PDF brought to you by ResPaper.com

GATE 2007: Civil Engineering

Answer key / correct responses on:

Click link: http://www.respaper.com/gate/518/6285.pdf

Other papers by GATE: http://www.respaper.com/gate/

Upload and share your papers and class notes on ResPaper.com. It is FREE!

ResPaper.com has a large collection of board papers, competitive exams and entrance tests.

GATE 2007: Civil Engineering

CE: Civil Engineering

Duration: Three Hours

Maximum Marks:150

Read the following instructions carefully.

- 1. This question paper contains 85 objective type questions. Q.1 to Q.20 carry one mark each and Q.21 to Q.85 carry two marks each.
- 2. Attempt all the questions.
- 3. Questions must be answered on Objective Response Sheet (ORS) by darkening the appropriate bubble (marked A, B, C, D) using HB pencil against the question number on the left hand side of the ORS. Each question has only one correct answer. In case you wish to change an answer, erase the old answer completely.
- 4. Wrong answers will carry NEGATIVE marks. In Q.1 to Q.20, 0.25 mark will be deducted for each wrong answer. In Q.21 to Q.76, Q.78, Q.80, Q.82 and in Q.84, 0.5 mark will be deducted for each wrong answer. However, there is no negative marking in Q.77, Q.79, Q.81, Q.83 and in Q.85. More than one answer bubbled against a question will be taken as an incorrect response. Unattempted questions will not carry any marks.
- 5. Write your registration number, your name and name of the examination centre at the specified locations on the right half of the ORS.
- 6. Using HB pencil, darken the appropriate bubble under each digit of your registration number and the letters corresponding to your paper code.
- 7. Calculator is allowed in the examination hall.
- 8. Charts, graph sheets or tables are NOT allowed in the examination hall.
- Rough work can be done on the question paper itself. Additionally blank pages are given at the end of the question paper for rough work.
- 10. This question paper contains 24 printed pages including pages for rough work. Please check all pages and report, if there is any discrepancy.

CE - 1/24

20 carry one mark each.

The minimum and the maximum eigen values of the matrix Q.1

respectively. What is the other eigen value?

- (A) 5

- The degree of the differential equation $\frac{d^2x}{dt^2} + 2x^3 = 0$ is
 - (A) 0

- The solution for the differential equation $\frac{dy}{dx} = x^2y$ with the condition that y=1 at x =
- (B) $\ln(y) = \frac{x^3}{3} + 4$ (C) $\ln(y) = \frac{x^2}{2}$ (D) $y = e^{\frac{x^3}{3}}$
- 0.4 An axially loaded bar is subjected to a normal stress of 173 MPa. The shear stress in the bar is
 - (A) 75 MPa
- (B) 86.5 MPa
- (C) 100 MPa
- (D) 122.3 MPa
- A steel column, pinned at both ends, has a buckling load of 200 kN. If the column is restrained against lateral movement at its mid-height, its buckling load will be
 - (A) 200 kN
- (B) 283 kN
- (C) 400 kN
- (D) 800 kN

- Q.6 The stiffness coefficient kij indicates
 - (A) force at i due to a unit deformation at j
- (B) deformation at j due to a unit force at i
- (C) deformation at i due to a unit force at j
- (D) force at j due to a unit deformation at i
- For an isotropic material, the relationship between the Young's modulus (E), shear modulus (G) and Poisson's ratio (µ) is given by
 - (A) $G = \frac{E}{2(1+\mu)}$

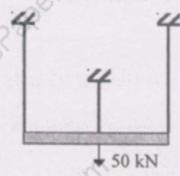
(B) $E = \frac{G}{2(1+\mu)}$ (D) $G = \frac{E}{2(1-\mu)}$

(C) $G = \frac{E}{(1+2\mu)}$

- A clay soil sample is tested in a triaxial apparatus in consolidated-drained conditions at a cell pressure of 100 kN/m2. What will be the pore water pressure at a deviator stress of 40 kN/m²?
 - (A) 0 kN/m^2
- (C) 40 kN/m²

