“Progress from a JavalJ2EE job to a career in JavalJ2ZEE"

Java/J2EE
Job Interview Companion

A JavalJ2EE technical Job Intarview gulde for

— -’
~ '-_ ~ e,
i T S L] / h
- | # it oy | | | D :I
; o "'\-\._. ! ' |'~ 2 EFEITE ; o=ae
f wnir i e o _-_.___- - - "
I'-\. BT X |' Fgrbos gl 1
- Job seekers N -
faat, Promotion seekers
Corcumuary | e - .
[l j Pro-active learners r]
- / Interviewars - { s)
\ : /
P . ; llI' \ e
I My n I| \ = §
pl hees b S ffwas D velopmard £ i
S l' ! |
— \] \ .__.'
/ \ / —
-) By =
y M o Il-_.-' .
e _____.-' ST =LA -I
K. Arulkumaran [Frntunesssais |

Convaring owar 220 intervissw guestions and answers on

Java - JIEE -SWING - Applel -Sarviets - 5P -EJB - JHNIDN - BMI - JOELC - LOAP
JME XML -RUP -UNL -STRUTS -30L
Doslgn concepts & deskgn pattoms - dUnit, Ant, VS - Dowslopmant procoss
Emarging technalegiss!irameworks like A0P, 1I0C, Hibernate, Spring. JSF ole
Angd more

Learn Java/J2EE core concepts and key areas

With

Java/J2EE Job Interview Companion

By

K.Arulkumaran
&
A.Sivayini

Technical Reviewers
Craig Malone
Stuart Watson

Arulazi Dhesiaseelan
Lara D’Albreo

Cover Design, Layout, & Editing

A.Sivayini

Acknowledgements

A. Sivayini
Mr. & Mrs. R. Kumaraswamipillai

JavalJ2EE
Job Interview Companion

Copy Right 2005-2007 ISBN 978-1-4116-6824-9

The author has made every effort in the preparation of this book to ensure the accuracy of the information. However,
information in this book is sold without warranty either expressed or implied. The author will not be held liable for any
damages caused or alleged to be caused either directly or indirectly by this book.

Please e-mail feedback & corrections (technical, grammatical and/or spelling) to
java-interview@hotmail.com

First Edition (220+ Q&A): Dec 2005
Second Edition (400+ Q&A): March 2007

‘ Outline

SECTION DESCRIPTION

What this book will do for you?

Motivation for this book

Key Areas index

SECTION 1 Interview questions and answers on:
Java

Fundamentals

Swing

Applet

Performance and Memory issues
Personal and Behavioral/Situational
Behaving right in an interview

Key Points

SECTION 2 Interview questions and answers on:
Enterprise Java

J2EE Overview

Servlet

JSP

JDBC / JTA

JNDI / LDAP

RMI

EJB

JMS

XML

SQL, Database, and O/R mapping
RUP & UML

Struts

Web and Application servers.

Best practices and performance considerations.
Testing and deployment.

Personal and Behavioral/Situational
Key Points

SECTION 3 | Putting it all together section.

How would you go about...?

1. How would you go about documenting your Java/J2EE application?
2. How would you go about designing a Java/J2EE application?

3. How would you go about identifying performance problems and/or memory leaks in your Java
application?

4. How would you go about minimizing memory leaks in your Java/J2EE application?
5. How would you go about improving performance of your Java/J2EE application?

6. How would you go about identifying any potential thread-safety issues in your Java/J2EE
application?

7. How would you go about identifying any potential transactional issues in your Java/J2EE

10.

11.

12.

13.

14.

15.

application?

How would you go about applying the Object Oriented (OO) design concepts in your Java/J2EE
application?

How would you go about applying the UML diagrams in your Java/J2EE project?

How would you go about describing the software development processes you are familiar with?
How would you go about applying the design patterns in your Java/J2EE application?

How would you go about designing a Web application where the business tier is on a separate
machine from the presentation tier. The business tier should talk to 2 different databases and your

design should point out the different design patterns?

How would you go about determining the enterprise security requirements for your Java/J2EE
application?

How would you go about describing the open source projects like JUnit (unit testing), Ant (build
tool), CVS (version control system) and log4J (logging tool) which are integral part of most
Java/J2EE projects?

