions.

• For multiple-choice questions, answer all questions – there is no reduction to your
score for wrong answers. If you do not know the answer, try to rule out some of the
potential responses. Then select the response you believe might be correct.

• For essay questions, indicate any information that might be helpful. For example, you
have a question on test policies. You have not actually written a test policy, but you
could define a test policy, give an example of a test policy, and explain what you
recommend to implement that policy in your IT organization.
C-4 October 25, 2006

How to Take the CSTE Examination
C.3 Sample CSTE Examination
The following CSTE examination is a sample of some of the questions, both multiple-choice and
essay, which may appear on the actual examination. Use this sample examination to help you
study. The multiple-choice questions are listed by skill category. If you miss a question in a
particular skill category, simply refer back to that skill category in this guide for additional study.
Use the essay question responses in the sample examination as a guide for responding to the actual
CSTE essay questions.

C.3.1 Part 1 and Part 3 Multiple-Choice Questions
This sample examination contains 20 multiple-choice questions – two questions for each category.
While taking this sample examination, follow the steps described in “Guidelines to Answer
Questions” on page C-2 to practice the recommended techniques.

Circle the correct answer. Compare your answers to the answer key that follows on page 11.

Skill Category 1 – Software Testing Principles and Concepts

1. The customer’s view of quality means:

a. Meeting requirements

b. Doing it the right way

c. Doing it right the first time

d. Fit for use

e. Doing it on time

2. The testing of a single program, or function, usually performed by the developer is
called:
October 25, 2006 C-5

Guide to the 2006 CSTE CBOK
a. Unit testing

b. Integration testing

c. System testing

d. Regression testing

e. Acceptance testing

Skill Category 2 – Building the Test Environment

3. The measure used to evaluate the correctness of a product is called the product:
a.Policy

b.Standard

c.Procedure to do work

d.Procedure to check work

e.Guideline

4. Which of the four components of the test environment is considered to be the most
important component of the test environment:

a.Management support

b.Tester competency

c.Test work processes

d.Testing techniques and tools

Skill Category 3 – Managing the Test Project

5. Effective test managers are effective listeners. The type of listening in which the tester
is performing an analysis of what the speaker is saying is called:

a.Discriminative listening

b.Comprehensive listening

c.Therapeutic listening

d.Critical listening

e.Appreciative listening
C-6 October 25, 2006

How to Take the CSTE Examination
6. To become a CSTE, an individual has a responsibility to accept the standards of
conduct defined by the certification board. These standards of conduct are called:

a.Code of ethics

b.Continuing professional education requirement

c.Obtaining references to support experience

d.Joining a professional testing chapter

e.Following the common body of knowledge in the practice of software testing

Skill Category 4 – Test Planning

7. Which of the following are risks that testers face in performing their test activities:
a.Not enough training

b.Lack of test tools

c.Not enough time for testing

d.Rapid change

e.All of the above

8. All of the following are methods to minimize loss due to risk. Which one is not a
method to minimize loss due to risk:

a.Reduce opportunity for error

b.Identify error prior to loss

c.Quantify loss

d.Minimize loss

e.Recover loss

Skill Category 5 – Executing the Test Plan

9. Defect prevention involves which of the following steps:
a.Identify critical tasks

b.Estimate expected impact

c.Minimize expected impact

d.a, b and c

e.a and b
October 25, 2006 C-7

Guide to the 2006 CSTE CBOK
10. The first step in designing use case is to:
a.Build a system boundary diagram

b.Define acceptance criteria

c.Define use cases

d.Involve users

e.Develop use cases

Skill Category 6 – Test Reporting Process

11. The defect attribute that would help management determine the importance of the
defect is called:

a.Defect type

b.Defect severity

c.Defect name

d.Defect location

e.Phase in which defect occurred

12. The system test report is normally written at what point in software development:
a.After unit testing

b.After integration testing

c.After system testing

d.After acceptance testing

Skill Category 7 – User Acceptance Testing

13. The primary objective of user acceptance testing is to:
a.Identify requirements defects

b.Identify missing requirements

c.Determine if software is fit for use

d.Validate the correctness of interfaces to other software systems

e.Verify that software is maintainable
C-8 October 25, 2006

How to Take the CSTE Examination
14. If IT establishes a measurement team to create measures and metrics to be used in
status reporting, that team should include individuals who have:

a.A working knowledge of measures

b.Knowledge in the implementation of statistical process control tools

c.A working understanding of benchmarking techniques

d.Knowledge of the organization’s goals and objectives

e.All of the above

Skill Category 8 – Testing Software Developed by Contractors

15. What is the difference between testing software developed by a contractor outside your
country, versus testing software developed by a contractor within your country:

a.Does not meet people needs

b.Cultural differences

c.Loss of control over reallocation of resources

d.Relinquishment of control

e.Contains extra features not specified

16. What is the definition of a critical success factor:
a.A specified requirement

b.A software quality factor

c.Factors that must be present

d.A software metric

e.A high cost to implement requirement

Skill Category 9 – Testing Internal Control

17. The condition that represents a potential for loss to an organization is called:
a.Risk

b.Exposure

c.Threat

d.Control

e.Vulnerability
October 25, 2006 C-9

Guide to the 2006 CSTE CBOK
18. A flaw in a software system that may be exploited by an individual for his or her
advantage is called:

a.Risk

b.Risk analysis

c.Threat

d.Vulnerability

e.Control

Skill Category 10 – Testing New Technologies

19. The conduct of business of the Internet is called:
a.e-commerce

b. e-business

c. Wireless applications

d. Client-server system

e. Web-based applications

20. The following is described as one of the five levels of maturing a new technology into
an IT organization’s work processes. The “People-dependent technology” level is
equivalent to what level in SEI’s compatibility maturity model:

a.Level 1

b.Level 2

c.Level 3

d.Level 4

e.Level 5
C-10 October 25, 2006

How to Take the CSTE Examination
C.3.2 Part 1 and Part 3 Multiple-Choice Answers
The answers to the sample examination for Part 1 and Part 3 are as follows. If you missed a
question, study that material in the relative skill category.

1. d Fit for use

2. a Unit testing

3. b Standard

4. a Management support

5. d Critical listening

6. a Code of ethics

7. e All of the above

8. c Quantify loss

9. d a, b and c

10. a Build a system boundary diagram

11. b Defect severity

12. c After system testing

13. c Determine if software is fit for use

14. e All of the above

15. b Cultural differences

16. c Factors that must be present

17. a Risk

18. d Vulnerability

19. b e-business

20. a Level 1
October 25, 2006 C-11

Guide to the 2006 CSTE CBOK
C.3.3 Part 2 and Part 4 Essay Questions and Answers
Essay questions on theory focus on “what to do” and essay questions on best practices focus on
“how to do it.” Part 2 and Part 4 of the certification exam both have ten essay questions, one from
each skill category. Five of the following essay questions are questions that could be included in
Part 2, Theory Essay Questions of the CSTE examination. The other five questions are questions
that could be included in Part 4, Practice Essay Questions.

C.3.3.1Part 2 – Software Testing Theory Essay Questions
Answer these five essay questions following the guidelines in Guidelines to Answer Questions on
page C-2. Note that on the actual examination, each page has just one essay question to give you
plenty of space to write your response.