CE - 2/24

S/121 Food/06-CE-1B


ag Park	Q.9	The number of penetration de				dard Pene	tration Tes	t (SPT) for d	lifferent
		Danatration of	nammlar	Number of	blasse				
		Penetration of	The second secon	Number of	blows				
		0 - 150 r		6					
		150 - 300 r		8					
		300 - 450 r	nm	10	1				
		The observed	N value is	, d	oc.			, co	2.
	,	(A) 8	(B	14.8		(C) 18		(D) 24	
		(11)	(1	10		(C) 10		(D) 24	
	Q.10	The westing of		8 1 11				2	
	Q.10	The vertical s due to a certain below the centintensity?	n load inte	ensity is 100	kN/m ²	. What w	ill be the ve	rtical stress in	kN/m ²
	-01	(A) 25	(B) 100	no	(C) 200		(D) 400	U.
El sol	Q.11	There is a free critical depth occur in the ch	is less tha	n the norma	al depth	g open cha . What gr	annel. For a radually var	given flow r	rate, the file will
		(A)M	748			(0) 11	7.0	5	
		$(A) M_1$	(F	M ₂		(C) M_3		(D) S ₁	
	Q.12	The consumpt mm/day. The is required while water in the ro	maximum nen the ar ot zone. F	depth of av nount of av requency of	ailable	water in the water is on should	he root zone 50% of the be	is 60 mm. Ir maximum a	rigation
		(A) 10 days	(E) 15 days		(C) 20 da	iys	(D) 25 days	
5.82	Q.13	As per the L statement from	acey's m	ethod for d wing:	lesign o	of alluvia	l channels,	identify the	TRUE
		/43 W							
		(A) Wetted pe (B) Hydraulic	rimeter in radius inc	creases with reases with	an incr	ease in de ease in silt	sign discha factor.	rge.	
	no	(C) Wetted pe (D) Wetted pe	rimeter de	creases with	an inc	rease in de	esign discha	rge.	C
			0.001.0023.003	10		cuse in si	it idetoi.	. 0	
Sold Aleg	Q.14	At two points points are at th incompressible at points 1 and	ne same el e, inviscid	evation. The	e fluid d	lensity is p	. The flow	can be assume	ed to be
		(A) $0.5 \rho V^2$	(E	$1.5 pV^2$		(C) 2 . V	2	(D) 2 x/2	
		(A) 0.3pv	(E) 1.5pv		(C) 2 pV		(D) $3\rho V^2$	
	COL				OU.			-0	4
	1.			0				0	
				3					
6					CP 2	124	(A)		
					CE - 3	24			

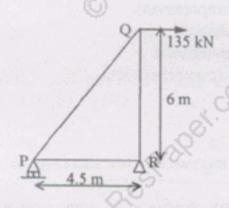
2300	Q.15	The presence of	hardness in excess	of permissible limit ca	uses	
Cles I		(A) cardio vascu (B) skin discolo		an prisar as follows:	(S)	
		(C) calcium defi		(a)	lead to any treatile of H	
		(D) increased la	undry expenses.			
	Q.16	The dispersion of	of pollutants in atmo	sphere is maximum w	hen SC	
es.		(A) environmen	tal lapse rate is grea	ter than adiabatic lapse	rate.	
		(C) environment	tal lapse rate is equa	than adiabatic lapse rate I to adiabatic lapse rate	e. 232	
602		(D) maximum m	nixing depth is equal	I to zero.	Sold Entirement	
	Q.17	The alkalinity a CaCO ₃ , respecti	and the hardness of vely. The water has	a water sample are 2	50 mg/L and 350 m	g/L as
est.	on	(B) 250 mg/L ca (C) 250 mg/L ca	rbonate hardness an irbonate hardness an	nd zero non-carbonate l nd zero non-carbonate l nd 350 mg/L non-carbo	nardness.	
686		(D) 230 mg/L, Ca	irbonate hardness an	nd 100 mg/L non-carbo	nate hardness.	
G _{OS}	Q.18	The consistency following:	and flow resista	ince of bitumen can	be determined from	m the
		(A) Ductitility te				
	A	(B) Penetration to (C) Softening po	est		THE RESERVE OF THE PARTY OF THE	
, 0	0/	(D) Viscosity tes	it cost		, coll	
6.900	Q.19	If a two-lane nat	ional highway and	a two-lane state highwoints at the intersection	ay intersect at right a	ingles,
062		roads are two-wa	ıy is	C C	The descripting that bo	in the
		(A) 11 O	(B) 17	(C) 24 ©	(D) 32	
c	Q.20	or morning mows	to saturation flow o	congress specification f two directional trafficoptimum cycle length	a flow in A 50 and ab.	ratios e total
oet.		(A) 100	(B)(80		SC.	
Son			Z.	(C) 60	S (D) 40	
60			Q. 21 to Q. 75 ca	irry two marks each.	O tempo de la composição de la composiçã	
	Q.21			llowing simultaneous	equations have an ir	nfinite
	OL,	x + y + z = 5;	x + 3y + 3z = 9	$x + 2y + \alpha z = \beta$	COLL	
O'slet.		(A) 2, 7	(B) 328	(C) 8, 3	(D) 7, 2	
			200		05	
ζ,		0		CE - 4/24		
	0		20		0	