How would you go about describing Service Oriented Architecture (SOA) and Web services?

SECTION 4

Emerging Technologies/Frameworks

Test Driven Development (TDD).

Aspect Oriented Programming (AOP).

Inversion of Control (loC) (Also known as Dependency Injection).
Annotations or attributes based programming (xdoclet etc).

Spring framework.

Hibernate framework.

EJB 3.0.

JavaServer Faces (JSF) framework.

SECTION 5

Sample interview questions ...

Java

Web Components
Enterprise

Design

General

GLOSSARY OF TERMS

RESOURCES

INDEX

Table of contents

Outline

Table of contents

What this book will do for you?

N g w

Motivation for this book

Key Areas Index

11

Java - Interview questions & answers

13

Java — Fundamentals

14

Java - Swing

69

Java — Applet

76

Java - Performance and Memory issues

78

Java — Personal and Behavioral/Situational

83

Java — Behaving right in an interview

89

Java - Key Points

91

Enterprise Java — Interview questions & answers

94

Enterprise - J2EE Overview

95

Enterprise - Servlet

Enterprise - JSP

Enterprise — JDBC & JTA

Enterprise — JNDI & LDAP

Enterprise - RMI

Enterprise — EJB 2.x

Enterprise - JMS

Enterprise - XML

Enterprise — SQL, Database, and O/R mapping

Enterprise - RUP & UML

Enterprise - Struts

Enterprise - Web and Application servers

Enterprise - Best practices and performance considerations

Enterprise — Logging, testing and deployment

Enterprise — Personal and Behavioral/Situational

Enterprise — Software development process

Enterprise — Key Points

How would you go about...?

Qo01: How would you go about documenting your Java/J2EE application? FAQ

Q02: How would you go about designing a Java/J2EE application? FAQ

108
126
145
155
159
163
180
190
197
206
214
218
222
225
228
230
233
238
239
240

Q03: How would you go about identifying performance and/or memory issues in your Java/J2EE application?_ 243

Q 04: How would you go about minimizing memory leaks in your Java/J2EE application? FAQ

Q 05: How would you go about improving performance in your Java/J2EE application? FA§

Q 06: How would you go about identifying any potential thread-safety issues in your Java/J2EE application? m _
Qo07: How would you go about identifying any potential transactional issues in your Java/J2EE application? _

244
244
245
246

Q08: How would you go about applying the Object Oriented (OO) design concepts in your Java/J2EE application?

247
Q 09: How would you go about applying the UML diagrams in your Java/J2EE project? m 249
Q10: How would you go about describing the software development processes you are familiar with? 251
Q11: How would you go about applying the design patterns in your Java/J2EE application? 253
Q12: How would you go about designing a Web application where the business tier is on a separate machine from the
presentation tier. The business tier should talk to 2 different databases and your design should point out the different
design patterns? m 286
Q13: How would you go about determining the enterprise security requirements for your Java/J2EE application? ___ 287
Q14: How would you go about describing the open source projects like JUnit (unit testing), Ant (build tool), CVS
(version control system) and log4J (logging tool) which are integral part of most Java/J2EE projects? 292
Q15: How would you go about describing Service Oriented Architecture (SOA) and Web services? 299
Emerging Technologies/Frameworks... 31
Qo01: What is Test Driven Development (TDD)? m 312
Q02: What is the point of Test Driven Development (TDD)? What do you think of TDD? 313
Q03: What is aspect oriented programming (AOP)? Do you have any experience with AOP? 313
Q 04: What are the differences between OOP and AOP? 317
Q05: What are the benefits of AOP? 317
Q 06: What is attribute or annotation oriented programming? m 317
Q 07: What are the pros and cons of annotations over XML based deployment descriptors? 318
Q 08: What is XDoclet? 319
Q09: What is inversion of control (IoC) (also known more specifically as dependency injection)? m 319
Q10: What are the different types of dependency injections? 321
Q11: What are the benefits of loC (aka Dependency Injection)? m 322
Q12: What is the difference between a service locator pattern and an inversion of control pattern? 323
Q13: Why dependency injection is more elegant than a JNDI lookup to decouple client and the service? 323
Q14: Explain Object-to-Relational (O/R) mapping? 323
Q15: Give an overview of hibernate framework? 324
Q16: Explain some of the pitfalls of Hibernate and explain how to avoid them? Give some tips on Hibernate best
practices? @ 333
Q17: Give an overview of the Spring framework? What are the benefits of Spring framework? m 334
Q18: How would EJB 3.0 simplify your Java development compared to EJB 1.x, 2.x ? m 337
Q19: Briefly explain key features of the JavaServer Faces (JSF) framework? 339
Q 20: How would the JSF framework compare with the Struts framework? How would a Spring MVC framework compare
with Struts framework? 341
Sample interview questions... 344
Java 345
Web components 345
Enterprise 345
Design 347
General 347
GLOSSARY OF TERMS 348
RESOURCES 350
INDEX 352

