DMRC Placement-Paper Question-Paper Electronics and Electrical -12 Aug 2012

DMRC-Delhi Metro Rail Corporation Ltd. Latest Selection pattern for Assistant Manager post, DMRC Written test will be held on 26/08/2012 for Graduate Engineers-Civil, Electronics, Electrical, Mechanical, MBA, LLb Qualified Graduate with 75% mark, DMRC Latest Company Profile, Selection Procedure, Previous year Technical, Aptitude Questions paper with Answer, Interview pattern with General Tips, Group discussion Tips, DMRC Latest Recruitment details for Assistant Manager, Junior Engineer, DMRC Frequently asked Technical Questions, General Awareness, English, Logical Ability, Quantitative Aptitude

DMRC Latest EEE,CSE,Mech Enggquestions

1. The ability of a material to remain magnetized after removal of the magnetizing force is known as Permeability reluctance hysteresis retentivity **Ans:D**

2. When a solenoid is activated, the force that moves the plunger is

an	electromagnetic		field
a permanent		magnetic	field
varying			voltage
а	steady		current
Ans:A			

3. Which of the following capacitors is polarized

mica ceramic plastic-film electrolytic **Ans:D**

In a series resonant band-pass filter, a lower value of Q results in 4. frequency а higher resonant smaller bandwidth а higher impedance а larger bandwidth а Ans:D

5. A steady-state condition is reached when the output voltage reaches the average value of the input voltage the output voltage reaches the input voltage the output voltage reaches the input voltage reaches the effective value of the input voltage the output voltage

Ans:A

6.	An	RC	differentiator	acts	as	а
low-pass						filter
high-pass						filter
band-pass						filter
band-stop						filter
Ans:B						

7. A balanced three-phase, 50 Hz voltage is applied to a 3 phase, 4 pole, induction motor. When the motor is delivering rated output, the slip is found to be 0.05. The speed of the rotor m.m.f. relative to the rotor structure is

1500 1425 25 75											r.p.m. r.p.m. r.p.m. r.p.m.
Ans:D											
Explanation:	NS	=	120f	/P	=	120	Х	50	/4	=1!	500rpm
N =	NS	(1-s)	=	=	1500	(1-0	0.05)		=	1425
elative	speed	=	15	00	_	142	25	=		75	rpm

8. A			ceiling	fan	uses				
split-phase capacitor universal capacitor		start		and sta	cap art	acitor	run	motor. motor motor. motor.	
Ans:I	D								
9.	The	drive	motor	used	in	а	mixer-grinder	is	а

dc	motor.
induction	motor.
synchronous	motor.
universal	motor.
Ans:D	

10. A 1:5 step-up transformer has 120V across the primary and 600 ohms resistance across the secondary. Assuming 100% efficiency, the primary current equals

0.2	Amp.
5	Amps
10 20 Ans:A	Amps. Amps.
Explanation: I1= V1 /R1 = 120/600 = 0.2	(h = 100%, losses are zero V1 = VR
=	I1R1)

11. A 50 Hz, 3-phase induction motor has a full load speed of 1440 r.p.m. The number of poles of the motor are 4. 6. 12 8. Ans:A Explanation: (1-S) NS -NS N =Ns S Х =(1-S) 1440 Ns = Ns 1440 (1-S) = (120 Ns f/ p) = 120 50/p = 6000 = Х р will i.e Ns be closer to Ν 1440 P=23000 close When Ns to rpm not Ν =When P=4; Ns 1500 it closer to Ν = rpm is Therefore Ρ =4 for N = 144012. In а 3-phase synchronous motor the MMF always of MMF. speed of stator is more than that rotor MMF always less than that MMF. the speed of stator is of rotor the speed of stator MMF is synchronous speed while that of rotor MMF is zero rotor and stator MMF are stationary with respect to each other. Ans:D Explanation: Because, Motor is magnetically locked into position with stator, the rotor poles are engaged with stator poles and both run synchronously in same direction Therefore, & rotor stator mmf are stationary w.r.t each other. 13. In a three phase transformer, if the primary side is connected in star and secondary side is connected in delta, what is the angle difference between phase voltage in the two cases. delta side lags by -30°. -30°. side lags by star 30°. delta side leads by side leads -30°. star by Ans:C Explanation: This is vector group and has +30° displacement. Therefore, delta side leads by +30°. 14. Slip of the induction machine is 0.02 and the stator supply frequency is 50 Hz. What will be the frequency of the rotor induced emf? 10 Hz. 50 Hz. 1 Hz. 2500 Hz. Ans:C 50 **Explanation:** 0.02 f Given 2 S = ; = Hz