Skill Category 1 – Software Testing Principles and Concepts

1. List 5 reasons why we test software.

Skill Category 5 – Executing the Test Plan

2. The requirements for a major system to which you have been assigned as a tester
includes a very complex data model with an extensive list of fields, codes, and data
values that are highly interdependent. What steps will you take throughout your test
planning to assure the completeness and adequacy of your test coverage and what
impact will these steps have on the content of your test plans?
C-12 October 25, 2006

How to Take the CSTE Examination
Skill Category 2 – Building the Test Environment

3. Your IT Director is concerned about the cost of software testing and the length of time
involved in testing a software system. An investigation indicates that a significant
amount of testing is performed after it is known that conditions have occurred which
makes the additional testing of little value. You believe that if testers stop testing when
certain conditions are met, the cost and duration of software testing could be reduced.
Your IT Director agrees with you and asks you to indicate what types of conditions you
would include in a test plan that would justify stopping software testing. These
conditions would have been corrected prior to resuming the tests.

List below those conditions that you would recommend being incorporated into a test
plan for testers to stop testing. Name and briefly describe each condition.

Skill Category 8 – Testing Software Developed by Contractors

4. Your organization has outsourced the development of a major software project. Your
manager has asked you to develop a plan to test the software; but, before developing
your test plan your manager wants you to list at least four differences between testing
software developed by contractors and software developed in-house. List these
differences:
October 25, 2006 C-13

Guide to the 2006 CSTE CBOK
Skill Category 3 – Managing the Test Project

5. Developing compatibility and motivation with a test team helps assure effective
testing. List below at least four guidelines you would follow to develop compatibility
and motivation within your test team.
C-14 October 25, 2006

How to Take the CSTE Examination
C.3.3.2Part 2 – Software Testing Theory Essay Answers

The following responses are examples of responses expected to receive a good
grade. Review these examples as responses that adequately answer the essay

question, not as the only correct response.

Essay 1.

a. To produce a quality product, which is defect free, and also to make sure all
the requirements are satisfied and the best design system architecture is used.

b. Customers/user satisfaction (customers are the king).

c. To make sure the software is:

Correct

Reliable

Portable

Efficient

Interoperable

Usable

Maintainable

Re-usable

Secure

Flexible

d. To achieve the goals of an organization as well as to make profit.

e. To reduce the possible risks associated with the software, then reduce the loss,
which might happen when/if the software is released with defects included.
October 25, 2006 C-15

Guide to the 2006 CSTE CBOK
Essay 2.

a.Since it is a very complex model and if I have access to source code, then try to test
the code with the following techniques:

Branch coverage

Statement coverage

Decision coverage

b.Would use Boundary Value Analysis, error guessing and Equivalence partition
techniques to create 3 or more test cases for every field, in addition to the test
cases that are created for testing functional requirements.

c.Would test the control mechanism implemented for every field and make sure the
fields accept only the values that they are supposed to accept. For example, will
make sure alphabetic fields don’t accept numbers or special characters.

d.Check for lengths to make sure the input data cannot exceed the field length defined
in the database.

e.Would test for valid dates, if date fields were used.

f.Would create a data pool with all possible values for fields and generate quite a few
test scripts to test the different fields at a faster speed.

g.Would make sure all possible error conditions are tripped and they are handled
gracefully.

h.Would test all the required fields as mandatory.

i.Would alter the auto-generating fields in the database (if possible) and see how the
system handles it.

Essay 3.

a.When the quality objectives are met.

b.When the exit criteria mentioned in the test plan is met.

c.When there is no potential show-stopper or show blocker in the software.

d.When the expected test coverage is achieved.

e.When all the test cases are executed.

f.When the project budget is depleted or when test time is not enough (this is not a good
practice, but happens.)

g.When the remaining minor defects go below the accepted level.
C-16 October 25, 2006

How to Take the CSTE Examination
Essay 4.

The differences between software developed by a contractor and software developed in-house
are:

• Quality factors may not be specified.
• There are many factors such as reliability and ease of use which are frequently not

included as part of the contractual criteria. Thus when the software is delivered it
may not be as easy to use or as reliable as desired by the contractor.

• Non-testable requirements and criteria.
• If the requirements or contractual criteria in measurable and testable terms then

the delivered result may not meet the intent of the contractor.
• Customer’s standards may not be met
• Unless the contract specifies the operational standards and documentation

standards the delivered product may be more complex to use than desired by the
customer.

• Missing requirements
• Unless detailed analysis and contractual specifications work is complete the

contractor may realize during the development of the software that requirements
are missing and thus the cost of the contract could escalate significantly.

• Overlooked changes in standards in technology
• If changes in standards that the organization must meet, or the introduction of new

desirable technology is incorporated into the contract there may be significant
cost to modify the software for those new standards in technology.

• Training and deployment may be difficult
• If software is developed by another organization there may be inadequate

knowledge in the contracted organization to provide the appropriate training for
staff and to ensure that deployment is effective and efficient.

Essay 5.

Guidelines are helpful in developing compatibility and motivation of a software project team:

2.Communicate the vision, objectives, and goals of the project.
A software professional wants to know what the project is trying to accomplish. The
vision indicates why the project is undertaken, the goals and objectives indicate what
the project is to achieve. For example, the vision of a bank commercial loan software
project might be to increase profitability. This specific objective might be to provide the
loan officer the information needed to make a good loan decision.

3.Define roles and responsibilities of team members.
Software projects, unlike non-software projects, have roles which are heavily people
dependent and project scope dependent. It’s important for professional staff to have
October 25, 2006 C-17

Guide to the 2006 CSTE CBOK
those roles and responsibilities clearly defined. The staffing matrix defines those roles
and responsibilities.

4.Empower team members to manage their responsibilities.
Empowerment is a major motivator for professional people. Many of the agile concepts
relate to empowerment. In other words, enable people to perform the tasks in the most
efficient and effective manner. This helps eliminate barriers that increase costs and
help project schedule.

5.Hold team members accountable for their assigned responsibilities in the team
process.
Team members need to have their work tasks well defined and then held accountable
for completing those work tasks. Managerial practices indicate that this process works
best when individuals accept responsibility for performing tasks. Thus, having the
Project Manager work individually with team members to assign team tasks they agree
to perform, and then hold those individuals accountable for completing those tasks is
an effective managerial practice.

6.Ensure that all the required skills are present on the team.
Projects cannot be completed successfully if the team members lack the skills to
complete the project. It is not necessary for every team member to have all the needed
skills, but the team in total needs the skills. The staffing matrix helps assure that the
appropriate skills exist within the project team.

7.Provide the necessary technical and team training.
If the team lacks technical and team skills, the project manager should provide that
training. Technical skills include the skills necessary to design and build the software,
team skills to cover such skills as consensus building and conflict resolution.