What this book will do for you?

Have you got the time to read 10 or more books and articles to add value prior to the interview? This book has been
written mainly from the perspective of Java/J2EE job seekers and interviewers. There are numerous books and articles
on the market covering specific topics like Java, J2EE, EJB, Design Patterns, ANT, CVS, Multi-Threading, Servlets, JSP,
emerging technologies like AOP (Aspect Oriented Programming), Test Driven Development (TDD), Dependency Injection
DI (aka IoC — Inversion of Control) etc. But from an interview perspective it is not possible to brush up on all these books
where each book usually has from 300 pages to 600 pages. The basic purpose of this book is to cover all the core
concepts and key areas, which all Java/J2EE developers, designers and architects should be conversant with to perform
well in their current jobs and to launch a successful career by doing well at interviews. The interviewer can also use this
book to make sure that they hire the right candidate depending on their requirements. This book contains a wide range of
topics relating to Java/J2EE development in a concise manner supplemented with diagrams, tables, sample codes and
examples. This book is also appropriately categorized to enable you to choose the area of interest to you.

This book will assist all Java/J2EE practitioners to become better at what they do. Usually it takes years to understand all
the core concepts and key areas when you rely only on your work experience. The best way to fast track this is to read
appropriate technical information and proactively apply these in your work environment. It worked for me and hopefully it
will work for you as well. | was also at one stage undecided whether to name this book “Javal/J2EE core concepts and
key areas” or “JavalJ2EE Job Interview Companion”. The reason | chose “Java/J2EE Job Interview Companion” is
because the core concepts and key areas discussed in this book helped me to be successful in my interviews, helped me
to survive and succeed at my work regardless what my job (junior developer, senior developer, technical lead, designer,
contractor etc) was and also gave me thumbs up in code reviews. This book also has been set out as a handy reference
guide and a roadmap for building enterprise Java applications.

| Motivation for this book

| started using Java in 1999 when | was working as a junior developer. During those two years as a permanent employee,
| pro-actively spent many hours studying the core concepts behind Java/J2EE in addition to my hands on practical
experience. Two years later | decided to start contracting. Since | started contracting in 2001, my career had a much-
needed boost in terms of contract rates, job satisfaction, responsibility etc. | moved from one contract to another with a
view of expanding my skills and increasing my contract rates.

In the last 5 years of contracting, | have worked for 5 different organizations both medium and large on 8 different
projects. For each contract | held, on average | attended 6-8 interviews with different companies. In most cases multiple
job offers were made and consequently | was in a position to negotiate my contract rates and also to choose the job |
liked based on the type of project, type of organization, technology used, etc. | have also sat for around 10 technical tests
and a few preliminary phone interviews.

The success in the interviews did not come easily. | spent hours prior to each set of interviews wading through various
books and articles as a preparation. The motivation for this book was to collate all this information into a single book,
which will save me time prior to my interviews but also can benefit others in their interviews. What is in this book has
helped me to go from just a Java/J2EE job to a career in Java/J2EE in a short time. It has also given me the job
security that ‘I can find a contract/permanent job opportunity even in the difficult job market'.

| am not suggesting that every one should go contracting but by performing well at the interviews you can be in a position
to pick the permanent role you like and also be able to negotiate your salary package. Those of you who are already in
good jobs can impress your team leaders, solution designers and/or architects for a possible promotion by demonstrating
your understanding of the key areas discussed in this book. You can discuss with your senior team members about
performance issues, transactional issues, threading issues (concurrency issues) and memory issues. In most of
my previous contracts | was in a position to impress my team leads and architects by pinpointing some of the critical
performance, memory, transactional and threading issues with the code and subsequently fixing them. Trust me it is not
hard to impress someone if you understand the key areas.

