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This paper presents analytical, Monte Carlo, and empirical evidence on models for event count 
data. Event counts are dependent variables that measure the number of times some event occurs. 
Counts of international events are probably the most common, but numerous examples exist in every 
empirical field of the discipline. The results of the analysis below strongly suggest that the way event 
counts have been analyzed in hundreds of important political science studies have produced statisti- 
cally and substantively unreliable results. Misspecification, inefficiency, bias, inconsistency, insuffi- 
ciency, and other problems result from the unknowing application of two common methods that are 
without theoretical justification or empirical utility in this type of data. I show that the exponential 
Poisson regression (EPR) model provides analytically, in large samples, and empirically, in small, 
finite samples, a far superior model and optimal estimator. I also demonstrate the advantage of this 
methodology in an application to nineteenth-century party switching in the U.S. Congress. Its use by 
political scientists is strongly encouraged. 

1. Introduction 

This study is concerned with statistical models for event count data. Event 
counts are variables that have for observation i (i  = 1, . . . , N) the number of 
occurrences of an event in a fixed domain. The domain for each observation may 
be time-as in a month, year, hour, or some appropriate interval-or space-as 
in a geographic unit, an individual, or others. 

Dependent variables of this type exist in every major journal and empirical 
field in the discipline, often representing central concepts or concerns. The larg- 
est number of event counts is probably in international relations, where massive 
databases record the number of actions each nation or political group takes with 
respect to another (e.g., Azar and Sloan, 1975). But examples from other fields 
abound: the number of presidential vetoes per year (Rohde and Simon, 1985); the 
number of congressional staff members engaged in casework services and the 
number of trips to the home district for each member of the House of Represen- 
tatives (McAdams and Johannes, 1985); the number of seats the president's party 
lost in each midterm congressional election (Campbell, 1985); the size of Medic- 
aid caseloads (Hanson, 1984); the number of persons recorded in LBJ's daily 
diary as having been present at a particular White House meeting (Sigelman and 
McNeil, 1980); the number of months that a parliamentary cabinet endures 
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(Robertson, 1984); the number of members of the House and Senate who switch 
political parties each year (King and Benjamin, 1985); the number of citizen- 
initiated and support-related political activities engaged in and reported by Soviet 
CmigrCs (Di Franceisco and Gitelman, 1984); the number of coups d'etat per year 
for black African states (Johnson, Slater, and McGowan, 1984). There are many 
other examples. 

In the sections that follow, I show the data generation process of event 
counts to be Poisson (sec. 2). I then introduce the exponential Poisson regression 
(EPR) model as the appropriate method, directly deducible from the data genera- 
tion process (sec. 3). The next section shows that the two models used most fre- 
quently in political science for analyzing this type of data are either misspecified 
(the OLS model in sec. 4) or biased and inconsistent (the logged OLS model in 
sec. 5). Since statistical theory is known only for unrealistically large sample 
sizes, I use Monte Carlo experiments to demonstrate the empirical unbiasedness 
of the EPR model in finite samples and the bias and inefficiency of the logged 
OLS model of event counts even in very large samples (sec. 6). A brief analysis 
of an empirical example (sec. 7) and concluding remarks (sec. 8) are also pro- 
vided. Appendix A provides details of the proof used in section 3. Appendix B 
reviews readily available computer programs that can be used to estimate the 
EPR model. 

2. The Data Generation Process of One Event Count Observation 

The data generation process usually assumed to produce event counts is Pois- 
son.' This process arises naturally in many situations commonly analyzed by po- 
litical scientists. This section presents the substance of a proof that all event 
count data that meet a few modest assumptions arise from a Poisson process 
(mathematical details appear in Appendix A). 

Consider a model for what will be one observation in the Poisson regression 
model to be discussed in later sections. Let y, be the number of recorded events (a 
nonnegative integer) at an instant in time, t;  t does not refer to the observation 
number, but refers to the time that has passed in recording events within this one 
observation; y, never decreases, and at certain instances in time, the number of 
events increases by one. This process is not observed until the end of the observa- 
tion period, when the total number of events occurring within the period are 
recorded. 

'Next to the normal, and certainly among discrete distributions, the Poisson probability distri- 
bution is often considered the most important. Interestingly, although he was a mathematician, Si- 
meon Denis Poisson's (1837) invention was in the context of a "political science" work on the applica- 
tion of mathematical probability to judicial administration (see Haight, 1967, p. 113). Furthermore, 
the methodological problems and opportunities presented by event count data are focused in political 
science. Economics and psychology have occasional applications, and while sociology has a reason- 
able number, it does not approximate the many myriad applications in political science. See Haight 
(1967) for applications in the natural and physical sciences. 
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A mathematical model emerges by assuming that these events occur at "ran- 
dom" within this one observation with a finite rate of occurrence, 13 (0 < 0 < m). 

"Random" is defined in the Markov sense by assuming that in a very short inter- 
val of time, At, the probability of one additional count is independent of past and 
present numbers of events. This assumption basically implies that during the ob- 
servation period the expected rate of occurrence of the next event either remains 
constant (and equal to 8), or at least does not change in response to the number of 
observed events, and that the random error around 8 at one instant in time is 
uncorrelated with the random error at the next point in time. This rate of occur- 
rence may and usually does change across observations, but within this one ob- 
servation it is assumed fixed or at least unresponsive to the number of observed 
events. This is a relatively weak requirement that should hold in most political 
situations. When it does not, 8 refers to the average rate within the observation; 
in this case, event count data would mean the loss of some information and 
"event history" methods (Allison, 1984) would be preferable. However, politi- 
cal data for both independent and dependent variables are rarely available in 
this detailed form. Thus, "event-count analysis deserves further study" (Tuma 
and Hannan, 1979). Indeed, even this assumption can be relaxed, since the ag- 
gregation "of a large number of independent and uniformly sparse [variables] of 
any type is approximately a Poisson process" (Amburgey and Carroll, 1984, 
pp. 41 -42). For continuous variables in ordinary regression analysis, the normal 
distribution is often similarly justified as the sum of many unmeasured variables. 
From these assumptions-y, being a random event count with a finite, positive, 
and constant (or "unresponsive") mean-one can derive the Poisson probability 
distribution (see Figure 1 and Appendix A). 