8.Award successes and celebrate achievements.
Establishing goals and objectives provides the basis for rewards and celebrations.
While it’s appropriate to reward and celebrate individual achievements, the team
building necessitates team goals and team celebrations. These can be centered around
milestones accomplished, as well as scoring high on customer satisfaction surveys.
C-18 October 25, 2006

How to Take the CSTE Examination
C.3.3.3Part 4 – Software Testing Practice Essay Questions
Answer these five essay questions following the guidelines in Guidelines to Answer Questions on
page C-2. Note that on the actual examination, each page has just one essay question to give you
plenty of space to write your response.

Skill Category 1 – Software Testing Principles and Concepts

1. Explain and give an example of each of the following black-box test case techniques.
Equivalence partitioning:

Boundary analysis:

Error guessing:

Skill Category 1 – Software Testing Principles and Concepts

Explain the difference between verification and validation.
October 25, 2006 C-19

Guide to the 2006 CSTE CBOK
Skill Category 4 – Test Planning

2. A study by a major software supplier indicates that software testers make more defects
than software developers. Since software testing in your organization is a costly and
time-consuming process, your IT Director believes that software testers may, in fact,
make more defects than software developers. The IT Director has asked you to
describe what you believe might be the five major defects that software testers make in
planning, executing and reporting the results from software testing.

List below the name you would give to those five defects and briefly describe each
defect. (10 points)

Skill Category 1 – Software Testing Principles and Concepts

3. Assume you have been promoting testing throughout the development life cycle, but
your manager does not really understand what specifically is involved. Your manager
has asked you to present the concept at an IT staff meeting. You chose the “V” concept
of testing model to explain testing throughout the development life cycle.

Explain and provide a graphic below of the “V” concept of testing.
C-20 October 25, 2006

How to Take the CSTE Examination
Skill Category 5 – Executing the Test Plan

4. Recording and tracking defects uncovered during testing is an important test
responsibility. Describe three attributes of a defect that you believe testers should
include when they document a defect. Give specific examples of how you would
describe each of the three defect attributes you propose.
October 25, 2006 C-21

Guide to the 2006 CSTE CBOK
C.3.3.4Part 4 – Quality Assurance Practice Essay Answers

The following responses are examples of responses expected to receive a good
grade. Review these examples as responses that adequately answer the essay

question, not as the only correct response.

Essay 1.

Equivalence partitioning:

This technique will help to narrow down the possible test cases using equivalence
classes. Equivalence class is one, which accepts same types of input data. Few test
cases for every equivalence class will help to avoid exhaustive testing.

Boundary analysis:

This technique helps to create test cases around the boundaries of the valid data.
Usually values passed are exact boundary values, + or – 1 at the lower boundary and
+ or – 1 at the higher boundary. This is an excellent technique and has proven that
software is error-proof to boundaries.

Error guessing:

This technique is used to find defects using the experience of the tester, who is very
familiar to the module he/she is testing. Usually the history is used as an input to guess
the values for input. For example, if the software is always error prone to negative
values, where only positive values should be accepted, the tester can easily guess to
enter negative values for various tests that would help to identify all the defects related
to them.

Essay 2.

Verification:

• Uses non-executable methods of analyzing the various artifacts.

• More effective, it has been proven that 65% of defects can be discovered here.

• Uses inspection reviews to verify the requirements and design.

• Good examples are having checksheets, traceability matrix kind of documents
to verify the documents, requirements and software features.

• Code reviews, walkthroughs also come under this category.

Validation:
C-22 October 25, 2006

How to Take the CSTE Examination
• Can be used throughout the software development life cycle.

• Uses executable methods – means the software will be used to analyze the
various artifacts and test software.

• Effective, but not as effective as verification, for removing defects. It has been
proven that 30% of defects can be discovered here.

• Software will be executed to validate the requirements and design features.

• Using functional or structural testing techniques to catch defects.

• Unit testing, coverage analysis, black-box techniques fall under this category.

• It can also be used throughout the life cycle.

Essay 3.

Inadequate test requirements: test requirements are created from functional requirements and
the functional requirements are not good and complex enough.

Testers are in lose-lose situation: if we find more defects we get blamed for slower project
implementation, and if we find less defects, the quality of our team is in jeopardy.

Dependence on independent testers: unit testing is not good enough and this causes testers to
test and find all defects, which puts more pressure and workload on them.

Inadequate test coverage: because of frequent software developments, testers did not get a
chance to test all test cases at once; this causes too much duplication of work.

Test plan updates not enough: test cases are not added because of time crunch and this caused
some test cases to ship during regression.

Changes not tested: changes made in the code were not tested, resulting in shipping defects to
operations.
October 25, 2006 C-23

Guide to the 2006 CSTE CBOK
Essay 4.

Life cycle testing involves continuous testing of the system during the developmental process.
At predetermined points, the results of the development process are inspected to determine the
correctness of the implementation. These inspections identify defects at the earliest possible
point.

Life cycle testing cannot occur until a formalized SDLC has been incorporated. Life cycle
testing is dependent upon the completion of predetermined deliverables at specified points in
the developmental life cycle. If information services personnel have the discretion to
determine the order in which deliverables are developed, the life cycle test process becomes
ineffective. This is due to variability in the process, which normally increases cost.

The life cycle testing concept can best be accomplished by the formation of a test team. The
team is comprised of members of the project who may be both implementing and testing the
system. When members of the team are testing the system, they must use a formal testing
methodology to clearly distinguish the implementation mode from the test mode. They also
must follow a structured methodology when approaching testing the same as when
approaching system development. Without a specific structured test methodology, the test
team concept is ineffective because team members would follow the same methodology for
testing as they used for developing the system. Experience shows people are blind to their own
mistakes, so the effectiveness of the test team is dependent upon developing the system under
one methodology and testing it under another.

The life cycle testing concept is illustrated below This illustration shows that when the project
starts both the system development process and system test process begins. The team that is
developing the system begins the systems development process and the team that is conducting
the system test begins planning the system test process. Both teams start at the same point
using the same information. The systems development team has the responsibility to define
and document the requirements for developmental purposes. The test team will likewise use
those same requirements, but for the purpose of testing the system. At appropriate points
during the developmental process, the test team will test the developmental process in an
attempt to uncover defects. The test team should use the structured testing techniques outlined
in this book as a basis of evaluating the system development process deliverables.
C-24 October 25, 2006

How to Take the CSTE Examination
Essay 5.

The three defect attributes I would propose are:

• Defect Naming
Name defects according to the phase in which the defect most likely occurred, such as a
requirements defect, design defect, documentation defect, and so forth.

• Defect Severity
Use three categories of severity as follows:

• Critical – Would stop the software system from operating.

• Major – Would cause incorrect output to be produced.

• Minor – Would be a problem, but would not cause improper output to be
produced, such as a system documentation error.

• Defect Type
Use the following three categories:

• Missing – A specification not included in the software.

• Wrong – A specification improperly implemented in the software.