For example:

= Struts action classes are not thread-safe (Refer Q113 in Enterprise section).

= JSP variable declaration is not thread-safe (Refer Q34 in Enterprise section).

= Valuable resources like database connections should be closed properly to avoid any memory and performance
issues (Refer Q45 in Enterprise section).

= Throwing an application exception will not rollback the transaction in EJB. (Refer Q77 in Enterprise section).

The other key areas, which are vital to any software development, are a good understanding of some of key design
concepts, design patterns, and a modeling language like UML. These key areas are really worthy of a mention in your
resume and interviews.

For example:

= Know how to use inheritance, polymorphism and encapsulation (Refer Q7, Q8, Q9, and Q10 in Java section.).
= Why use design patterns? (Refer Q5 in Enterprise section).
= Whyis UML important? (Refer Q106 in Enterprise section).

If you happen to be in an interview with an organization facing serious issues with regards to their Java application
relating to memory leaks, performance problems or a crashing JVM etc then you are likely to be asked questions on
these topics. Refer Q72 — Q74 in Java section and Q123, Q125 in Enterprise section.

If you happen to be in an interview with an organization which is working on a pilot project using a different development
methodology like agile methodology etc or has just started adopting a newer development process or methodology
then you are likely to be asked questions on this key area.

If the team lead/architect of the organization you are being interviewed for feels that the current team is lacking skills in
the key areas of design concepts and design patterns then you are likely to be asked questions on these key areas.

9

Another good reason why these key areas like transactional issues, design concepts, design patterns etc are vital are
because solution designers, architects, team leads, and/or senior developers are usually responsible for conducting the
technical interviews. These areas are their favorite topics because these are essential to any software development.

Some interviewers request you to write a small program during interview or prior to getting to the interview stage. This is
to ascertain that you can code using object oriented concepts and design patterns. So | have included a coding key area
to illustrate what you need to look for while coding.

Apply OO concepts like inheritance, polymorphism and encapsulation: Refer Q10 in Java section.
Program to interfaces not to implementations: Refer Q12, Q17 in Java section.

Use of relevant design patterns: Refer Q11, Q12 in How would you go about... section.

Use of Java collections APl and exceptions correctly: Refer Q16 and Q39 in Java section.

Stay away from hard coding values: Refer Q05 in Java section.

Language

Fundamentals How many books do | have to read to Performance
understand and put together all these

key areas?

|ssues

How many years of experience
should | have to understand all these
key areas?

Specification Exception

Fundamentals Handling

Will these key areas help me
progress in my career?

Development
Will these key areas help me cut Process
quality code?
SEcurity

Transactional

Software

Design

Design

C oncepts
P atterns

|ssues

Best

P ractices

S calability

C oncurrency

|ssues

|ssues w

~,
Hakaa

This book aims to solve the above dilemma.

My dad keeps telling me to find a permanent job (instead of contracting), which in his view provides better job security but
| keep telling him that in my view in Information Technology the job security is achieved only by keeping your knowledge
and skills sharp and up to date. The 8 contract positions | held over the last 5.5 years have given me broader experience
in Java/J2EE and related technologies. It also kept me motivated since there was always something new to learn in each
assignment, and not all companies will appreciate your skills and expertise until you decide to leave. Do the following
statements sound familiar to you when you hand in your resignation or decide not to extend your contract after getting
another job offer? “Can | tempt you to come back? What can | do to keep you here?” etc. You might even think why you
waited so long. The best way to make an impression in any organizations is to understand and proactively apply and

10

resolve the issues relating to the Key Areas discussed in this book. But be a team player, be tactful and don’t be
critical of everything, do not act in a superior way and have a sense of humor.

“Technical skills must be complemented with good business and interpersonal skills.”

Describe a time when you
were faced with a stressful
situation that demonstrated
your coping skills?

