MATHEMATICS March, 2008

Answer all the ten questions :

 $10 \times 1 = 10$

- Find the least positive integer x satisfying $2x + 5 \equiv x + 4 \pmod{5}$.
- 2. If $A = \begin{bmatrix} 5-x & 2y-8 \\ 0 & 3 \end{bmatrix}$ is scalar matrix, find x and y.
- 3. If $a * b = \frac{3ab}{7}$, then prove that * is associative.
- 4. Define co-planar vectors.
- 5. Write the condition for the circle $x^2 + y^2 + 2gx + 2fy + c = 0$ touches both axes.
- Find the co-ordinates of the end points of length of the latus rectum of the parabola $y^2 = 12x$.
- Find the value of tan ($tan^{-1} 3$) + sec^{-1} { sec(-2) }. 7.
- 8. Write the multiplicative inverse of i.
- 9. Define the differential coefficient of a continuous function y = f(x)w.r.t. x.
- 10. Evaluate $\int \frac{1 \cos x}{\sin^2 x} dx.$

PART - B

Answer any ten questions:

 $10 \times 2 = 20$

11. The relation 'Congruence modulo m' is an equivalence relation on z or prove that $a \equiv b \pmod{m}$ is an equivalence relation on z.

- 12. Evaluate 2001 2004 .
- 13. If in a group $(G, *) \forall a \in G, a^{-1} = a$, then prove that (G, *) is an Abelian group.
- 14. If the vectors $\lambda \hat{i} + 2\hat{j} \hat{k}$ and $\hat{i} 3\hat{j} + 2\hat{k}$ are orthogonal, find λ .
- Find the area of the circle whose parametric equations are

$$x = 3 + 2\cos\theta$$
 and $u = 1 + 2\sin\theta$.

- 16. Find the equation of the hyperbola in the form $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$. Given that transverse axis = 10, and eccentricity (e) = 2.
- 17. Find x if $\tan^{-1} = \sin^{-1} \frac{1}{2} + \cos^{-1} \frac{\sqrt{3} + 1}{2\sqrt{2}}$.
- 18. Prove that $e^{1+i\pi/3} + e^{1-i\pi/3} = e$.
- 19. If $\left(\frac{x}{a}\right)^n + \left(\frac{y}{b}\right)^n = 2$, then find $\frac{dy}{dx}$ at (a, b).
- 20. Find the length of the sub-tangent to the curve $x^3 + xy + y^2 = 13$ at (1,3).

- 21. Evaluate $\int \frac{1}{\sin^2 x \cos^2 x} dx.$
- 22. Form the differential equation by eliminating the parameter c.

$$\sin^{-1} x + \sin^{-1} y = c$$
.

PART - C

Answer any three questions : I.

- $3 \times 5 = 15$
- Find the number of all positive divisors and the sum of all positive divisors of 39744. 5
- 24. a) Show that

$$\begin{vmatrix} a^{2} + bc & a & 1 \\ b^{2} + ca & b & 1 \\ c^{2} + ab & c & 1 \end{vmatrix} = -2(a-b)(b-c)(c-a).$$

b) Find the values of x and y according to Cramer's rule :

$$x + 2y = 7$$

$$4x - 5y = 2. 2$$

- 25. a) Prove that the set $H = \{1, 2, 4\} \otimes_7$ is a sub-group of the group
 - $G = \{1, 2, 3, 4, 5, 6\} \otimes_7 \text{ under multiplication modulo 7.}$
 - Prove that the identity element of a group is unique.
 - 26. a) If the vectors $\hat{i} \hat{j} + \lambda \hat{k}$, $4\hat{i} + 2\hat{j} + 9\hat{k}$, $5\hat{i} + \hat{j} + 14\hat{k}$ and $3\hat{i} + 2\hat{j} + 7\hat{k}$ are the position vectors of the four coplanar points, find λ . 3
 - Find the unit vector in the direction of $2\hat{i} \hat{j} + 2\hat{k}$. 2