0.82.95.0	22 A velocity vec velocity vector	tor is given as \vec{V} at $(1,1,1)$ is	$=5xy\vec{i}+2y^2\vec{j}+3yz^2\vec{k}$	The divergence of	this
9)	(A) 9	(B) 10	(C) 14	(D) 15	
Q.	minutes?	25° C. What will be	wn to 40°C in 15 min the temperature of	nutes when kept in air the body at the end of	at a
	(A) 35.2° C	(B) 31.5°C	(C) 28.7° C	(D) 158 C	
O Cos O	24 The following emethod.	equation needs to be $x + 4x - 9 = 0$	numerically solved	using the Newton-Raph	ison
	The iterative equ	uation for this purpos	e is (k indicates the it	eration level)	
agei	(A) $x_{k+1} = \frac{2x_k^3}{3x_k^2} + \frac{2x_k^3}{$	-9 -4		of co.	
Restated	(B) $x_{k+1} = 3x_k^2 + 2x_k^2 + 3x_k^2 + 3x_$	-4 -9 -9 -9		Ried	
	(A) $x_{k+1} = \frac{2x_k^3 + 4}{3x_k^2 + 4}$ (B) $x_{k+1} = \frac{3x_k^2 + 4}{2x_k^2 + 4}$ (C) $x_{k+1} = x_k - 3$ (D) $x_{k+1} = \frac{4x_k^2 + 4}{9x_k^2 + 4}$	+3-2	meters made and to make absence of all makes of the contradiction of the	off to be specially add to	
ResPare	Evaluate $\int_{0}^{\infty} \frac{\sin t}{t}$	dt agent.		apercon	
000	(Α) π	(B) π/2	(C) π/4	(D) π/8	
Q.:	Potential function the condition ψ	= 0 at x = y = 0?	$^2 - y^2$. What will be the	he stream function (ψ) v	with
ResPaper	COSS(A) 2xy	(B) $x^2 + y^2$	$(C) x^2 - y^2$	(D) 2x ² y ² co ²	
o Cest		O ROST		O Rest	

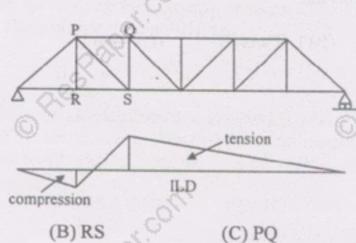
CE - 5/24

- Q.27 The inverse of the 2×2 matrix $\begin{bmatrix} 1 & 2 \\ 5 & 7 \end{bmatrix}$ is,
 - (A) $\frac{1}{3}\begin{bmatrix} -7 & 2\\ 5 & -1 \end{bmatrix}$
 - (B) $\frac{1}{3}\begin{bmatrix} 7 & 2 \\ 5 & 1 \end{bmatrix}$
 - (C) $\frac{1}{3}\begin{bmatrix} 7 & -2 \\ -5 & 1 \end{bmatrix}$
 - (D) $\frac{1}{3}\begin{bmatrix} -7 & -2 \\ -5 & -1 \end{bmatrix}$
- Q.28 Given that one root of the equation $x^3 10x^2 + 31x 30 = 0$ is 5, the other two roots are
 - (A) 2 and 3
- (B) 2 and 4
- (C) 3 and 4
- (D) -2 and -3
- Q.29 If the standard deviation of the spot speed of vehicles in a highway is 8.8 kmph and the mean speed of the vehicles is 33 kmph, the coefficient of variation in speed is
 - (A) 0.1517
- (B) 0.1867
- (C) 0.2666
- (D) 0.3646
- Q.30 A metal bar of length 100 mm is inserted between two rigid supports and its temperature is increased by 10°C. If the coefficient of thermal expansion is 12×10⁻⁶ per °C and the Young's modulus is 2 × 10⁵ MPa, the stress in the bar is
 - (A) zero
- (B) 12 MPa
- (C) 24 MPa
- (D) 2400 MPa
- Q.31 A rigid bar is suspended by three rods made of the same material as shown in the figure. The area and length of the central rod are 3A and L, respectively while that of the two outer rods are 2A and 2L, respectively. If a downward force of 50 kN is applied to the rigid bar, the forces in the central and each of the outer rods will be