Give me an example
of a time when you

set a goal and were
able to achieve it?

Development team
You

\

v Knowledge/understanding of the business.
v" Ability to communicate and interact effectively with the
business users/customers.
v' Ability to look at things from the user's perspective as
opposed to only technology perspective.
v' Ability to persuade/convince business with alternative
solutions.
v" Ability to communicate effectively with your fellow
developers, immediate and senior management.
v' Ability to work in a team as well as independently.
v Problem solving/analytical skills.
v Organizational skills.
v" Ability to cope with difficult situations like stress due to work
load, deadlines etc and manage or deal with difficult people.
v’ Being a good listener with the right attitude.

Describe a time when you had to
work with others in the organization []
to accomplish the organizational
goals?

Senior management

|ﬁ| ,ﬁl
Business users/
External customers

Immediate
management

Give me an example of a time you
motivated others? Or dealt with a
difficult person?

IMPORTANT: Technical skills alone are not sufficient for you to perform well in your interviews and progress in your
career. Your technical skills must be complemented with business skills (i.e. knowledge/understanding of the business,
ability to communicate and interact effectively with the business users/customers, ability to look at things from the users’
perspective as opposed to only from technology perspective, ability to persuade/convince business with alternative
solutions, which can provide a win/win solution from users’ perspective as well as technology perspective), ability to
communicate effectively with your fellow developers, immediate and senior management, ability to work in a team as well
as independently, problem solving/analytical skills, organizational skills, ability to cope with difficult situations like stress
due to work load, deadlines etc and manage or deal with difficult people, being a good listener with the right attitude (It is
sometimes possible to have “I know it all attitude”, when you have strong technical skills. These are discussed in “Java
— Personal” and “Enterprise Java — Personal” sub-sections with examples.

Quick Read guide: It is recommended that you go through all the questions in all the sections (all it takes is to read a
few questions & answers each day) but if you are pressed for time or would like to read it just before an interview then
follow the steps shown below:

-- Read/Browse all questions marked as “FAQ” in all four sections.
-- Read/Browse Key Points in Java and Enterprise Java sections.

11

Key Areas Index |

| have categorized the core concepts and issues into 14 key areas as listed below. These key areas are vital for any
good software development. This index will enable you to refer to the questions based on key areas. Also note that each
question has an icon next to it to indicate which key area or areas it belongs to. Additional reading is recommended for
beginners in each of the key areas.

Key Areas

Java section Enterprise Java section How Emerging
would you | Technologies
go | Frameworks
about...?
Language Q1-Q6, Q12-Q16, Q18- - Q10, Q15,
Fundamentals Q24, Q26-Q33, Q35- Q17, Q19
Q38, Q41-Q50, Q53-Q71
Specification - Q1, Q2, Q4, Q6, Q7-Q15, Q15
Fundamentals Q17-Q19, Q22, Q26-Q33,
Q35-Q38, Q41, Q42, Q44,
@ Q46-Q81, Q89-Q93, Q95-
Q97, Q99, 102, Q110,
Q112-Q115, Q118-Q119,
Q121, Q126, Q127, Q128
Design Concepts Q1, Q7-Q12, Q15, Q26, Q2, Q3, Q19, Q20, Q21, Q02, Q08, | Q3-Q13,
Q22, Q56 Q31, Q45, Q91, Q94, Q98, | Q09, Q15 Q13, Q14,
Q101, Q106, Q107, Q108, Q16, Q17,
Q109, Q111 Q18, Q20
Design Patterns Q12, Q16, Q24, Q36, Q5, Q5, Q22, Q24, Q25, Q11, Q12 Q9 -Q13
Q51, Q52, Q58, Q63, Q41, Q83, Q84, 85, Q86,
Q75 Q87, Q88, Q110, Q111,
Q116
Transactional - Q43, Q71, Q72, Q73, Q74, | Q7
Issues Q75, Q77, Q78, Q79
Concurrency Issues . Q15, Q17, Q21, Q34, Q16, Q34, Q72, Q78, Q6
Cl Q42, Q46, Q62 Q113
Performance Issues Q15, Q17,Q20-Q26, Q10, Q16, Q43, Q45, Q46, | Q3, Q5
Q46, Q62, Q72 Q72, Q83-Q88, Q93, Q97,
Q98, Q100, Q102, Q123,
Q125, Q128
Memory Issues Q26, Q34, Q37,Q38, Q45, Q93 Q3, Q4
m Q42, Q51, Q73, Q74
Scalability Issues @ Q23, Q24 Q20, Q21, Q120, Q122
Exception Handling E’ Q39, Q40 Q76, Q77
Security Q10, Q35, Q70 Q12, Q13, Q23, Q35, Q46, | Q13
[SE] Q51, @58, Q81, Q92
Best Practices Q17, Q25, Q39, Q72, Q10, Q16, Q39, Q40, Q41, | Q1,Q2
Q73 Q46, Q82, Q124, Q125