• Extra – Element in the software not requested by a specification.
October 25, 2006 C-25

Guide to the 2006 CSTE CBOK
This page intentionally left blank.
C-26 October 25, 2006

	Introduction to the CSTE Program
	Intro.1 Software Certification Overview
	Intro.1.1 Contact Us
	Intro.1.2 Program History
	Intro.1.3 Why Become Certified?
	Intro.1.4 Benefits of Becoming a CSTE
	Intro.1.4.1 Value Provided to the Profession
	Intro.1.4.2 Value Provided to the Individual
	Intro.1.4.3 Value Provided to the Employer
	Intro.1.4.3.1 Increased Confidence by IT Users and Customers
	Intro.1.4.3.2 Improved Processes to Build/Acquire/Maintain, Operate and Measure Software
	Intro.1.4.3.3 Independent Assessment of Testing Competencies
	Intro.1.4.3.4 Testing Competencies Maintained Through Recertification
	Intro.1.4.3.5 Value Provided to Co-Workers
	Intro.1.4.3.6 Mentoring the Testing Staff
	Intro.1.4.3.7 Testing Resource to “IT” Staff
	Intro.1.4.3.8 Role Model for Testing Practitioners

	Intro.1.4.4 How to Improve Testing Effectiveness Through CSTE Certification

	Intro.2 Meeting the CSTE Qualifications
	Intro.2.1 Prerequisites for Candidacy
	Intro.2.1.1 Educational and Professional Prerequisites
	Intro.2.1.2 Non-U.S. Prerequisites
	Intro.2.1.3 Expectations of the CSTE
	Intro.2.1.3.1 Professional Skill Proficiency Responsibilities
	Intro.2.1.3.2 Develop a Lifetime Learning Habit

	Intro.2.2 Code of Ethics
	Intro.2.2.1 Purpose
	Intro.2.2.2 Responsibility
	Intro.2.2.3 Professional Code of Conduct
	Intro.2.2.4 Grounds for Decertification

	Intro.2.3 Submitting the Initial Application
	Intro.2.3.1 Correcting Application Errors
	Intro.2.3.2 Submitting Application Changes

	Intro.2.4 Application-Examination Eligibility Requirements
	Intro.2.4.1 Filing a Retake Application

	Intro.3 Arranging to Sit and Take the Examination
	Intro.3.1 Scheduling to Take the Examination
	Intro.3.1.1 Rescheduling the Examination Sitting

	Intro.3.2 Receiving the Confirmation Letter
	Intro.3.3 Checking Examination Arrangements
	Intro.3.4 Arriving at the Examination Site
	Intro.3.4.1 No-shows

	Intro.4 How to Maintain Competency and Improve Value
	Intro.4.1 Continuing Professional Education
	Intro.4.2 Advanced CSTE Designations
	Intro.4.2.1 What is the Certification Competency Emphasis?

	Preparing for the CSTE Examination
	Intro.5 Assess Your CSTE 2006 CBOK Competency
	Intro.5.1 Complete the CSTE Skill Assessment Worksheet
	Intro.5.2 Calculate Your CSTE CBOK Competency Rating

	Intro.6 Understand the Key Principles Incorporated Into the Examination
	Intro.7 Review the List of References
	Intro.8 Initiate a Self-Study Program
	Intro.9 Take the Sample Examination

	CSTE 2006 Skill Assessment Worksheet
	Assess Your Skills against the CSTE 2006 CBOK
	Skill Category 1 - Software Testing Principles and Concepts
	Skill Category 2 - Building the Test Environment
	Skill Category 3 - Managing the Test Project
	Skill Category 4 - Test Planning
	Skill Category 5 - Executing the Test Plan
	Skill Category 6 - Test Reporting Process
	Skill Category 7 - User Acceptance Testing
	Skill Category 8 - Testing Software Developed by Contractors
	Skill Category 9 - Testing Internal Control
	Skill Category 10 - Testing New Technologies
	CSTE 2006 CBOK Competency Rating Table

	Skill Category
	1
	Software Testing Principles and Concepts
	1.1 Vocabulary
	1.1.1 Quality Assurance Versus Quality Control
	1.1.1.1 Quality Assurance
	1.1.1.2 Quality Control

	1.1.2 The Cost of Quality
	1.1.3 Software Quality Factors
	1.1.3.1 How to Identify Important Software Quality Factors
	1.1.3.2 Inventory Control System Example

	1.1.4 How Quality is Defined
	1.1.5 Definitions of Quality
	1.1.6 What is Quality Software?
	1.1.6.1 The Two Software Quality Gaps
	1.1.6.2 What is Excellence?

	1.2 What is Life Cycle Testing?
	1.2.1 Why Do We Test Software?
	1.2.2 Developers are not Good Testers
	1.2.3 What is a Defect?
	1.2.4 Software Process Defects
	1.2.4.1 What Does It Mean For a Process To Be In or Out of Control?
	1.2.4.2 Do Testers Need to Know SPC?

	1.2.5 Software Product Defects
	1.2.5.1 Software Design Defects
	1.2.5.2 Data Defects

	1.2.6 Finding Defects

	1.3 Reducing the Frequency of Defects in Software Development
	1.3.1 The Five Levels of Maturity
	1.3.1.1 Level 1 - Ad Hoc
	1.3.1.2 Level 2 - Control
	1.3.1.3 Level 3 - Core Competency
	1.3.1.4 Level 4 - Predictable
	1.3.1.5 Level 5 - Innovative

	1.3.2 Testers Need to Understand Process Maturity

	1.4 Factors Affecting Software Testing
	1.4.1 People Relationships
	1.4.2 Scope of Testing
	1.4.3 Misunderstanding Life Cycle Testing
	1.4.3.1 Requirements
	1.4.3.2 Design
	1.4.3.3 Program (Build/Construction)
	1.4.3.4 Test Process
	1.4.3.5 Installation
	1.4.3.6 Maintenance

	1.4.4 Poorly Developed Test Planning
	1.4.5 Testing Constraints
	1.4.5.1 Budget and Schedule Constraints
	1.4.5.2 Lacking or Poorly Written Requirements
	1.4.5.3 Changes in Technology
	1.4.5.4 Limited Tester Skills

	1.5 Life Cycle Testing
	1.6 Test Matrices
	1.6.1 Cascading Test Matrices

	1.7 Independent Testing
	1.8 Tester’s Workbench
	1.8.1 What is a Process?
	1.8.1.1 The PDCA View of a Process
	1.8.1.1.1 P - Plan - Devise Your Plan
	1.8.1.1.2 D - Do (or Execute) the Plan
	1.8.1.1.3 C - Check the Results
	1.8.1.1.4 A - Act - Take the Necessary Action

	1.8.1.2 The Workbench View of a Process
	1.8.1.3 Workbenches are Incorporated into a Process

	1.9 Levels of Testing
	1.9.1 Verification versus Validation
	1.9.1.1 Computer System Verification and Validation Examples
	1.9.1.2 Functional and Structural Testing
	1.9.1.2.1 Why Use Both Testing Methods?