- (A) 16.67 kN each
- (C) 30 kN and 10 kN


- (B) 30 kN and 15 kN
- (D) 21.4 kN and 14.3 kN

CE - 6/24


- The maximum and minimum shear stresses in a hollow circular shaft of outer diameter 20 mm and thickness 2 mm, subjected to a torque of 92.7 N.m will be
 - (A) 59 MPa and 47.2 MPa
- (B) 100 MPa and 80 MPa
- (C) 118 MPa and 160 MPa
- (D) 200 MPa and 160 MPa
- The shear stress at the neutral axis in a beam of triangular section with a base of 40 mm and height 20 mm, subjected to a shear force of 3 kN is
 - (A) 3 MPa
- (B) 6 MPa
- (C) 10 MPa
- (D) 20 MPa
- U1 and U2 are the strain energies stored in a prismatic bar due to axial tensile forces P1 Q.34 and P2, respectively. The strain energy U stored in the same bar due to combined action of P1 and P2 will be
 - A) $U = U_1 + U_2$

(C) $U < U_1 + U_2$

- (B) $U = U_1 U_2$ (D) $U > U_1 + U_2$
- The right triangular truss is made of members having equal cross sectional area of 1550 mm² and Young's modulus of 2 × 10⁵ MPa. The horizontal deflection of the joint Q is

- (A) 2.47 mm
- (B) 10.25 mm
- (C) 14.31 mm
- (D) 15.68 mm
- The influence line diagram (ILD) shown is for the member Q.36

(A) PS

(D) QS; COM

0 27	0	. 9	C 11			12
Q.37	Consider	the	tollow	ing	stat	ements:

- I. The compressive strength of concrete decreases with increase in water-cement ratio of the concrete mix.
- II. Water is added to the concrete mix for hydration of cement and workability.
- III. Creep and shrinkage of concrete are independent of the water-cement ratio in the concrete mix.

The TRUE statements are

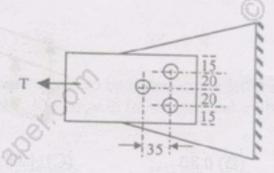
- (A) I and II
- (B)I, II and III
- (C) II and III
- (D) only II
- Q.38 The percentage loss of prestress due to anchorage slip of 3 mm in a concrete beam of length 30 m which is post-tensioned by a tendon with an initial stress of 1200 N/mm² and modulus of elasticity equal to 2.1×10⁵ N/mm² is
 - (A) 0.0175
- (B) 0.175
- (C) 1.75
- (D) 17.5
- Q.39 A concrete beam of rectangular cross-section of size 120 mm (width) and 200 mm (depth) is prestressed by a straight tendon to an effective force of 150 kN at an eccentricity of 20 mm (below the centroidal axis in the depth direction). The stresses at the top and bottom fibres of the section are
 - (A) 2.5 N/mm² (compression), 10 N/mm² (compression).
 - (B) 10 N/mm² (tension), 2.5 N/mm² (compression).
 - (C) 3.75 N/mm² (tension), 3.75 N/mm² (compression).
 - (D) 2.75 N/mm² (compression), 3.75 N/mm² (compression).

Q.40 Consider the following statements:

- I. Modulus of elasticity of concrete increases with increase in compressive strength of concrete.
- II. Brittleness of concrete increases with decrease in compressive strength of concrete.
- Shear strength of concrete increases with increase in compressive strength of concrete.