Thus, we have constructed a Poisson distribution for one observation di- 
rectly from an underlying mathematical model built on a few plausible assump- 
tions about the political phenomenon generating the counts. The Poisson distri- 
bution also arises indirectly from the limiting form of a very large number of 
other distributions and naturally occurring situations (Haight, 1967; Johnson and 
Kotz, 1969).2 I believe that the case made here for typical event count data being 
generated by a Poisson process is stronger than the case usually made for most 
other political science variables being distributed normally. Since the mathemati- 
cal process underlying event count data is relatively clear and very common, 
these data are some of the best in the discipline. Certainly when using these data, 
political scientists ought to more fully exploit them and their special properties. 

'The negative binomial distribution is one that tends to the Poisson, but it can also arise when 
the Poisson parameter is allowed to vary according to a Gamma distribution, possibly representing 
unobserved heterogeneity across observations. If the data are negative binomial but the Poisson 
model is used, estimates will still be consistent (and usually very similar), but standard errors will be 
deflated somewhat (see Gourieroux, Monfort, and Trognon, 1984; King, 1987~) .  



POLITICAL SCIENCE EVENT COUNTS 

3. The Poisson Regression Model 

I move now to the more usual situation where there are N event count obser- 
vations. In order to shift attention from within one observation (the dynamics of 
which are not observed) to across observations, I drop the subscript t on y. I as- 
sume that the time interval or domain size characterizing each observation is 
of the same length or size, although this assumption can be dropped. Then let y, 
(i = 1, . . . , N) be a set of Poisson processes representing the number of events 
recorded for each observation i. Note that the unit of analysis may be time or 
space or both. Thus, the number of violent acts per day in the United States (say 
1950-80) and the number of violent acts per state (say on 5 July 1979) in the 
United States are equally valid examples. Of course, these two data sets are prob- 
ably useful for answering different substantive questions, but either can be ana- 
lyzed using this model. For simplicity, I assume that the absence of autocorrela- 
tion, that is, C(yi, y,) = 0 for all i f j, although this assumption can also be 
relaxed. Since the mean of the Poisson distribution at each observation Oi is equal 
to its variance, heteroskedasticity is guaranteed for all nontrivial examples. In 
the probability distribution, larger values of 8, have a larger disturbance variance. 
This is plausible, since as the mean gets closer to its lower bound of zero, the 
variance must be smaller. Note how, in Figure 1, the variance is larger for 
8, = 2.0 than for 8, = 0.75. Also, due to the positively skewed Poisson distri- 
bution, the heteroskedasticity is strongly asymmetric, since it is not bounded on 
the right (for presentation purposes, Figure 1 stops where the probability of a 
larger number of events is very close to zero). The appropriate estimation tech- 
nique to be discussed below takes full advantage of this additional information. 

To fruitfully analyze these data, let the mean of y, be a function of a vector 
of explanatory variables: 

where, 

To complete this specification, only f ( . )  need be chosen. Iff(.) were an identity 
function, then equation 3.1 would be yi = xj P + si, and p could be estimated by 
an ordinary least squares (OLS) regression analysis. Although the Poisson distri- 
bution of y, would make this procedure quite inefficient, the estimator would be 
an unbiased estimate of the linear approximation to the conditional expectation 
function. The additional problem with OLS, however, is that it does not constrain 
the expected number of events Bi to be positive, as it must be. We therefore limit 
f(.) to the class of positive valued functions. To narrow this to a uniquely appro- 
priate function, consider what the effect of x on y (dyldx) should be. We have 
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FIGURE 1 

The Poisson Probability Distribution 

E ( y )  = 0.75 

already established that this effect should not be P ,  since that would imply a lin- 
ear function and would leave open the possibility of the expected number of 
events being less than zero. I propose that the most reasonable effect is PO,, so that 
a fixed change in x would have a greater effect on y, if the expected value were 
larger. In other words, this specification indicates that the "effort" (in terms of a 
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change in x )  that it would take to move yi from 0 to 1 should be proportionally 
greater than the effort required to move y from, say, 20 to 21. 

For example, suppose we wanted to know the effect of a congressional rep- 
resentative's activity in Washington (e.g., bills introduced or participation on roll 
calls) on national press coverage (e.g., the number of mentions in the New York 
Times; see Cook, 1986). Consider two members of the House, one of whom rou- 
tinely receives considerable press coverage (a high initial expected coverage) and 
another who receives very little (a low initial expected coverage). A linear form 
implies that, if both representatives increased their activity level by the same 
amount in a particular year, their expected levels of coverage (8) during that year 
would each increase by the same number of mentions (P). More plausibly, how- 
ever, the member with the higher initial level of expected coverage is likely to 
translate the same amount of additional activity into proportionately more cover- 
age than the other member. This idea can be incorporated as follows: let POi be 
the increase in coverage that results from a unit increase in activity. Then, the 
greater the expected number of mentions, the larger will be the effect of activity 
on coverage. 

If POi is the appropriate effect, then the functional form is E(y, 1 X) = 

exp(xrP) (using the fact that exponentiation is the only function that is its own 
derivative). Although there are other functions that would restrict the expected 
value to be positive, there are few that also have very plausible effects. By simul- 
taneously applying both of these criteria, I am led to this particular function. 
Exponentiation also happens to be the function most commonly used with the 
Poisson distribution in other contexts and is implied in the very widely used log- 
linear models of contingency table counts (Plackett, 1981). Note that Oi need not 
be an integer and may be taken to represent either the literal mean population 
value for observation i, since the average of a set of integers may be a real num- 
ber, or the expected number of events measured more precisely. Figure 2 por- 
trays several examples of how this curve gets steeper as Oi = E (yi I X) gets larger. 
It also makes apparent how the zero bound on the predicted number of events 
"bends" the curve up from the bottom. 

Taking into account the heteroskedasticity and the other features of the 
model indicated or implied above, the method of maximum likelihood can be 
used to derive estimates of /3.3 See Appendix B for information on computer pro- 

'First assign t in equation A.4 to have a constant value of 1 .  Then the joint likelihood function 
of y, ,  . . . , y, is: 

where 19; = exp(x; /3) for i = 1 ,  . . . , n. The log-likelihood function is then equal to q - 5 In(L ,), 
;= l 
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grams that will estimate this model. When yi (for all or nearly all observations) is 
"large," it would be possible to analyze this sort of data by linear least squares 
techniques. The reason is that the Poisson variable yi becomes approximately 
normal when the number of counts become large. (Note that the number of ob- 
servations has no effect on this, only the number of events within each observa- 
tion.) How large must the counts be? Every situation is different, but it seems 
reasonable to apply the well-known rule of thumb for the central limit theorem: if 
the number of events counted for each (and almost every) observation is greater 
than about 30, then it is probably safe to assume that the disturbances are ap- 
proximately normally (or log-normally) di~tributed.~ Since there is no problem 
created by using this method with larger counts, the exponential Poisson regres- 
sion model is the safer solution with all event count variables. 