	1.9.2 Static versus Dynamic Testing
	1.9.3 The “V” Concept of Testing
	1.9.3.1 An 11-Step Software Testing Process Example
	1.9.3.1.1 Step 1: Assess Development Plan and Status
	1.9.3.1.2 Step 2: Develop the Test Plan
	1.9.3.1.3 Step 3: Test Software Requirements
	1.9.3.1.4 Step 4: Test Software Design
	1.9.3.1.5 Step 5: Program (Build) Phase Testing
	1.9.3.1.6 Step 6: Execute and Record Results
	1.9.3.1.7 Step 7: Acceptance Test
	1.9.3.1.8 Step 8: Report Test Results
	1.9.3.1.9 Step 9: The Software Installation
	1.9.3.1.10 Step 10: Test Software Changes
	1.9.3.1.11 Step 11: Evaluate Test Effectiveness

	1.10 Testing Techniques
	1.10.1 Structural versus Functional Technique Categories
	1.10.1.1 Structural System Testing Technique Categories
	1.10.1.1.1 Stress Testing Techniques
	1.10.1.1.2 Execution Testing Technique
	1.10.1.1.3 Recovery Testing Technique
	1.10.1.1.4 Operations Testing Technique
	1.10.1.1.5 Compliance Testing Technique
	1.10.1.1.6 Security Testing Technique

	1.10.1.2 Functional System Testing Technique Categories
	1.10.1.2.1 Requirements Testing Techniques
	1.10.1.2.2 Regression Testing Technique
	1.10.1.2.3 Error-Handling Testing Technique
	1.10.1.2.4 Manual Support Testing Techniques
	1.10.1.2.5 Intersystem Testing Technique
	1.10.1.2.6 Control Testing Technique
	1.10.1.2.7 Parallel Testing Techniques

	1.10.2 Examples of Specific Testing Techniques
	1.10.2.1 White-Box Testing
	1.10.2.2 Black-Box Testing
	1.10.2.3 Incremental Testing
	1.10.2.4 Thread Testing
	1.10.2.5 Requirements Tracing
	1.10.2.5.1 Example

	1.10.2.6 Desk Checking and Peer Review
	1.10.2.7 Walkthroughs, Inspections, and Reviews
	1.10.2.8 Proof of Correctness Techniques
	1.10.2.9 Simulation
	1.10.2.10 Boundary Value Analysis
	1.10.2.11 Error Guessing and Special Value Analysis
	1.10.2.12 Cause-Effect Graphing
	1.10.2.13 Design-Based Functional Testing
	1.10.2.14 Coverage-Based Testing
	1.10.2.15 Complexity-Based Testing
	1.10.2.16 Statistical Analyses and Error Seeding
	1.10.2.17 Mutation Analysis
	1.10.2.18 Flow Analysis
	1.10.2.19 Symbolic Execution

	1.10.3 Combining Specific Testing Techniques

	Skill Category
	2
	Building the Test Environment
	2.1 Management Support
	2.1.1 Management Tone
	2.1.2 Integrity and Ethical Values
	2.1.2.1 Incentives and Temptations
	2.1.2.2 Providing and Communicating Moral Guidance

	2.1.3 Commitment to Competence
	2.1.4 Management’s Philosophy and Operating Style
	2.1.5 Organizational Structure
	2.1.5.1 Assignment of Authority and Responsibility
	2.1.5.2 Human Resource Policies and Practices

	2.2 Test Work Processes
	2.2.1 The Importance of Work Processes
	2.2.2 Developing Work Processes
	2.2.2.1 Defining the Attributes of a Standard for a Standard
	2.2.2.2 Developing a Test Standard
	2.2.2.2.1 Establishing a Testing Policy

	2.2.3 Tester’s Workbench
	2.2.4 Responsibility for Building Work Processes
	2.2.4.1 Responsibility for Policy
	2.2.4.2 Responsibility for Standards and Procedures
	2.2.4.3 Test Process Selection
	2.2.4.4 Building a Process Engineering Organization
	2.2.4.4.1 Recommended Standards Organizational Structure
	2.2.4.4.2 Role of Process Engineering Manager
	2.2.4.4.3 Role of the Process Engineering Committee
	2.2.4.4.4 Role of the Ad Hoc Committee
	2.2.4.4.5 Selecting Process Engineering Committee Members

	2.2.4.5 Professional Test Standards
	2.2.4.5.1 IEEE Software Engineering Standards

	2.2.5 Analysis and Improvement of the Test Process
	2.2.5.1 Test Process Analysis
	2.2.5.1.1 Effectiveness and Efficiency of Test Processes
	2.2.5.1.2 The test objectives are applicable, reasonable, adequate, feasible, and affordable
	2.2.5.1.3 The test program meets the test objectives
	2.2.5.1.4 The correct test program is being applied to the project
	2.2.5.1.5 The test methodology is used correctly
	2.2.5.1.6 The task work products are adequate to meet the test objectives
	2.2.5.1.7 Analysis of the results of testing to determine the adequacy of testing
	2.2.5.1.8 Adequate, not excessive, testing is performed

	2.2.5.2 Continuous Improvement
	2.2.5.3 Test Process Improvement Model
	2.2.5.4 Test Process Alignment
	2.2.5.5 Adapting the Test Process to Different Software Development Methodologies

	2.3 Test Tools
	2.3.1 Tool Development and Acquisition
	2.3.1.1 Sequence of Events to Select Testing Tools
	2.3.1.1.1 Recommended Event Sequence
	2.3.1.1.2 Event 1: Goals
	2.3.1.1.3 Event 2: Tool Objectives
	2.3.1.1.4 Event 3: Procure Tool
	2.3.1.1.5 Event 4: Evaluation Plan
	2.3.1.1.6 Event 5: Implementation Plan
	2.3.1.1.7 Event 6: Training Plan
	2.3.1.1.8 Event 7: Tool Received
	2.3.1.1.9 Event 8: Acceptance Test
	2.3.1.1.10 Event 9: Orientation
	2.3.1.1.11 Event 10: Modifications
	2.3.1.1.12 Event 11: Training
	2.3.1.1.13 Event 12: Use in the Operating Environment
	2.3.1.1.14 Event 13: Evaluation Report
	2.3.1.1.15 Event 14: Determine if Goals Are Met

	2.3.2 Classes of Test Tools

	2.4 Testers Competency

	Skill Category
	3
	Managing the Test Project
	3.1 Test Administration
	3.1.1 Test Planning
	3.1.2 Budgeting
	3.1.2.1 Budgeting Techniques
	3.1.2.1.1 Top-Down Estimation
	3.1.2.1.2 Expert Judgment
	3.1.2.1.3 Bottom-Up Estimation

	3.1.2.2 Tracking Budgeting Changes

	3.1.3 Scheduling
	3.1.4 Staffing
	3.1.4.1 Test Team Approaches
	3.1.4.1.1 Developers Become the Test Team Approach
	3.1.4.1.2 Independent IT Test Team Approach
	3.1.4.1.3 Non-IT Test Team Approach
	3.1.4.1.4 Combination Test Team Approach

	3.1.5 Customization of the Test Process

	3.2 Test Supervision
	3.2.1 Communication Skills
	3.2.1.1 Written and Oral Communication
	3.2.1.1.1 Preparing the Proposal
	3.2.1.1.2 Presenting the Proposal
	3.2.1.1.3 Closing the Proposal

	3.2.1.2 Listening Skills
	3.2.1.3 The 3-Step Listening Process
	3.2.1.3.1 Step 1: Hearing the Speaker
	3.2.1.3.2 Step 2: Attending to the Speaker
	3.2.1.3.3 Step 3 - Understanding the Speaker