The TRUE statements are

(A) II and III

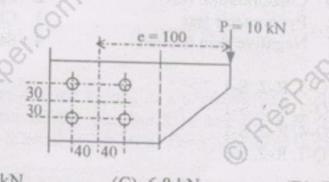

(B) I, II and III

(C) I and II

(D) I and III

CE - 8/24

Q.41 A steel flat of rectangular section of size 70 × 6 mm is connected to a gusset plate by three bolts each having a shear capacity of 15 kN in holes having diameter 11.5 mm. If the allowable tensile stress in the flat is 150 MPa, the maximum tension that can be applied to the flat is

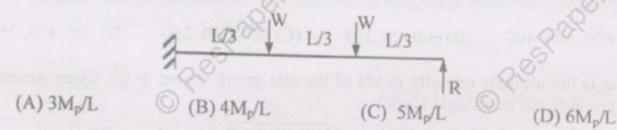

(A) 42.3 kN

(B) 52.65 kN

(C) 59.5 kN

(D) 63.0 kN

Q.42 A bracket connection is made with four bolts of 10 mm diameter and supports a load of 10 kN at an eccentricity of 100 mm. The maximum force to be resisted by any bolt will be


(A) 5 kN

(B) 6.5 kN

(C) 6.8 kN

(D) 7.16 kN

Q.43 The plastic collapse load W_p for the propped cantilever supporting two point loads as shown in figure in terms of plastic moment capacity, M_p, is given by

Q.44 Sieve analysis on a dry soil sample of mass 1000 g showed that 980 g and 270 g of soil pass through 4.75 mm and 0.075 mm sieve, respectively. The liquid limit and plastic limits of the soil fraction passing through 425µ sieves are 40% and 18%, respectively. The soil may be classified as

(A) SC

(B) WI

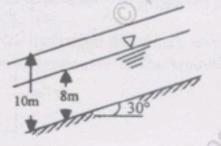
(C) C

(D) SM

Q.45 The water content of a saturated soil and the specific gravity of soil solids were found to be 30% and 2.70, respectively. Assuming the unit weight of water to be 10 kN/m³, the saturated unit weight (kN/m³) and the void ratio of the soil are

(A) 19.4, 0.81

(B) 18.5, 0.30

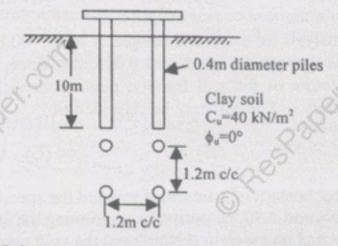

(C) 19.4, 0.45

(D) 18.5, 0.45

CE - 9/24

S/121 Food/06-CE-2A

Q.46 The factor of safety of an infinite soil slope shown in the figure having the properties c=0, φ=35°, γ_{dry}=16 kN/m³ and γ_{sat}=20 kN/m³ is approximately equal to


- (A) 0.70
- (B) 0.80
- (C) 1.00
- (D) 1.20

Q.47 Match the following groups.

Group-I

- P Constant head permeability test 1
- Q Consolidation test
- R Pycnometer test
- S Negative skin friction
- Group-II
- 1 Pile foundations
- 2 Specific gravity
- 3 Clay soil
- 4 Sand

- (A) P-4, Q-3, R-2, S-1
- (B) P-4, Q-2, R-3, S-1
- (C) P-3, Q-4, R-2, S-1
- (D) P-4, Q-1, R-2, S-3
- Q.48 The bearing capacity of a rectangular footing of plan dimensions 1.5 m × 3 m resting on the surface of a sand deposit was estimated as 600 kN/m² when the water table is far below the base of the footing. The bearing capacities in kN/m² when the water level rises to depths of 3 m, 1.5 m and 0.5 m below the base of the footing are
 - (A) 600, 600, 400
- (B) 600,450,350
- (C) 600, 500, 250
- (D) 600, 400, 250
- Q.49 What is the ultimate capacity in kN of the pile group shown in the figure assuming the group to fail as a single block?