Unfortunately, although the exponential Poisson regression (EPR) model is 
most appropriate for even count data, it has only very rarely been applied either 
in political science or anywhere else. See Maddala (1983, pp. 51 -54), Jorgen- 
son (1961), and Amburgey and Carroll (1984) for differing theoretical treatments 
of this model. See King (1987a) for a political application. One problem with 
this previous research is that the beneficial properties of this estimator have been 
established only because it is based on the method of maximum likelihood. This 
means that only asymptotic (large N) results are known. Thus, section 6 presents 
Monte Carlo experiments to assess the model in small, finite samples. An ex- 
ample is also provided in section 7. I move now to the two more common meth- 
ods of analyzing these data. 

4. Ordinary Least Squares and Event Counts 

By far the most common model applied in political science to the event 
count data described in sections 1 and 2 is that implied by ordinary least squares 
(OLS) regression analysis. OLS provides an unbiased linear estimator, and this is 
unaffected by different distributional assumptions. However, there are several se- 
rious problems in using event count data with the OLS model. 

First, OLS assumes a linear relationship, E(y I X) = X P  = P o  + P I X ,  + 
P,X, + . . . . This is an implausible functional form for two reasons: (1) it often 
results in predicted event counts that are less than zero and therefore meaning- 

In estimation, In (yi!) may be dropped, since it does not vary with P.  Because there is no analytical 
solution for b that maximizes L, numerical maximization methods must be used (see Maddala, 1977, 
pp. 176-81). Using Bemdt et a1.k (1974) modified method of scoring in practice, I find that even 
large problems converge relatively quickly. 

'There are also weighted least squares (WLS) estimators for this problem that are analogous to 
those championed by Kritzer (1978) for the analysis of contingency tables (El-Sayyad, 1973; Mc- 
Cullagh and Nelder, 1983). 
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less. Moreover, a "truncated linear" model, where negative fitted values are 
forced to zero, makes unrealistic assumptions at and near the cutoff point. Fur- 
thermore, (2) it makes the unrealistic assumption that the difference between 
zero and one event occurring in a particular time interval is the same as the dif- 
ference between, say, 20 and 21 events. Thus, the true relationship is not linear, 
and a linear approximation would not in most cases even be a reasonable working 
assumption. OLS is an unbiased estimator of a linear conditional expectation 
function (CEF); the problem here is that the CEF is neither linear nor necessarily 
close to linear. 

Second, the statistical inefficiency (the variance of the estimates across 
samples) of the OLS estimator is much higher than it could be. By taking into 
account neither the heteroskedasticity, the particular asymmetric form of the het- 
eroskedasticity, the correct functional form, nor the underlying Poisson distri- 
bution of the disturbances, OLS does not use all available information in the es- 
timation. Insufficiency and inefficiency result. 

These statistical problems are more than just technical points. They usually 
result in substantively biased conclusions. In applications, coefficients will have 
the wrong size and will often have the incorrect sign. Questions such as "How 
many disruptive events will occur next month if unemployment decreases to 10 
percent?" will many times yield nonsensical answers like, "The estimates indi- 
cate that there will be about negative four disruptive events." (This does not 
mean that there will be four less events; it means that the predicted number of 
events is -4.0.) Furthermore, estimates will often be very imprecise, making 
many empirical analyses inconclusive. In fact, since the standard errors and test 
statistics are themselves biased, there will usually be no indication of this im- 
precision. Unfortunately, these serious criticisms of the OLS model apply to 
most existing analyses of event count data in political science. 

5. The Logged OLS Model of Event Counts 

As an attempt at a partial solution to the first set of problems with the OLS 
model of event counts, some political scientists have regressed the natural log of 
y on X. This is a seemingly plausible specification, since logging y changes the 
linear model by discounting large values of y. This is believed to meet the func- 
tional form objection of the OLS model of event counts. 

The problem is that the logged OLS (LOLS) model adds additional com- 
plications. The primary objection is that the conditional expectation of ln(y,), 
given X and y, - Poisson(Bi), is approximately negative infinity, even in finite 
 sample^.^ Since this conditional expectation is not at all meaningful, the es- 

'Recalling that In(0) .= -m, E[ln(y,) I XI = Z; = 0 In(yi) Pr(yi)  = -m. This problem is not 
solved by using a special Poisson distribution that does not include the zero class, since, although the 
CEF of In(yi) given X for this distribution exists (Johnson and Kotz, 1969, pp. 104-09), it omits 
these sometimes critical observations. 
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timator is biased, inefficient, insufficient, inconsistent, and theoretically without 
merit. Letting bLoLS be the LOLS estimator, 

This problem is often "solved" by regressing ln(y, + c) on X, where c is 
some arbitrary small positive constant (usually 0.01) added to yi so that logs can 
be taken.6 This procedure makes the expected value in equation 5.1 finite, but it 
cannot be expressed in closed form and is still biased. Indeed, as will be seen, 
the small constant can create even more serious problems. 

To observe how this LOLS model provides a certain approximation to the 
true model, recall that E(y I X) = 8, = exp(x,P) implies yi = + ei,  which in 
turn can be expressed as 

This is the closest that the EPR specification will ever get to the LOLS speci- 
fication, since the log of a sum is not the sum of the logs.' The slope coefficient 
of the best linear approximation to equation 5.2 can now be found by taking its 
first derivative: 

The LOLS coefficient is a sample estimate of the right hand side of 5.3,  where P 
in that equation is the true coefficient (estimated correctly by EPR). The "bias" 
is then the term in parentheses; y is a nonnegative integer; and 8 and c are posi- 
tive. This means that the coefficient from the LOLS approximation generally has 
the same sign as the more appropriate EPR estimation. Furthermore, since the 
distribution of yi around Oi is strongly asymmetric (with the longer tail pointing 
away from zero), it is very often true that 8, is greater than y,. To get a feel for 
why this is true, consider the extreme case of yi = 0. Since 8, is always greater 
than zero, in this case it will be always greater than y,. Indeed, in most empirical 
applications with several zero observations, the sum of the residuals ( e l  = yi - 
exp(X, b)) may be negative, albeit only very slightly so. This is plausible, since 

61n their review of this model applied to contingency table counts, Bishop, Fienberg, and 
Holland (1975, p. 354) point out that "the effects of replacing such zero values for observed cell 
counts by some positive value . . . have not been definitively investigated." The results below should 
therefore have application to models of contingency table counts. In another context and for a differ- 
ent purpose, Plackett (1981, p. 5) suggests that 0.5 might be the logical value to add to y, since 
E [ln(y + 0.5)] - In(0) tends toward 0 as 0 tends toward infinity. The problem with this logic is that 
the advantage of the EPR model, and the need for the small constant to be added, are greatest when 0 
is smaller. 