	3.2.1.4 Interviewing Skills
	3.2.1.5 Analyzing Skills

	3.2.2 Negotiation and Complaint Resolution Skills
	3.2.2.1 Negotiation
	3.2.2.2 Resolving Complaints
	3.2.2.3 The 4-Step Complaint-Resolution Process
	3.2.2.3.1 Step 1: Get On Your Customer’s Wavelength
	3.2.2.3.2 Step 2: Get the Facts
	3.2.2.3.3 Step 3: Establish and Initiate an Action Program
	3.2.2.3.4 Step 4: Follow Up with Your Customer

	3.2.3 Judgment
	3.2.4 Providing Constructive Criticism
	3.2.5 Project Relationships
	3.2.6 Motivation, Mentoring, and Recognition
	3.2.6.1 Motivation
	3.2.6.2 Mentoring
	3.2.6.3 Recognition

	3.3 Test Leadership
	3.3.1 Chairing Meetings
	3.3.2 Team Building
	3.3.2.1 Team Development
	3.3.2.2 Team Member Interaction
	3.3.2.3 Team Ethics
	3.3.2.4 Team Rewards

	3.3.3 Quality Management Organizational Structure
	3.3.4 Code of Ethics
	3.3.4.1 Responsibility

	3.4 Managing Change
	3.4.1 Software Configuration Management
	3.4.2 Software Change Management
	3.4.3 Software Version Control
	3.4.3.1 Example

	Skill Category
	4
	Test Planning
	4.1 Risk Concepts and Vocabulary
	4.2 Risks Associated with Software Development
	4.2.1 Improper Use of Technology
	4.2.2 Repetition of Errors
	4.2.3 Cascading of Errors
	4.2.4 Illogical Processing
	4.2.5 Inability to Translate User Needs into Technical Requirements
	4.2.6 Inability to Control Technology
	4.2.7 Incorrect Entry of Data
	4.2.8 Concentration of Data
	4.2.9 Inability to React Quickly
	4.2.10 Inability to Substantiate Processing
	4.2.11 Concentration of Responsibilities
	4.2.12 Erroneous or Falsified Input Data
	4.2.13 Misuse by Authorized End Users
	4.2.14 Uncontrolled System Access
	4.2.15 Ineffective Security and Privacy Practices for the Application
	4.2.16 Procedural Errors during Operations
	4.2.16.1 Procedures and Controls
	4.2.16.2 Storage Media Handling

	4.2.17 Program Errors
	4.2.18 Operating System Flaws
	4.2.19 Communications System Failure
	4.2.19.1 Accidental Failures
	4.2.19.2 Intentional Acts

	4.3 Risks Associated with Software Testing
	4.3.1 Premature Release Risk

	4.4 Risk Analysis
	4.4.1 Risk Analysis Process
	4.4.1.1 Form the Risk Analysis Team
	4.4.1.2 Identify Risks
	4.4.1.3 Estimate the Magnitude of the Risk
	4.4.1.4 Select Testing Priorities

	4.5 Risk Management
	4.5.1 Risk Reduction Methods
	4.5.2 Contingency Planning

	4.6 Prerequisites to Test Planning
	4.6.1 Test Objectives
	4.6.2 Acceptance Criteria
	4.6.3 Assumptions
	4.6.4 People Issues
	4.6.5 Constraints

	4.7 Create the Test Plan
	4.7.1 Understand the Characteristics of the Software being Developed
	4.7.2 Build the Test Plan
	4.7.2.1 Set Test Objectives
	4.7.2.2 Develop the Test Matrix
	4.7.2.2.1 Define Tests as Required
	4.7.2.2.2 Define Conceptual Test Cases to be Entered as a Test Script
	4.7.2.2.3 Define Verification Tests
	4.7.2.2.4 Prepare the Software Test Matrix

	4.7.2.3 Define Test Administration
	4.7.2.4 State Test Plan General Information
	4.7.2.4.1 Define Test Milestones

	4.7.3 Write the Test Plan
	4.7.3.1 Guidelines to Writing the Test Plan
	4.7.3.2 Test Plan Standard
	4.7.3.2.1 Test Scope
	4.7.3.2.2 Test Objectives
	4.7.3.2.3 Assumptions
	4.7.3.2.4 Risk Analysis
	4.7.3.2.5 Test Design
	4.7.3.2.6 Roles & Responsibilities
	4.7.3.2.7 Test Schedule & Planned Resources
	4.7.3.2.8 Test Data Management
	4.7.3.2.9 Test Environment
	4.7.3.2.10 Communication Approach
	4.7.3.2.11 Tools

	Skill Category
	5
	Executing the Test Plan
	5.1 Test Case Design
	5.1.1 Functional Test Cases
	5.1.1.1 Design Specific Tests for Testing Code
	5.1.1.2 Functional Testing Independent of the Specification Technique
	5.1.1.3 Functional Testing Based on the Interface
	5.1.1.4 Functional Testing Based on the Function to be Computed
	5.1.1.5 Functional Testing Dependent on the Specification Technique

	5.1.2 Structural Test Cases
	5.1.2.1 Structural Analysis
	5.1.2.2 Structural Testing

	5.1.3 Erroneous Test Cases
	5.1.3.1 Statistical Methods
	5.1.3.2 Error-Based Testing

	5.1.4 Stress Test Cases
	5.1.5 Test Scripts
	5.1.5.1 Determine Testing Levels
	5.1.5.2 Develop the Scripts
	5.1.5.3 Execute the Script
	5.1.5.4 Analyze the Results
	5.1.5.5 Maintain Scripts

	5.1.6 Use Cases
	5.1.6.1 Build a System Boundary Diagram
	5.1.6.2 Define Use Cases
	5.1.6.3 Develop Test Cases
	5.1.6.4 Test Objective

	5.1.7 Building Test Cases
	5.1.8 Process for Building Test Cases
	5.1.9 Example of Creating Test Cases for a Payroll Application

	5.2 Test Coverage
	5.3 Performing Tests
	5.3.1 Platforms
	5.3.2 Test Cycle Strategy
	5.3.3 Use of Tools in Testing
	5.3.3.1 Test Documentation
	5.3.3.2 Test Drivers
	5.3.3.3 Automatic Test Systems and Test Languages

	5.3.4 Perform Tests
	5.3.4.1 Perform Unit Testing
	5.3.4.2 Perform Integration Test
	5.3.4.3 Perform System Test

	5.3.5 When is Testing Complete?
	5.3.6 General Concerns

	5.4 Recording Test Results
	5.4.1 Problem Deviation
	5.4.2 Problem Effect
	5.4.3 Problem Cause
	5.4.4 Use of Test Results

	5.5 Defect Management
	5.5.1 Defect Naming Guidelines
	5.5.1.1 Name of the Defect
	5.5.1.2 Defect Severity
	5.5.1.3 Defect Type
	5.5.1.4 Defect Class
	5.5.1.4.1 Defect-Naming Example

	5.5.2 The Defect Management Process
	5.5.2.1 Defect Prevention
	5.5.2.2 Deliverable Baseline
	5.5.2.3 Defect Discovery
	5.5.2.3.1 Severity versus Priority
	5.5.2.3.2 A Sample Defect-Tracking Process
	5.5.2.3.3 Report Defects
	5.5.2.3.4 Acknowledge Defect