- (A) 921.6
- (B) 1177.6
- (C) 2438.6
- (D) 3481.6

000		strikes a flat plate kg/m ³ . The total for	held normal to the force on the plate due to	flow direction. The dothe iet is	lensity of water is 1000
		0		0	
		(A) 100 N	(B) 10 N	(C) 1 N	(D) 0.1 N
	0.51	A 1:50 scale mode prototype is 1000	of a spillway is to be m ³ /s. The discharge to	tested in the laborate be maintained in the	ory. The discharge in the model test is
Class Say		(A) 0.057 m ³ /s	(B) 0.08 m ³ /s	(C) 0.57 m ³ /s	(D) 5.7 m ³ /s
	Q.52	A triangular open of 0.30 m. The dis	channel has a vertex a charge in the channel	ngle of 90° and carrie	es flow at a critical depth
	n		20		and the same
	21.0	(A) $0.08 \text{ m}^3/\text{s}$	(B) 0.11 m ³ /s	(C) $0.15 \text{ m}^3/\text{s}$	(D) 0.2 m ³ /s
Restan	Q.53	The length and the	id (density = 1000 kg ne diameter of the tu m length is equal to 2	be are 2 m and 0.5	mm, respectively. The of the fluid is
		(A) 0.025 N.s/m ²	(B) 0.012 N.s/m ²	(C) 0.00192 N.s/r	m ² (D) 0.00102 N.s/m ²
	de		200		and the same
Coe Lan	Q.54	The flow rate in a channel bed slope of the channel is c	is 0.002. The Mannir	en channel is 2.0 m ³ ng's roughness coeffic	/s per metre width. The cient is 0.012. The slope
		(C) Mild (D) Steep	Cros.		(Sec.)
Restate	0.55	The culturable congrown in the enti wheat is 30 days distributary should	re area and the intens and the kor water de	sity of irrigation is 5	0,000 hectares. Wheat is 0%. The kor period for outlet discharge for the
Gog,		(A) 2.85 m ³ /s	(B) 3.21 m ³ /s	(C) 4.63 m ³ /s	(D) 5.23 m ³ /s
ResPar	St. COLL		ogi com		Der com
Keg. c.			Grand CE	- 11/24	OR C. C.
	0		20.		200

A horizontal water jet with a velocity of 10 m/s and cross sectional area of 10 mm²

An isolated 4-hour storm occurred over a catchment as follows

Time	1 st hour	2 nd hour	3 rd hour	4 th hour
Rainfall (mm)	9	28	92	7

The \$\phi\$ index for the catchment is 10 mm/h. The estimated runoff depth from the catchment due to the above storm is

(A) 10 mm

(B) 16 mm

(C) 20 mm

(D) 23 mm

Two electrostatic precipitators (ESPs) are in series. The fractional efficiencies of the upstream and downstream ESPs for size dp are 80% and 65% respectively. What is the overall efficiency of the system for the same dp?

(A) 100%

(B) 93%

(C) 80%

(D) 65%

50 g of CO2 and 25 g of CH4 are produced from the decomposition of municipal solid waste (MSW) with a formula weight of 120 g. What is the average per capita green house gas production in a city of 1 million people with a MSW production rate of 500 ton/day?

(A) 104 g/day

(B) 120 g/day (C) 208 g/day (D) 313 g/day

The extra widening required for a two-lane national highway at a horizontal curve of Q.59 300 m radius, considering a wheel base of 8 m and a design speed of 100 kmph is

(A) 0.42 m

(B) 0.62 m

(C) 0.82 m

(D) 0.92 m

While designing a hill road with a ruling gradient of 6%, if a sharp horizontal curve of 50 m radius is encountered, the compensated gradient at the curve as per the Indian Roads Congress specifications should be

(A) 4.4%

(B) 4.75% (C) 5.0% (D) 5.25%

The design speed on a road is 60 kmph. Assuming the driver reaction time of 2.5 Q.61 seconds and coefficient of friction of pavement surface as 0.35, the required stopping distance for two-way traffic on a single lane road is

(A) 82.1 m

(B) 102.4 m (C) 164.2 m

The width of the expansion joint is 20 mm in a cement concrete pavement. The laying temperature is 20°C and the maximum slab temperature in summer is 60°C. The coefficient of thermal expansion of concrete is 10×100 mm/mm/°C and the joint filler compresses up to 50% of the thickness. The spacing between expansion joints should be

(A) 20 m

(B) 25 m

(C) 30 m

CE - 12/24

Q.63 The following data pertains to the number of commercial vehicles per day for the design of a flexible pavement for a national highway as per IRC 37-1984:

Type of commercial vehicle	Number of vehicles per day considering the number of lanes	Vehicle Damage Factor
Two axle trucks	_2000	5 0
Tandem axle trucks	200	6 0