'If the specification were changed to include a multiplicative disturbance term, logs could be 
taken, but a similar bias discussed above, and analyzed below, still remains. 
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whenever the rate of occurrence is positive but very small, one would expect 
many of the realized values to be zero. 

Thus, when the c is relatively small (it must be greater than zero), the LOLS 
approximation is likely to provide estimates that are too large in absolute value. 
If a larger value of c is chosen, however, an incrementally smaller value for the 
LOLS estimates will result; in these cases, it is also possible for the LOLS results 
to be too small. Furthermore, there is no optimal choice for c across different 
empirical examples. Thus, the "arbitrary" choice of a small constant is not arbi- 
trary at all in this case; this choice can drastically change one's substantive con- 
clusions. In the next section, the most common value for c (0.01) is used in 
Monte Carlo experiments to explore the actual empirical consequences of using 
the LOLS estimation. Then, in section 7, a political science example is fit in 
several ways with differing values for c to demonstrate this result. 

It pays to remember that the LOLS estimator is biased whether or not a 
small constant needs to be added. Furthermore, the results in any one empirical 
application will not have any necessary relationship with the true parameter val- 
ues. The estimates may be too small, too large, or even have different signs. 
Thus, logging y, and running OLS is not only dangerous, but it is an inappropri- 
ate solution to this problem. The lack of any meaningful underlying model makes 
this estimation useless and a linear approximation to it quite arbitrary. 

Another method, only infrequently used, is to take the square root of y and 
regress it on x. At first, this seems appropriate since (1) the square root of zero is 
defined and no constant need be added, and (2) the square root operation approxi- 
mately stabilizes the variance of a Poisson variable, thus avoiding the problem of 
heteroskedasticity (actually, [y + 3/81 ' I 2  does somewhat better; see Haight, 1967, 
p. 76). However, the resulting variable is still skewed and is not approximately 
normal; thus, OLS will still be inefficient. (To approximate normality, one could 
use a different transformation, y *I3, but this would reintroduce heteroskedastic- 
ity.) Furthermore, when expressing y fl* = X/3 + .s in terms of the original event 
count variable, the model does not appear substantively interesting. This can be 
seen by letting w = X/3; then, the closest one can come to a reasonable model is 
y, = wf + 2wi&, + E ; ,  or E(y,) = w? + E ( E ~ ) ,  where &, = yfI2 - w,. This 
implausible form has the mean event count as a function of X and the variance of 
the disturbances, both of which vary over observations. Attempting to reduce the 
last expected value calculation makes the problem with this model even more 
apparent, since letting E(y) = A yields the awkward and substantively unin- 
teresting formula: 

A related, but somewhat more reasonable, model is E(yi)  = wf or y, = w: + s i ,  
where e i  = y - w: . This model is reasonable, since the effect is similar to- 
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although not as direct or useful as-the EPR model: aE(y)I(dX) = 20 ,P .  This 
could be estimated with maximum likelihood in a manner similar to the EPR 
model. The coefficients could be interpreted as if they were approximately half of 
the EPR coefficients. But there is no estimation advantage to this model, since 
applying OLS to this model would not be appropriate. The linear approximation 
to y = (w: + is not P :  

The term in square brackets represents the OLS bias as a linear approximation to 
this nonlinear model. Unfortunately, even the size and the sign of this bias are 
indeterminate, so the situation may even be worse than with the LOLS model. 

6. Monte Carlo Experiments 

As suggested above, two important reasons lead us to proceed with Monte 
Carlo experiments given the above analytical results. First, the EPR model is 
based on asymptotic theory. Maximum likelihood estimators such as this are nor- 
mally distributed, are consistent, have variances equal to the Cramer-Rao lower 
bound (i.e., minimum variance), and have other desirable properties, but all only 
in infinite samples. In asymptotic theory, the EPR model is universally better 
than the OLS or LOLS models of event counts. However, in the sometimes 
small, but always finite, samples commonly used in political science data analy- 
ses, this statistical theory may or may not apply. For example, Amburgey and 
Carroll (1984, p. 53) conclude their work by arguing that "Monte Carlo studies 
are needed to determine how much is gained by [these] methods . . . especially 
in small samples." 

Second, although sections 4 and 5 have analytically shown the very serious 
problems with the most commonly used event count models in political science, 
no argument exists attempting to explain in empirical terms just what so many 
computer runs have produced. It is possible, although not very probable, that 
empirical applications of the LOLS event count model might not be too biased or 
inefficient. 

Monte Carlo experiments were therefore conducted according to the follow- 
ing procedures (see Hendry, 1984): P and X were arbitrarily chosen. A (3 x 1) @ 
vector was arbitrarily chosen to include PI = 2.0, 0, = 0.4, and P, = -3 .O. 
Although not presented below, many other values in the parameter space were 
also tried, with results quite typical of those presented here. The matrix of ex- 
ogenous factors X has a constant term and two "variables." As a result of these 
choices, the vector of expected values E(y) = 8 = exp(XP) had an empirical 
minimum (for 2,000 observations) of 0.2063 and maximum of 10.8228. 

Experiments were conducted at 12 different sample sizes, including n = 10, 
20, 30, 40, 50, 100, 150, 200, 500, 750, 1,000, and 2,000. For each sample 
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TABLE 1 

Bias and Inconsistency 

Sample 
Size 

10 

20 

30 

40 

50 

100 

150 

200 

500 

750 

1,000 

2,000 

Estimator 

EPR 
LOLS 
EPR 
LOLS 
EPR 
LOLS 
EPR 
LOLS 
EPR 
LOLS 
EPR 
LOLS 
EPR 
LOLS 
EPR 
LOLS 
EPR 
LOLS 
EPR 
LOLS 
EPR 
LOLS 
EPR 
LOLS 

Sum of 
Squared Error 

0.05913 
3.29172 
0.00815 
4.23346 
0.01582 
5.07258 
0.01154 
4.47294 
0.00614 
4.74594 
0.00673 
5.06317 
0.00028 
5.15798 
0.00188 
5.22456 
0.00016 
4.98990 
0.00022 
4.99475 
0.00001 
4.97162 
0.00002 
5.02254 

NOTE: Each cell entry is an average of 100 independent random samples for a fixed sample size 
and estimator. 