Therefore, =	frequency 0.02	of x	rotor 50	induced =	emf 1.0	= s f Hz
15. A 4 pole 0.4 mWb ar	lap wound dc s id the total nur	hunt moto mber of co	r rotates at onductors a	the speed o re 1000. Wi	f 1500 rpm nat is the	, has a flux of value of emf?
100 0.1 1 10 Ans:D						Volts. Volts. Volts. Volts.
Explanation Therefore, = 1500 =	n: Given N = 1 Eb x 0.4 60/6	1500 rpm = x 4	r, F = 0.4 NFF x 1000 =	mWb, Z = Z , x 10	1000, P / -3 / 10	= 4, & A= 4 60 A 60 x 4 volts
16. A 3 sta	ck stepper mot 	tor with 1	2 numbers	of rotor te	eth has a	step angle of
120 8° 24° 10° Ans:D Explanation Step ang	n: Given le = 360	m / m	= x Nr	3, = 360	Nr /3 x	= 12 12 = 10°
17.0il-filled	cable has	a w	orking st	ress of		kV/mm
10 12 13 15 Ans:D Explanation	n: This is define	ed by diel	ectric stre	ngth of min	eral oil i.e	. 15 kV/mm.
18. The roto 0.04	r frequency for	a 3 phase	1000 RPM	6 pole indu	ction motor	with a slip of isHz
8 4 6 2 Ans:D Explanation and =	n: Given: f	N=1000	0 rpm =	; P= N_	6; _P/	s= 0.04; 120 1000_6/120
= Rotor =	frequen	су	50 fr=s_1 2.0	f	=	Hz 0.04_50 Hz

100 50 25 Ans:C Explanation: Power Therefore,	It has	Torque s same	– angle	Power Voltage as 'V' ha
22. If the phase a torque	angle of the v angle	oltage coil of a of	directional relay is the	s o 50 , the maximum relay is
Explanation: In power factor. Therefore, current	itially synch When field p.f will	ronous motor current incre will be	is operating at ases, the excit be I I	t no load and unity ation will increase. leading and $\cos\Phi < I$
Leading Lagging Lagging Leading Ans:A	& & & &	current current current current	will will will will	decrease increase. decrease increase.
core copper stray dielectric Ans:A 21. A synchronou current is	us motor is o increas	perating on no- ed, powe	-load at unity pov r factor	losses. losses losses. losses. ver factor. If the field will become
20. The eff	iciency of	a transfor	mer is main	ly dependent on
1500 1710 Ans:D Explanation: P2 Frequency = rotor freque Now, Ns2 = Therefore, N=N	Given = 120_6/120 ncy f/ 120 _60 Is- 120 f /	: Ns1 4, f = s.f = /4 = 1800 P2 = 1800-1	=1200 s = = = and Ns – N L20_0.05_60/4	rpm rpm , P1= 6, = 0.05, Ns_P/120 60 Hz 0 = 3.0 Hz 1 = 120 f / P2 = 1800-90 = 1710
1690 1750				rpm rpm
19. The synchron number of poles i speed with	ious speed foi is now reduce a s	r a 3 phase 6-p d to 4 with the lip of	ole induction mot frequency remain 5% will	or is 1200 rpm. If the ing constant, the rotor be

23. A 220/4 supply	440 V, 50 with	Hz, 5 KVA, secondary	single phase winding	transformer open	operates on circuite	d. 220V, 40Hz
Both e Both e Eddy curr Eddy curr	eddy eddy ent loss ent loss	current current remains increases	and h and h the same but hyste	ysteresis iysteresis but hys eresis loss	losses losses teresis loss remains	decreases. increases. increases. the same.
Ans:A Explanation 1.6 2.k	n: ar	M nd	/h We	=	=	khfBm kef2Bm
Therefore, frequency	hysteres	sis and edd	ly current	losses wi	l be decre	decreases.
24. Electric temperature	ovens	using heating	g elements upto	of		can produce 3000°C.
Nickel Graphite Chromium Iron Ans:C Explanatio	n: (Chromium	has	high	melting	point.
25 Electr	ic resis	tance sean	n welding	uses _		electrodes.
Pointed Disc. Flat Domed Ans:B Explanation welding.	n: Disc 1	type electro	odes are us	sed for el	ectric resist	tance seam
11. The	line	trap unit	employed	in carr	ier curren	t relaying:
offers hi offers offers Both	igh im high low	pedance t impedance impedance (A)	o 50 to to	Hz powe carrier carrier &	r frequer frequency frequency	ncy signal v signal v signal (C)
Ans:B Explanation	n: The lin	e trap unit e	mployed in	carrier curr	ent relaying	g offers high
carrier	carrier	frequency	frequency	/ is 35	km –	signal.
XL Where	f	= increases	2_ XI	will	f also	
	-		/			

26 The temperature of resistance furnaces can be controlled by changing the:

applied			voltage
number	of	heating	elements
circuit			configuration
All	of	the	above

Ans:D

Explanation: Temperature of resistance furnaces can be controlled by changing either applied voltage or by number of heating elements or by circuit configuration.

27	A		singl	е	phase	ŀ	lysteresis	motor
can	I	run	a	t	synchro	nous	speed	only
can	rur	ו	at	sub	syı	nchronous	speed	only
can	run	at	synch	ironous	and	super	synchronous	speed
can Ans:A	run	at	sync	hronous	and	sub	synchronous	speed

Explanation: The rotor revolves synchronously because the rotor poles magnetically lock up with the revolving stator poles of opposite polarity

28.	The	armature	of	а	dc	machine	is	laminated	to	reduce:
Eddy Hyste coppe frictio	eresis er on		and	d	C	urrent v	vinda <u>c</u>	je		loss loss losses losses
AIIS.	A									

Explanation: Thinner the laminations, greater is the resistance offered to the induced e.m.f., smaller the current and hence lesser the I2R loss in the core.

29. For LV applications (below 1 kV), ______ cables are used. Paper Plastic. Single core cables. Oil filled. Ans:C