Assuming a traffic growth factor of 7.5 % per annum for both the types of vehicles, the cumulative number of standard axle load repetitions (in million) for a design life of ten years is

(B) 57.8

(C) 62.4

Match the following tests on aggregate and its properties. Q.64

TEST

PROPERTY

P. Crushing test

1. Hardness

Q. Los Angeles abrasion test 2. Weathering

R. Soundness test

3. Shape

S. Angularity test

4. Strength

(A) P-2, Q-1, R-4, S-3

(B) P-4, Q-2, R-3, S-1

(C) P-3, Q-2, R-1, S-4

(D) P-4, Q-1, R-2, S-3

The plan of a map was photo copied to a reduced size such that a line originally 100 mm, measures 90 mm. The original scale of the plan was 1:1000. The revised scale

(A) 1:900

(B) 1:1111

(C) 1:1121

(D) 1:1221

The following table gives data of consecutive coordinates in respect of a closed Q.66 theodolite traverse PQRSP.

Station	Northing, m	Southing, m	Easting, m	Westing, m
P	400.75	3		300.5
Q	100.25	(O.	199.25	
R	00	199.0	399.75	0
S	99	300.0		200.5

The magnitude and direction of error of closure in whole circle bearing are

(A) 2.0 m and 45°

(B) 2.0 m and 315°

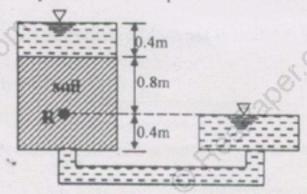
(C) 2.82 m and 315°

(D) 3.42 m and 45°

Q.67 The following measurements were made during testing a levelling instrument.

Instrument at	Staff R	eading at
0)	P ₁	Qı
P	2.800 m	1.700 m
Q	2.700 m	1.800 m

P₁ is close to P and Q₁ is close to Q. If the reduced level of station P is 100.000 m, the reduced level of station Q is


- (A) 99.000 m
- (B) 100.000 m
- (C) 101.000 m (D) 102.000 m
- Two straight lines intersect at an angle of 60°. The radius of a curve joining the two Q.68 straight lines is 600 m. The length of long chord and mid-ordinates in metres of the curve are
 - (A) 80.4, 600.0
- (B) 600.0, 80.4
- (C) 600.0, 39.89
- (D) 49.89, 300.0
- The magnetic bearing of a line AB is S 45° E and the declination is 5° West. The true bearing of the line AB is
 - (A) S 45° E
- (B) S 40° E
- (C) S 50° E
- (D) S 50° W

CE - 14/24

COMMON DATA QUESTIONS

Common Data for Questions 70 and 71:

Water is flowing through the permeability apparatus as shown in the figure. The coefficient of permeability of the soil is k m/s and the porosity of the soil sample is 0.50.

- The total head, elevation head and pressure head in metres of water at the point R Q.70 shown in the figure are
 - (A) 0.8, 0.4, 0.4

- (B) 1.2, 0.4, 0.8 (C) 0.4, 0, 0.4 (D) 1.6, 0.4, 1.2
- What are the discharge velocity and seepage velocity through the soil sample?

 - (A) k, 2k (B) $\frac{2}{3}$ k, $\frac{4}{3}$ k (C) 2k, k (D) $\frac{4}{3}$ k, $\frac{2}{3}$ k

Common Data for Questions 72 and 73:

Ordinates of a 1-hour unit hydrograph at 1 hour intervals, starting from time t=0 are 0, 2, 6, 4, 2, 1 and 0 m³/s.

- Catchment area represented by this unit hydrograph is 0.72
 - (A) 1.0 km²
- (B) 2.0 km^2 (C) 3.2 km^2 (D) 5.4 km^2
- Ordinate of a 3-hour unit hydrograph for the catchment at t = 3 hours is
 - $(A) 2.0 \text{ m}^3/\text{s}$

- (B) $3.0 \text{ m}^3/\text{s}$ (C) $4.0 \text{ m}^3/\text{s}$ (D) $5.0 \text{ m}^3/\text{s}$

Common Data for Questions 74 and 75:

A completely mixed activated sludge process is used to treat a wastewater flow of 1 million litres per day (1 MLD) having a BOD5 of 200 mg/L. The biomass concentration in the aeration tank is 2000 mg/L and the concentration of the net biomass leaving the system is 50 mg/L. The aeration tank has a volume of 200 m3.