size, 100 EPR and LOLS models were estimated.' Across these trials, X and P 
remained fixed. yi (i = 1, . . . , N) was generated for each trial to reflect the 
underlying process: a random draw from a Poisson distribution with parameter 8, 

8The OLS model was not estimated in these experiments, since it cannot be plausibly com- 
pared with the EPR model. If in the EPR model we let 0, = X P ,  the OLS model could be compared. 
However, this would not be very interesting, since in this case even the EPR model could (and prob- 
ably would) produce negative fitted values and other undesirable and implausible results. In addition, 
the LOLS model is also a least squares technique, and most results from these experiments apply 
analogously to the OLS model. In empirical applications, my experience conforms to the results pre- 
sented below. The most commonly used constant, c = 0.01, was added to y, to permit logs to be 
taken in this LOLS model. 
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(i = 1, . . . , N). The results of these experiments are evaluated in three stages: 
bias and inconsistency (Table 1); efficiency and standard error bias (Table 2); and 
the sampling distribution of the EPR coefficients (Table 3). 

An estimator is said to be "unbiased" if the average value of the parameter 
estimates across an infinite number of samples drawn from the same population 
is equal to the respective population parameter. As an approximation, Table 1 
presents the average value of the estimated coefficients across 100 samples (for 
each sample size and estimation procedure). If taking an infinite number of 
samples were possible, an estimator would be unbiased when the averages re- 
ported in the table of the estimate of /3, would equal 2, /3, would equal 0.4, and 
/3, would equal -3. 

All the rows marked EPR in Table 1 have values quite close to 2, 0.4, and 
-3, respectively, indicating unbiasedness. However, the rows marked LOLS dif- 
fer substantially from the population parameter, even for very large sample sizes. 
A closer look at the individual coefficients indicates that they are, in fact, system- 
atically biased. For every average estimate, and for every sample size, the LOLS 
results are all larger in absolute value than their respective parameters and than 
the EPR  estimate^.^ The estimate of the third parameter (P,  = -3) is especially 
noteworthy. Even at n = 2,000, while the EPR coefficient is only 0.1 percent off 
the -3.0 mark, the LOLS coefficient is more than 74 percent larger than it 
should be. Thus, the EPR estimator appears unbiased, whereas the LOLS es- 
timator appears biased away from zero. 

An estimator is said to be "consistent" if the sampling distribution collapses 
to a spike over the population parameter as the sample size goes to infinity. Of 
course, it is not possible to take a sample size of infinity, but an estimator that is 
consistent should generally improve (produce estimates closer to the population 
values) as the sample size increases. In the case of Table 1, the average estimates 
should generally get closer to the target values of 2, 0.4, and -3 as the sample 
size increases. 

The EPR estimator does appear consistent; the average of the 100 samples 
generally gets closer to the population parameters as the number of observations 
increases. However, the LOLS estimator does not move closer to the target pa- 
rameter values as larger sample sizes are used. 

These results can also be seen in the last column of Table 1. This column is 
a convenient summary of the amount of error in the set of three estimate averages 
in each row. If bi is the estimate, the number in that column is ZT=, (bi - 
[e.g., in the first row 0.05913 = (2.0009 - 2)2 + (0.3465 - 0.4)2 + (-3.2372 
- 3)2]. If the estimates are exactly correct, this number is zero; as the estimates 
diverge further from the population parameters, this number becomes larger. The 

'Exactly half of the EPR estimates are larger than the parameters and half are smaller. For 
those cases in which the EPR estimates were larger than the parameters, the LOLS estimates were all 
larger still. 



TABLE 2 

Efficiency and Standard Error Bias 

Sample 
Size Estimator  PI=^ P2 = 0.4 P3  = -3 

EPR S.E. 
Std(bEPR) 
Std(b LOLS) 
EPR S.E. 
Std(bEPR) 
Std(bLOLS) 
EPR S.E. 
Std(bEPR) 
Std(bLOLS) 
EPR S.E. 
Std(bEPR) 
Std(bLOLS) 
EPR S.E. 
Std(b EPR) 
Std(b LOLS) 
EPR S.E. 
Std(b EPR) 
Std(bLoLS) 
EPR S.E. 
Std(bEPR) 
Std(bLoLS) 
EPR S.E. 
Std(bEPR) 
Std(bLoLS) 
EPR S.E. 
Std(b EPR) 
Std(bLoLS) 
EPR S.E. 
Std(b EPR) 
Std(bLOLS) 
EPR S.E. 
Std(bEPR) 
Std(bLOLS) 
EPR S.E. 
Std(bEPR) 

NOTE: S.E. is the average standard error over 100 trials; Std(bEPR) is the standard deviation of 
the EPR coefficients across trials; std(bLoLS) is the standard deviation of the LOLS coefficients 
across trials. 
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LOLS error is always larger than that for the EPR estimator. In fact, the LOLS 
model does not even improve as the sample size increases, thus indicating incon- 
sistency. Indeed, it appears to get slightly worse in larger samples, which leads to 
the curious conclusion that, if one must use the LOLS model, collecting fewer 
observations might yield better results! 

LOLS estimator is thus both empirically biased and inconsistent. Even if an 
infinite amount of data were available, the LOLS model would not provide mean- 
ingful estimates or even outperform an EPR model based on fewer observations. 

An unbiased estimator is said to be "efficient" relative to the class of un- 
biased estimators if the variance of its estimates across samples is lower for all 
possible parameter values. Assessing statistical efficiency is useful, even when 
an estimator is biased. In fact, some biased estimators are preferred to their un- 
biased alternatives due to superior efficiency. In asymptotic samples, the EPR 
estimator is known to be efficient relative to all alternatives. The Monte Carlo 
experiments reported in Table 2 evaluate the efficiency of the EPR estimator rela- 
tive to the LOLS estimator in realistic finite sample sizes. 

For all 12 sample sizes and three coefficients, the standard deviations of the 
LOLS estimates are greater than those of the EPR estimates. Formal evaluation 
of relative efficiency is usually done in terms of a ratio of the two variances 
(squared standard deviations). This ratio indicates that in finite samples the EPR 
estimator is between 3.03 and 14.19 times as efficient as the LOLS estimator. As 
an example of how large this improvement is, note that Zellner's (1962) famous 
Seemingly Unrelated Regressions model improves efficiency by only about 0.20 
times the alternative. Were we to evaluate mean square error (which combines 
both bias and variance in one expression), the improvement would be even more 
dramatic. All this means that the EPR model will be substantially better in prac- 
tice than the LOLS model. 