	5.5.2.4 Defect Resolution
	5.5.2.4.1 Prioritize Fix
	5.5.2.4.2 Schedule Fix
	5.5.2.4.3 Fix Defect
	5.5.2.4.4 Report Resolution

	5.5.2.5 Process Improvement

	Skill Category
	6
	Test Reporting Process
	6.1 Prerequisites to Test Reporting
	6.1.1 Define and Collect Test Status Data
	6.1.1.1 Test Results Data
	6.1.1.2 Test Case Results and Test Verification Results
	6.1.1.3 Defects
	6.1.1.4 Efficiency

	6.1.2 Define Test Metrics used in Reporting
	6.1.3 Define Effective Test Metrics
	6.1.3.1 Objective versus Subjective Measures
	6.1.3.2 How Do You Know a Metric is Good?
	6.1.3.3 Standard Units of Measure
	6.1.3.4 Productivity versus Quality
	6.1.3.5 Test Metric Categories
	6.1.3.5.1 Metrics Unique to Test
	6.1.3.5.2 Complexity Measurements
	6.1.3.5.3 Project Metrics
	6.1.3.5.4 Size Measurements
	6.1.3.5.5 Defect Metrics
	6.1.3.5.6 Product Measures
	6.1.3.5.7 Satisfaction Metrics
	6.1.3.5.8 Productivity Metrics

	6.2 Test Tools used to Build Test Reports
	6.2.1 Pareto Charts
	6.2.1.1 Deployment
	6.2.1.2 Examples
	6.2.1.3 Results
	6.2.1.4 Recommendations

	6.2.2 Pareto Voting
	6.2.2.1 Deployment
	6.2.2.2 Example

	6.2.3 Cause and Effect Diagrams
	6.2.3.1 Deployment
	6.2.3.2 Results
	6.2.3.3 Examples
	6.2.3.4 Recommendation

	6.2.4 Check Sheets
	6.2.4.1 Deployment
	6.2.4.2 Results
	6.2.4.3 Examples
	6.2.4.4 Recommendations
	6.2.4.5 Example Check Sheet

	6.2.5 Histograms
	6.2.5.1 Variation of a Histogram
	6.2.5.2 Deployment
	6.2.5.3 Results
	6.2.5.4 Examples
	6.2.5.5 Recommendations

	6.2.6 Run Charts
	6.2.6.1 Deployment
	6.2.6.2 Results
	6.2.6.3 Examples
	6.2.6.4 Recommendations

	6.2.7 Scatter Plot Diagrams
	6.2.7.1 Deployment
	6.2.7.1.1 Using Scatter Diagram for Exploratory Analysis
	6.2.7.1.2 Cluster Analysis

	6.2.7.2 Results
	6.2.7.3 Examples

	6.2.8 Regression Analysis
	6.2.8.1 Deployment
	6.2.8.2 Results

	6.2.9 Multivariate Analysis
	6.2.9.1 Deployment
	6.2.9.2 Results

	6.2.10 Control Charts
	6.2.10.1 Deployment
	6.2.10.2 Results
	6.2.10.3 Examples

	6.3 Test Tools used to Enhance Test Reporting
	6.3.1 Benchmarking
	6.3.1.1 A Ten-Step Process to Collect Benchmark Data
	6.3.1.1.1 Planning Phase
	6.3.1.1.2 Analysis Phase
	6.3.1.1.3 Integration Phase
	6.3.1.1.4 Action Phase

	6.3.2 Quality Function Deployment

	6.4 Reporting Test Results
	6.4.1 Current Status Test Reports
	6.4.1.1 Function Test Matrix
	6.4.1.1.1 Report Example
	6.4.1.1.2 How to Interpret the Report

	6.4.1.2 Defect Status Report
	6.4.1.2.1 Report Example
	6.4.1.2.2 How to Interpret the Report

	6.4.1.3 Functional Testing Status Report
	6.4.1.3.1 Report Example
	6.4.1.3.2 How to Interpret the Report

	6.4.1.4 Functions Working Timeline
	6.4.1.4.1 Report Example
	6.4.1.4.2 How to Interpret the Report

	6.4.1.5 Expected versus Actual Defects Uncovered Timeline
	6.4.1.5.1 Report Example
	6.4.1.5.2 How to Interpret the Report

	6.4.1.6 Defects Uncovered versus Corrected Gap Timeline
	6.4.1.6.1 Report Example
	6.4.1.6.2 How to Interpret the Report

	6.4.1.7 Average Age of Uncorrected Defects by Type
	6.4.1.7.1 Report Example
	6.4.1.7.2 How to Interpret the Report

	6.4.1.8 Defect Distribution Report
	6.4.1.8.1 Report Example
	6.4.1.8.2 How to Interpret the Report

	6.4.1.9 Relative Defect Distribution Report
	6.4.1.9.1 Report Example
	6.4.1.9.2 How to Interpret the Report

	6.4.1.10 Testing Action Report
	6.4.1.10.1 Report Example
	6.4.1.10.2 How to Interpret the Report

	6.4.1.11 Individual Project Component Test Results
	6.4.1.11.1 Report Example

	6.4.1.12 Summary Project Status Report
	6.4.1.13 Individual Project Status Report
	6.4.1.13.1 Project Information
	6.4.1.13.2 General Project Information
	6.4.1.13.3 Project Activities Information
	6.4.1.13.4 Essential Elements Information
	6.4.1.13.5 Legend Information
	6.4.1.13.6 Project Highlights Information

	6.4.2 Final Test Reports
	6.4.2.1 Description of Test Reports
	6.4.2.2 Integration Test Report
	6.4.2.3 System Test Report

	6.4.3 Guidelines for Report Writing

	Skill Category
	7
	User Acceptance Testing
	7.1 Acceptance Testing Concepts
	7.1.1 Difference between Acceptance Test and System Test

	7.2 Roles and Responsibilities
	7.2.1 User’s Role
	7.2.2 Software Tester’s Role

	7.3 Acceptance Test Planning
	7.3.1 Acceptance Criteria
	7.3.2 Acceptance Test Plan
	7.3.3 Use Case Test Data

	7.4 Acceptance Test Execution
	7.4.1 Execute the Acceptance Test Plan
	7.4.2 Acceptance Decision

	Skill Category
	8
	Testing Software Developed by Contractors
	8.1 Challenges in Testing Acquired Software
	8.1.1 Purchased COTS software
	8.1.1.1 Evaluation versus Assessment

	8.1.2 Contracted Software
	8.1.2.1 Additional Differences with Contractors in another Country (Offshore)
	8.1.2.2 Software Tester’s Responsibility for Software Developed by a Contractor

	8.2 COTS Software Test Process
	8.2.1 Assure Completeness of Needs Specification
	8.2.1.1 Define Critical Success Factor
	8.2.1.2 Determine Compatibility with Your Computer Environment
	8.2.1.2.1 Hardware Compatibility
	8.2.1.2.2 Operating Systems Compatibility
	8.2.1.2.3 Software Compatibility