- What is the hydraulic retention time of the wastewater in aeration tank?
 - (A) 0.2 h
- (B) 4.8 h
- (C) 10 h
- What is the average time for which the biomass stays in the system?
 - (A) 5 h
- (C) 2 days

CE - 15/24

LINKED ANSWER QUESTIONS: Q.76 to Q.85 carry two marks each.

Statement for Linked Answer Questions 76 and 77:

A two span continuous beam having equal spans each of length L is subjected to a uniformly distributed load w per unit length. The beam has constant flexural rigidity.

- The reaction at the middle support is
 - (A) wL

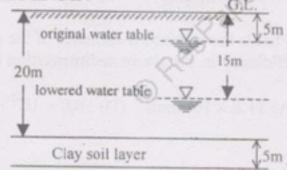
- Q.77 The bending moment at the middle support is
- (A) $\frac{wL^2}{4}$ (B) $\frac{wL^2}{8}$ (C) $\frac{wL^2}{12}$

Statement for Linked Answer Questions 78 and 79:

A singly reinforced rectangular concrete beam has a width of 150 mm and an effective depth of 330 mm. The characteristic compressive strength of concrete is 20 MPa and the characteristic tensile strength of steel is 415 MPa. Adopt the stress block for concrete as given in IS 456-2000 and take limiting value of depth of neutral axis as 0.48 times the effective depth of the beam.

- The limiting value of the moment of resistance of the beam in kN.m is
 - (A) 0.14
- (C) 45.08

- The limiting area of tension steel in mm2 is


- (D) 312.3

CE - 16/24

Statement for Linked Answer Questions 80 and 81:

The ground conditions at a site are as shown in the figure. The water table at the site which was initially at a depth of 5m below the ground level got permanently lowered to a depth of 15m below the ground level due to pumping of water over a few years. Assume the following data:

- i. unit weight of water = 10 kN/m³
- ii unit weight of sand above water table =18 kN/m3
- unit weight of sand and clay below the water table =20 kN/m3 mi.
- coefficient of volume compressibility =0.25 m2/MN

What is the change in the effective stress in kN/m2 at mid-depth of the clay layer due to the lowering of the water table?

- (A) 0
- (B) 20
- (D) 100

Q.81 What is the compression of the clay layer in mm due to the lowering of the water table?

- (A) 125
- (B) 100
- (C) 25
- (D) 0

Statement for Linked Answer Questions 82 and 83:

A rectangular open channel needs to be designed to carry a flow of 2.0 m/s under uniform flow conditions. The Manning's roughness coefficient is 0.018. The channel should be such that the flow depth is equal to half the width, and the Froude number is equal to 0.5.

- The bed slope of the channel to be provided is Q.82
 - (A) 0.0012
- (B) 0.0021
- (C) 0.0025
- (D) 0.0052

Keeping the width, flow depth and roughness the same, if the bed slope of the above channel is doubled, the average boundary shear stress under uniform flow conditions

- $(A) 5.6 \text{ N/m}^2$
- (B) 10.8 N/m²
- (C) 12.3 N/m² (D) 17.2 N/m²

CE - 17/24

Statement for Linked Answer Questions 84 and 85:

A plain sedimentation tank with a length of 20 m, width of 10 m, and a depth of 3 m is used in a water treatment plant to treat 4 million litres of water per day (4 MLD). The average temperature of water is 20°C. The dynamic viscosity of water is 1.002 × 10⁻³ N.s/m² at 20°C. Density of water is 998.2 kg/m³. Average specific gravity of particles is 2.65.

- What is the surface overflow rate in the sedimentation tank?
 - (A) $20 \text{ m}^3/\text{m}^2/\text{day}$
- (B) $40 \text{ m}^3/\text{m}^2/\text{day}$ (C) $67 \text{ m}^3/\text{m}^2/\text{day}$
- (D) 133 m³/m²/day
- What is the minimum diameter of the particle which can be removed with 100% efficiency in the above sedimentation tank?
 - (A) 11.8×10^{-3} mm (B) 16.0×10^{-3} mm (C) 50×10^{-3} mm
- (D) 160 × 10⁻³ mm

END OF THE QUESTION PAPER