Thus, whether evaluated on the basis of unbiasedness, consistency, or effi- 
ciency, in large or small samples there is no reason to use the LOLS estimator. 
Although one can never know how general the results from Monte Carlo experi- 
ments are, this unambiguous evidence indicates that the coefficients do not have 
anything near the desirable properties. All provide quite imprecise estimates and 
biased test statistics, standard errors, and significance levels. These results also 
indicate that application of the EPR model will yield considerably better esti- 
mates and can lead to important changes in the substantive conclusions of em- 
pirical research. 

The remaining Monte Carlo results focus on the EPR model and establish 
the value of its estimated standard errors and the sampling distribution of its esti- 
mators. The first row for each sample size in Table 2 reports the average estimated 
standard error from the EPR trials. Comparing this to the second row indicates 
that, for small sample sizes, the efficiency of the EPR estimates are consistently 
better than their estimated standard errors indicate. However, by sample sizes of 
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TABLE 3 

Sampling Distribution of the EPR Coefficients 

Sample Size P 1 = 2  pz = 0.4 p3 = -3 

10 5.9924 3.7613 7.2224 
20 0.2980 3.1980 3.7719 
30 1.3836 2.3653 6.6104 
40 1.6535 1.4663 5.8202 
50 5.1830 1 .8289 1.6881 
100 1.9270 3.0000 1.0439 
150 3.0370 8.701 1 1 .2592 
200 8.6919 5.8943 3.4248 
500 0.4929 5.2217 3 .2574 
750 3.1073 3.1621 3.2344 
1,000 4.9751 4.0619 1.1826 
2,000 2.7638 1.1700 1.1126 

NOTE: Entries are chi-square tests (d.f. = 5) for normality of each set of 100 EPR coefficients 
for each sample size. 

about 100, the two converge. Thus, for small sample sizes, standard errors and 
hypothesis tests will generally be conservative indicators. 

Normality is guaranteed in infinite samples for any maximum likelihood es- 
timator, but EPR estimates are not necessarily approximately normally distrib- 
uted in finite samples. Normality is important to establish if test statistics and con- 
fidence intervals are to be used in the small samples usually available in political 
science research. Table 3 presents chi-square tests for the normality of the distribu- 
tion of the ERR estimates across samples.'O For each sample size, the 100 estimates 
are standardized (with mean equal to the population parameter) and the number 
that fall from -w to -2, -2 to -1, -1 to 0, 0 to 1, 1 to 2, and 2 to w are 
counted and compared to the number that are expected under an assumption of 
normality. A chi-square statistic (d . f .  = 5) was calculated as Zf=, ( 0 ,  - E,)2/ E,, 
where 0, is the observed number of estimates and E, is the expected number. If 
there were no error, chi-square of zero would indicate normality. Since random 
error is present, we use the expected value of each of these chi-square tests under 
the assumption of normality-which in this case is 5.0. In Table 3 , 7 8  percent of 
the values are less than 5.0. Furthermore, the largest value in the table was only 
8.701 1; the unconditional probability of this one coefficient occurring with nor- 
mality is 0.1216. These results indicate that the EPR coefficients can be con- 

''The distribution of y (Poisson) and the distribution of the estimators, b, (normal) should not 
be confused. The central limit theorem guarantees normality of the coefficients for all maximum like- 
lihood estimators regardless of the original distributional assumptions. 
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fidently used to test hypotheses and make probabilistic statements about the co- 
efficient estimates, even in very small samples. 

One should always use caution when studying estimators with Monte Carlo 
methods, since the results are dependent upon a variety of experiment-specific 
choices. They are nevertheless quite useful in situations such as this. As Hendry 
(1984, p. 944) remarks, "A powerful advantage of experimental simulations is 
that much more general data generation processes or more complicated tech- 
niques can be investigated than can be tackled feasibly by analysis . . . [espe- 
cially for] investigating finite sample distributions." 

7. An Empirical Application 

In order to help with the interpretation of these models, an empirical ex- 
ample from political science research is presented. The number of members of 
the U.S. House of Representatives who switched political parties for each year, 
1802-76, serves as the event count dependent variable to be analyzed (see King 
and Benjamin, 1985, for an extended justification of the theory, data, and speci- 
fications). Previous researchers demonstrated that party switchers can be de- 
scribed as having a troubling level of ideological or political dissonance that is 

TABLE 4 

Variable Descriptions 

HSwitch The number of members of the House of Representatives who 
switch parties in each year, 1802-76 (the dependent 
variable) 

Inflation Proportional change in the consumer price index 
Military Rate of change in percentage of the population who are mili- 

tary personnel on active duty 
NonEleYear 1 if nonelection year, 0 otherwise 
Professional Proportional change in the percentage of the House who leave 

Congress for electoral reasons 
PresElect Absolute rate of change in the popular vote for the winning 

presidential candidate four years before 
PublicLaw Proportional change in the number of public laws promulgated 

by the U.S. Congress 
PublicLaw,-, PublicLaw lagged two years 
HSwitch,-, Number of members of the House who switched parties two 

years before 
HSwitch,-, Number of members of the House who switched parties four 

years before 
SSwitch Number of members of the Senate who switched parties 
Constant A constant term equal to a vector of ones 
ln(N Mem) The natural logarithm of the number of members of the House 



TABLE 5 

House Political Party Switchers: An Empirical Application 

Variable 

Inflation 
Military 
NonEleYear 
Professional 
PresElect 
PublicLaw 
PublicLaw,_, 
HSwitch ,-, 
HSwitch,-, 
SSwitch 
Constant 
In(N Mem) 

EPR LOLS 

Estimate 

-3.785 
0.401 
1.051 

- 1.986 
1.379 
0.206 
1.164 
0.018 
0.143 
0.457 

-20.230 
3.490 

Std. 
Error 

2.253 
0.259 
0.320 
0.667 
1.010 
0.365 
0.383 
0.052 
0.060 
0.108 
6.045 
1.097 

c = 0.00001 

Std. 
Estimate Error 

-16.960 8.875 
2.257 1.307 
3.469 1.278 

-4.581 3.853 
1.538 3.995 
0.320 2.531 
2.972 2.478 

-0.263 0.396 
1.201 0.377 
1.179 0.840 

-59.800 20.810 
9.452 3.824 

c = 0.01 

Std. 
Estimate Error 

-7.231 3.81 1 
0.972 0.562 
1 .569 0.549 

-2.465 1.655 
0.769 1.716 
0.099 1.087 
1.405 1.064 

-0.086 0.170 
0.525 0.162 
0.612 0.361 

-25.450 8.937 
4.062 1.642 

c = 1.0 

Std. 
Estimate Error 

- 1.450 0.889 
0.200 0.131 
0.383 0.128 

-0.965 0.386 
0.260 0.400 

-0.026 0.254 
0.404 0.248 
0.014 0.040 
0.11 1 0.038 
0.229 0.084 

-4.284 2.085 
0.818 0.383 

c = 5.0 

Std. 
Estimate Error 
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resolved by switching parties. King and Benjamin therefore assumed that al- 
though some legislators always exist at or near the margin of switching parties, 
these people only make the jump at certain times. Based on a theory of political 
loyalty, the specific hypothesis was that large increases in environmental stress 
and pressure on the legislators resulted in relatively small increases in the fre- 
quency of party switching. 