12

Q69, Q70, Q71
Q72 - Q86

Q84, Q85, Q86, Q87, Q90,
Q91, Q93, Q95, Q96, Q97,
Q98, Q100, Q101, Q102,
Q107, Q108, Q110, Q113,
Q115, Q116, Q118, Q123,
Q124, Q125, Q126, Q129,
Q130, Q131, Q133, Q134,
Q135, Q136.

Software - Q103-Q109, Q129, Q130, | Q1, Q9, Q1, Q2
Development Q132, Q136 Q10, Q14
Process
Coding’ Q05, Q10, Q12, Q14 — Q10, Q18, Q21, Q23, Q36, | Q11, Q12
Q21, Q23, Q25, Q26, Q38, Q42, Q43, Q45, Q74,
Q33, Q35, Q39, Q51, Q75, Q76, Q77, Q112,
Q52, Q55 Q114, Q127, Q128
Frequently Asked Q1, Q6, Q7, Q9, Q10, Q1, Q2, Q3, Q7, Q10, Q11, | Q1, Q2, Q1, Q86, Q7,
Questions Q12, Q13, Q14, Q15, Q12, Q13, Q16, Q19, Q22, | Q3, Q4, Q9, Q10, Q11,
Q16, Q18, Q20, Q21, Q24, Q25, Q27, Q28, Q30, | Q5, Q86, Q15, Q16,
Q22, Q23, Q27, Q28, Q31, Q32, Q34, Q35, Q36, | Q7, Q8, Q17, Q18
Q29, Q30, Q31, Q32, Q39, Q40, Q41, Q42, Q43, | Q9, Q10,
Q36, Q37, Q43, Q45, Q45, Q46, Q48, Q49, Q50, | Q12, Q15
Q46, Q48, Q51, Q52, Q52, Q53, Q61, Q63, QB5,
Q55, Q58, Q60, Q62, Q66, Q69, Q70, Q71, Q72,
X | Q63, Q64, Q67, Q68, Q73, Q76, Q77, Q82, Q83,

' Some interviewers request you to write a small program during interview or prior to getting to the interview stage. This is to ascertain
that you can code using object oriented concepts and design patterns. | have included a coding key area to illustrate what you need to
look for while coding. Unlike other key areas, the is not always shown against the question but shown above the actual section of

relevance within a question.

Java 13

ISECTION ONE|

Java - Interview questions & answers

» Language Fundamentals
» Design Concepts

» Design Patterns

= Concurrency Issues

= Performance Issues

» Memory Issues mi
Exception Handling [H

» Security [sg

» Scalability Issues si

= Coding’

< m X

»wr>m>x>
| |

[ZXe] - Frequently Asked Questions

! Unlike other key areas, the is not always shown against the question but shown above the actual content of relevance within a
question.

14

Java - Fundamentals

Java — Fundamentals

Qo01:
A01:

Give a few reasons for using Java?
Java is a fun language. Let’s look at some of the reasons:

Built-in support for multi-threading, socket communication, and memory management (automatic garbage
collection).

Object Oriented (O0).
Better portability than other languages across operating systems.
Supports Web based applications (Applet, Servlet, and JSP), distributed applications (sockets, RMI, EJB etc)

and network protocols (HTTP, JRMP etc) with the help of extensive standardized APIs (Application
Programming Interfaces).