Answer any two questions: II.

$$2 \times 5 = 10$$

- Find the equation of the circle which cuts the two circles $x^{2} + y^{2} - 6y + 1 = 0$ and $x^{2} + y^{2} - 4y + 1 = 0$ orthogonally and whose centre lies on the line 3x + 4y + 5 = 0. 3
 - Find the equation of the circle having (4, 2) and (-5, 7) as end points of the diameter. 2
- Find the condition for the line y = mx + c to be a tangent to the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$. 3
 - Find the focus of the parabola $y^2 8x 32 = 0$. 2
 - 29. Prove that

$$\tan^{-1} \sqrt{\frac{a(a+b+c)}{bc}} + \tan^{-1} \sqrt{\frac{b(a+b+c)}{ca}} + \tan^{-1} \sqrt{\frac{c(a+b+c)}{ab}} = 0$$
 5

III. Answer any three of the following questions :

- $3 \times 5 = 15$
- Differentiate cosec (ax) w.r.t. x from the first principle.
 - Differentiate $\sin x$ with respect to $\log_{x} x$. 2
- 31. a) If $e^x + e^y = e^{x+y}$ prove that $\frac{dy}{dx} = -e^{y-x}$. 2
 - b) If $x = \tan^{-1} \sqrt{\frac{1-t}{1+t}}$, $y = \cos^{-1} (4t^3 3t)$, prove that

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 6.$$

32. a) If
$$y = \sin^2 \left\{ \cot^{-1} \sqrt{\frac{1+x}{1-x}} \right\}$$
, prove that $\frac{dy}{dx} = -\frac{1}{2}$.

b) Evaluate
$$\int \frac{\sin x}{1 + \sin x} dx$$
.

33. a) Evaluate
$$\int \frac{\cos x}{2 \sin^2 x + 3 \sin x + 4} dx.$$
 3

b) Evaluate
$$\int \frac{x}{\sqrt{x^2 - 4}} dx$$
.

34. Find the area of the ellipse $\frac{x^2}{25} + \frac{y^2}{9} = 1$ by integration method.

PART - D

Answer any two of the following questions:

 $2 \times 10 = 20$

Define an ellipse. Derive the equation of the ellipse in the standard form

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1.$$

b) If
$$A = \begin{bmatrix} 2 & 3 \\ 2 & 5 \end{bmatrix}$$
, find A^{-1} by Cayley-Hamilton theorem. 4

- 36. a) State and prove D'Moivre's theorem for rational index. 6
 - Prove that the sine rule b)

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
 by vector method.

- Prove that the greatest size rectangle that can be inscribed in a circle 37. a) of radius a is a square. 6
 - Find the general solution of b)

4

$$(\sqrt{3} + 1) \cos \theta + (\sqrt{3} - 1) \sin \theta = 2.$$

38. a) Prove that
$$\int_{0}^{\pi/2} \frac{dx}{\sin x + \cos x} = \frac{1}{\sqrt{2}} \log \left(\frac{\sqrt{2} + 1}{\sqrt{2} - 1} \right).$$
 6

b) Solve the differential equation
$$\frac{dy}{dx} = (x + y - 1)^2$$
.

PART - E

Answer any one of the following questions:

$$1 \times 10 = 10$$

- Find the cube roots of 1 + i and represent the Argand diagram.
 - Find the length of the chord intercepted by the circle

$$x^2 + y^2 - 8x - 6y = 0$$
 and the line $x - 7y - 8 = 0$.

- c) Find the digit in the unit place of 7 123. 2
- 40. a) If $|\overrightarrow{a}| = 13$, $|\overrightarrow{b}| = 19$, $|\overrightarrow{a} + \overrightarrow{b}| = 24$, find $|\overrightarrow{a} \overrightarrow{b}|$. 4

b) Find
$$\int \tan^4 x \, dx$$
.

c) If
$$y = \log \sqrt{\cos x}$$
, find $\frac{dy}{dx}$.