Table 4 provides a brief account of the variables used in this analysis. One 
problem with these data is that the number of members of the House varies over 
the time period analyzed. Thus, instead of the usual specification, it seems more 
reasonable to consider: B,lNMem, = exp(x,P). This is appropriate and can be 
analyzed by recognizing that it is the same specification as (i.e., algebraically 
equivalent to) 8, = exp[x,P + ln(NMem,)]. This implies that ln(NMem,) 
should be included as an explanatory variable with its coefficient constrained to 
one. However, freeing it up, by just including it as another explanatory variable, 
can do no real harm (see Maddala, 1983, p. 52). This procedure also has intuitive 
appeal, since we are actually controlling for the size of the House. 

Table 5 reports the results of an EPR estimation and four LOLS estimations, 
with the small constant c taking on the values 0.00001, 0.01, 1 .O, and 5.0. I 
concentrate first on interpreting several of the EPR coefficients and then move to 
a comparison of the EPR and LOLS estimations." 

Inflation in this early period was a positive economic event; America was a 
debtor nation and deflation was feared (indeed, not until the late nineteenth and 
especially twentieth centuries was inflation viewed as something to be avoided). 
Thus, as expected, the coefficient from the EPR estimation is negative (-3.785), 
indicating that more inflation led to fewer party switches. To interpret these re- 
sults more precisely, recall that, as set up in section 3, the effect of x on y is PO. 
As a result, when the expected number of switchers is 1.347 (the empirical mean 
of the dependent variable), the effect of inflation is -3.785 X 1.347 = -5 .O98. 
Inflation is measured here as a proportionate (not percentage) change; as a result, 
when it takes on a value of 1, inflation has increased by 100 percent. In this un- 
likely situation, the number of switchers would drop by about five, controlling 
for the other variables in the equation. When the inflation rate increases by 0.20 
(20 percentage points), the effect is -5.098 X 0.20 = - 1.02, indicating that 
about one fewer representative will switch parties. Suppose now that the ex- 
pected number of switches was, say, five due to an already quite stressful year. In 
this case, a 0.20 increase in inflation would lead on average to about -3.785 X 5 
X 0.20 = -3.785, that is nearly four fewer switchers. This larger effect is con- 
sistent with the theoretical development of the EPR model. The same change in 
an explanatory variable is likely to have a larger effect when the expected value 
of the dependent variable is already further from zero, its lower bound. 

"Note that t-tests and probability values can be calculated in the same manner as with correctly 
estimated OLS coefficients: dividing the estimate by the standard error for each coefficient provides a 
t-test for the hypothesis that the true parameter is zero. 
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Consider also NonEleYear, a dummy variable indicating whether it is an 
election (0) or nonelection (1) year. If the expected number of switchers is 1, 
then about 1.05 1 more representatives switch parties in nonelection than election 
years, holding the other variables in the equation constant. (This is plausible, 
since switching has tremendous potential electoral implications; planning for the 
next election becomes considerably more difficult and time consuming.) For 
years in which the expected number of switches is higher, say, 10, the model 
indicates that about 10 X 1.05 1 = 10.5 1 more representatives will switch in non- 
election years than in election years. 

Observe now the comparison between the EPR and the first two sets of LOLS 
coefficients (with c = 0.00001 and c = 0.01).12 Note that, in all but one case for 
c = 0.00001 and two cases for c = 0.01, the LOLS coefficients are larger in 
absolute value than the EPR coefficients. This is consistent with the Monte Carlo 
results in the previous section and with the analytical results in section 5. Also 
consistent with section 5's results is that the size of the LOLS coefficients drops 
rather quickly-even below the EPR estimates-as c increases. Thus, whereas 
the Inflation coefficient is -3.785 under the EPR model, the LOLS estimates 
range from - 16.960 to -0.454; the arbitrary choice of a value for c can there- 
fore have enormous consequences for one's substantive conclusions.13 

Indeed, although the analytical results are reflected in the general patterns 
found in this table, other types of problems are also present. For example, the 
positive EPR coefficient on HSwitch,-, indicates that switching two years ago 
leads to more switching today (although the coefficient is small and conven- 
tionally nonsignificant). As hypothesized, this reflects an emulation or diffusion 
effect. While two of the LOLS estimates for this variable are also positive, two 
others have changed sign, indicating precisely the opposite substantive conclu- 
sion! Also problematic is that as c changes, the standard errors change as dra- 
matically as the coefficients. 

8. Summary and Conclusions 

There are three major conclusions of this study of event count data. 
1. The underlying mathematical process generating event count data is 

I2Although a direct comparison of these LOLS and EPR coefficients with OLS coefficients 
estimated from the same data is inappropriate, the fitted values from the OLS model can yield useful 
information. In this data set, 12 of 75 fitted values were less than zero; this nonsensical result pro- 
vides a strong indication that there is a problem with the linear model in this case. 

"On the very odd chance that one were to guess the "best" value for c, I found the value of c 
in this example for which the sum of squared differences between the LOLS and EPR coefficients was 
smallest. For every empirical example to which I have applied this procedure, different "best" values 
of c were found. In the present case, c = 0.025 is "best." However, even in this case one of the signs 
is different, and some of the coefficients are still of quite different sizes. The sum of squared differ- 
ences was 16.26, quite a large amount of error. Furthermore, that the variance of each LOLS coeffi- 
cient was still considerably larger (from 1.5 to 7.7 times larger) than its respective EPR coefficient 
variance indicates a substantial loss of efficiency in the LOLS model. 
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driven by the Poisson distribution. This process applies to nearly all time series 
and cross-sectional event counts common in many areas of political science re- 
search. The evidence for event count data being described in this way is consider- 
ably stronger than the evidence that most dependent variables used in political 
science regression analyses follow a normal distribution. 