	8.2.1.3 Assure the Software can be Integrated into Your Business System Work Flow
	8.2.1.4 Demonstrate the Software in Operation
	8.2.1.5 Evaluate the People Fit
	8.2.1.6 Acceptance Test the COTS Software

	8.3 Contracted Software Test Process
	8.3.1 Assure the Process for Contracting Software is Adequate
	8.3.2 Review the Adequacy of the Contractor’s Test Plan
	8.3.3 Assure Development is Effective and Efficient
	8.3.4 Perform Acceptance Testing on the Software
	8.3.5 Issue a Report on the Adequacy of the Software to Meet the Needs of the Organization
	8.3.6 Ensure Knowledge Transfer Occurs and Intellectual Property Rights are Protected
	8.3.7 Incorporate Copyrighted Material into the Contractor’s Manuals
	8.3.8 Assure the Ongoing Operation and Maintenance of the Contracted Software
	8.3.9 Assure the Effectiveness of Contractual Relations

	Skill Category
	9
	Testing Software Controls and the Adequacy of Security Procedures
	9.1 Principles and Concepts of Internal Control
	9.1.1 Internal Control Responsibilities
	9.1.2 Software Tester’s Internal Control Responsibilities
	9.1.3 Internal Auditor’s Internal Control Responsibilities
	9.1.4 Risk versus Control
	9.1.5 Environmental versus Transaction Processing Controls
	9.1.5.1 Environmental or General Controls

	9.1.6 Transaction Processing Controls
	9.1.7 Preventive, Detective and Corrective Controls
	9.1.7.1 Preventive Controls
	9.1.7.1.1 Source-Data Authorization
	9.1.7.1.2 Data Input
	9.1.7.1.3 Source-Data Preparation
	9.1.7.1.4 Turn-Around Document
	9.1.7.1.5 Pre-Numbered Forms
	9.1.7.1.6 Input Validation
	9.1.7.1.7 Computer Updating of Files
	9.1.7.1.8 Controls over Processing

	9.1.7.2 Detective Controls
	9.1.7.2.1 Data Transmission
	9.1.7.2.2 Control Register
	9.1.7.2.3 Control Totals
	9.1.7.2.4 Documentation and Testing
	9.1.7.2.5 Output Checks
	9.1.7.2.6 Corrective Controls
	9.1.7.2.7 Cost versus Benefit of Controls

	9.2 Internal Control Models
	9.2.1 COSO Enterprise Risk Management (ERM) Model
	9.2.1.1 The ERM Process
	9.2.1.2 Components of ERM

	9.2.2 COSO Internal Control Framework Model
	9.2.2.1 Example of a Transaction Processing Internal Control System

	9.2.3 CobiT Model

	9.3 Testing Internal Controls
	9.3.1 Perform Risk Assessment
	9.3.2 Test Transaction Processing Controls
	9.3.2.1 Transaction Origination
	9.3.2.2 Transaction Entry
	9.3.2.3 Transaction Communications
	9.3.2.4 Transaction Processing
	9.3.2.5 Database Storage and Retrieval
	9.3.2.6 Transaction Output

	9.4 Testing Security Controls
	9.4.1 Task 1 -Where Security is Vulnerable to Penetration
	9.4.1.1 Accidental versus Intentional Losses

	9.4.2 Task 2 - Building a Penetration Point Matrix
	9.4.2.1 Controlling People by Controlling Activities
	9.4.2.2 Selecting Computer Security Activities
	9.4.2.2.1 Interface Activities
	9.4.2.2.2 Development Activities
	9.4.2.2.3 Operations Activities

	9.4.2.3 Controlling Business Transactions
	9.4.2.4 Characteristics of Security Penetration

	9.4.3 Task 3 - Assess Security Awareness Training
	9.4.3.1 Step 1 - Create a Security Awareness Policy
	9.4.3.2 Step 2 - Develop a Security Awareness Strategy
	9.4.3.2.1 Awareness
	9.4.3.2.2 Training
	9.4.3.2.3 Education
	9.4.3.2.4 Professional Development

	9.4.3.3 Step 3 - Assign the Roles for Security Awareness
	9.4.3.3.1 IT Director/CIO
	9.4.3.3.2 IT Security Program Manager
	9.4.3.3.3 IT Managers
	9.4.3.3.4 Users

	9.4.4 Task 4 - Understand the Attributes of an Effective Security Control
	9.4.5 Task 5 - Selecting Techniques to Test Security
	9.4.5.1 Step 1 - Understand Security Testing Techniques
	9.4.5.2 Step 2 - Select Security Testing Techniques Based on the Strengths and Weaknesses of Those Techniques
	9.4.5.3 Step 3 - Determine the Frequency of Use of Security Testing Techniques Based on the System Category

	Skill Category
	10
	Testing New Technologies
	10.1 Risks Associated with New Technology
	10.2 Newer IT Technologies that Impact Software Testing
	10.2.1 Web-Based Applications
	10.2.2 Distributed Application Architecture
	10.2.2.1 Traditional Client-Server Systems
	10.2.2.2 Thin- versus Thick-Client Systems

	10.2.3 Wireless Technologies
	10.2.3.1 Important Issues for Wireless
	10.2.3.1.1 Standards
	10.2.3.1.2 Coverage
	10.2.3.1.3 Security

	10.2.4 New Application Business Models
	10.2.4.1 e-Commerce
	10.2.4.2 e-Business

	10.2.5 New Communication Methods
	10.2.5.1 Wireless Applications
	10.2.5.1.1 Voice and Messaging
	10.2.5.1.2 Hand-Held and Internet-Enabled Devices
	10.2.5.1.3 Data Networking

	10.2.6 New Testing Tools
	10.2.6.1 Test Automation

	10.3 Testing the Effectiveness of Integrating New Technology
	10.3.1 Determine the Process Maturity Level of the Technology
	10.3.1.1 Level 1 - People-Dependent Technology
	10.3.1.2 Level 2 - Use Description-Dependent Technology Processes
	10.3.1.3 Level 3 - Use of Technology
	10.3.1.4 Level 4 - Quantitatively Measured Technology
	10.3.1.5 Level 5 - Optimized Use of Technology

	10.3.2 Test the Controls over Implementing the New Technology
	10.3.2.1 Test Actual Performance versus Stated Performance
	10.3.2.2 Test the Adequacy of the Current Processes to Control the Technology

	10.3.3 Test the Adequacy of Staff Skills to Use the Technology

	Appendix
	Vocabulary
	Appendix
	References
	Appendix
	C
	How to Take the CSTE Examination
	C.1 CSTE Examination Overview
	C.1.1 Software Testing Theory
	C.1.2 Software Testing Practice

	C.2 Guidelines to Answer Questions
	C.3 Sample CSTE Examination
	C.3.1 Part 1 and Part 3 Multiple-Choice Questions
	C.3.2 Part 1 and Part 3 Multiple-Choice Answers
	C.3.3 Part 2 and Part 4 Essay Questions and Answers
	C.3.3.1 Part 2 - Software Testing Theory Essay Questions
	C.3.3.2 Part 2 - Software Testing Theory Essay Answers
	C.3.3.3 Part 4 - Software Testing Practice Essay Questions
	C.3.3.4 Part 4 - Quality Assurance Practice Essay Answers