2. When commonly used methodologies such as ordinary least squares or 
logged OLS are applied to data that are distributed as Poisson, very serious prob- 
lems can and usually will result. The conditional expectation function has no 
finite or meaningful evaluation. The estimators are inefficient, insufficient, in- 
consistent, and biased, even in infinite samples. Experiments, using the com- 
monly used c = 0.01 constant, demonstrate that application of these models 
yields coefficients biased upward in absolute value and quite imprecise as well. 
In a political application, the analytical and Monte Carlo results were borne out, 
indicating very large biases and an extreme sensitivity to the choice of a small 
constant added to y so that logs could be taken. 

3.  The exponential Poisson regression model provides an unbiased and con- 
sistent alternative estimator which, in large samples, is more efficient than any 
other. Monte Carlo experiments indicated that these and other very desirable sta- 
tistical properties seem to exist even in samples as small as 10.14 

The differences between the widely used conventional methods and the ex- 
ponential Poisson regression (EPR) model are not minor technical discrepancies. 
In large samples, the former literally make very little sense, whereas the latter is 
very plausible. In the small samples commonly found in political science, dra- 
matically improved estimates can result from the application of the EPR model. 
The formal statistical problems may appear esoteric to some applied researchers, 
but in this case they have real substantive consequences. Empirical estimates can 
be many times as large as they should be; in applications, even the signs of the 
coefficients can be incorrect in the OLS and LOLS models, while correct for the 
EPR model. Adopting the EPR model would not only make one technically cor- 
rect, but it also would be more likely to produce meaningful data analyses, would 
help to find previously undiscoverable relationships, would probably make some 
dramatic changes in existing substantive literature, and would encourage work in 
areas where many relationships appeared "not significant" or too imprecise or 
sensitive to warrant further analysis or publication. 

Manuscript submitted 26 June 1986 
Final manuscript received 9 June 1987 

l4 When more than one parallel series of event counts are available, a seemingly unrelated Pois- 
son regression model can be analyzed (see King, 1987b). 
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APPENDIX A 
Proof That Event Counts Are Poisson Processes l 6  

Begin by writing the probability of an addition, and of no addition, respectively, to the total 
count during the interval from t to t + At as: 

where o(At) is the probability that more than one event occurs during At and which, when divided 
by At, tends to zero as At gets smaller. We can then write the unconditional probability Pr(y,+b, = 

n + 1) as the sum of two mutually exclusive situations: (1) n events have occurred by time t and one 
additional event occurs over the next At interval, and (2) n + 1 events have occurred at time t and no 
new events occur from t to t + At. Dropping the o(At) terms from A.l (i.e., assuming that two 
events cannot occur at precisely the same instant), the probability of each of these situations can be 
written as the product of two marginal probabilities due to the Markov assumption that the probability 
of event occurrence at the two times are independent: 

From A.2, observe how Pr(y, = n + 1) changes with respect to time as At gets smaller and smaller: 

aPr(y, = n + 1) Pr(y,-A, = n + 1) - Pr(y, = n + 1) 
= lim 

at A,+O ~t 

O [ P r ( y , = n ) - P r ( y , = n + l ) ]  for n + 1 > 0  
(A.3) 

-OPr(y, = 0) for n + l = O  

If the event count is set to zero at the start of the period, then Pr(y, = 0) = 1. As such, the 
probability distribution of this underlying process can begin to be built. First, solve the last part of 
A.3 as Pr(y, = 0) = e-Or, since exponentiation is the only function that is equal to its derivative. 
Then substituting into the other part of A.3 yields Pr(y, = 1) = Ote-Or. Finally, successively sub- 
stituting and solving yields the general formula for the Poisson distribution with parameter Ot (Figure 
1 was drawn from this equation): 

e-@t(Ot)n 
Pr(y, = n) = --- for n = 0,  1 , 2 , .  . . 

n! (A.4) 

If all observation periods are the same length, t is set to 1.0 in this equation. 

APPENDIX B 
Computer Algorithms for the EP Regression Model 

The most widely available program set up to estimate the exponential Poisson regression model 
is GLIM (Generalized Linear Interactive Modeling; The Numerical Algorithms Group, 7 Banbury 
Road, Oxford OX2 6NN). Some versions of the SAS computer program (SAS Institute, Box 8000, 
Cary, NC 2751 1) have also incorporated the GLIM commands. With the following code, GLIM can 
perform an EPR estimation on 100 observations with Y, as the dependent variable, and X1, X2, and 
X3, as the independent variables. {Comments below are indicated by braces and are not to be entered 
in the program.} 

GLIM {Operating system command to execute GLIM} 
$UNITS 100 {Specify number of observations} 

16This proof relies on insights into the continuous time, discrete space Markov process outlined 
by Feller (1968, ch. 17). 
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$DATA Y XI X2 X3 {List all variable names for free format input data) 
$DINPUT 22 {Read input data from file 22) 
$ERROR P {Specify disturbances as Poisson distributed) 
$LINK L {Specify a "log link." That is, In(@ = Xp or equivalently 

0 = exp(Xp).) 
$YVAR Y {Identify the dependent variable} 
$FIT X1 + X2 + X3 {Fits EPR model. A constant term is included by default.) 
$DISPLAY M E  {Displays the model and estimates) 

The authors of SST (DubintRivers Research, 1510 Ontario Avenue, Pasadena, CA 91 103) 
have recently incorporated EPR into new versions of their program. SST is an excellent combination 
of versatility and very simple command syntax for microcomputers. For EPR, do: 

-range obs[l - 1001 
-read file[file.dat] to[y X1 X2 X3] 
-set one = 1 
-Poisson dep[y] ind[one X1 X2 X3] 

Other computer programs can estimate any model for which a log-likelihood function can be 
written. The log-likelihood function for the EPR model is given in equation 3.3 (note 4). In some 
computer programs, all that needs to be done is to enter this equation. In others, the first and second 
derivatives of this function must be entered. In still others, the derivatives are optional but will speed 
up estimation considerably in most problems. Fortunately, both derivatives take quite simple forms: 

The GAUSS computer program (ApTech Systems, P.O. Box 6487, Kent, WA 98064) implements 
EPR in this way. GAUSS may be too technical for the occasional user, but it is the most flexible 
program available. The code necessary to run an EPR model is available from the author of this 
paper. 

LlMDEP (available from its author, Professor William H. Greene, Graduate School of Busi- 
ness Administration, New York University, 100 Trinity Place, New York, NY 10006) is also rela- 
tively technical but is still a good general choice for a variety of problems on mainframes and micro- 
computers. Section 40.9 of the LlMDEP manual demonstrates how to estimate an exponential 
Poisson regression model. 
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