Q 02:
A 02:

What is the main difference between the Java platform and the other software platforms?
Java platform is a software-only platform, which runs on top of other hardware-based platforms like UNIX, NT etc.

e

JAVA compiler and JVM

e

The

JAVA Code
{JAYA file)
5E
g
e Individual program is loaded
and mn in JYM

| Byte code (Class file) @

>| Java Virtual Machine (JVM) _|/

Java platform has 2 components:

Java Virtual Machine (JVM) - ‘JVM'’ is a software that can be ported onto various hardware platforms. Byte
codes are the machine language of the JVM.

Java Application Programming Interface (Java API) — set of classes written using the Java language and run
on the JVM.

Q03:
A 03:

What is the difference between C++ and Java?
Both C++ and Java use similar syntax and are Object Oriented, but:

Java does not support pointers. Pointers are inherently tricky to use and troublesome.

Java does not support multiple inheritances because it causes more problems than it solves. Instead Java
supports multiple interface inheritance, which allows an object to inherit many method signatures from
different interfaces with the condition that the inheriting object must implement those inherited methods. The
multiple interface inheritance also allows an object to behave polymorphically on those methods. [Refer Q9
and Q10 in Java section.]

Java does not support destructors but adds a finalize() method. Finalize methods are invoked by the garbage
collector prior to reclaiming the memory occupied by the object, which has the finalize() method. This means
you do not know when the objects are going to be finalized. Avoid using finalize() method to release non-
memory resources like file handles, sockets, database connections etc because Java has only a finite
number of these resources and you do not know when the garbage collection is going to kick in to release
these resources through the finalize() method.

Java does not include structures or unions because the traditional data structures are implemented as an
object oriented framework (Java Collections Framework — Refer Q16, Q17 in Java section).

Java - Fundamentals 15

= All the code in Java program is encapsulated within classes therefore Java does not have global variables or
functions.

= C++ requires explicit memory management, while Java includes automatic garbage collection. [Refer Q37 in
Java section].

Q 04: What are the usages of Java packages?

A 04: It helps resolve naming conflicts when different packages have classes with the same names. This also helps you
organize files within your project. java.io package do something related to I/O and java.net
package do something to do with network and so on. If we tend to put all .java files into a single package, as the
project gets bigger, then it would become a nightmare to manage all your files.

You can create a package as follows with package keyword, which is the first keyword in any Java program
followed by import statements. The java.lang package is imported implicitly by default and all the other packages
must be explicitly imported.

package com.xyz.client ;

import Jjava.io.File;

import java.net.URL;

Q 05: Explain Java class loaders? If you have a class in a package, what do you need to do to run it? Explain dynamic
class loading?

A 05: Class loaders are hierarchical. Classes are introduced into the JVM as they are referenced by name in a class that

is already running in the JVM. So, how is the very first class loaded? The very first class is especially loaded with
the help of static main() method declared in your class. All the subsequently loaded classes are loaded by the
classes, which are already loaded and running. A class loader creates a namespace. All JVMs include at least one
class loader that is embedded within the JVM called the primordial (or bootstrap) class loader. Now let’s look at
non-primordial class loaders. The JVM has hooks in it to allow user defined class loaders to be used in place of
primordial class loader. Let us look at the class loaders created by the JVM.

CLASS LOADER | feloadable? Explanation

Bootstrap No Loads JDK internal classes, java.* packages. (as defined in the sun.boot.class.path
(primordial) system property, typically loads rt.jar and i18n.jar)
Extensions No Loads jar files from JDK extensions directory (as defined in the java.ext.dirs system

property — usually lib/ext directory of the JRE)

System No Loads classes from system classpath (as defined by the java.class.path property, which
is set by the CLASSPATH environment variable or —classpath or —cp command line
options)

/ JVM class loaders \

Bootstrap
(primordial)

rt.jar, i18.jar

Classes loaded by Bootstrap class loader have no visibility into classes
loaded by its descendants (ie Extensions and Systems class loaders).

The classes loaded by system class loader have visibility into classes loaded
by its parents (ie Extensions and Bootstrap class loaders).

Extensions

(lib/ext)

If there were any ~ sibling class loaders they cannot see classes loaded by
each other. They can only see the classes loaded by their parent class
loader. For example Sibling1 class loader cannot see classes loaded by
Sibling?2 class loader

System
(-classpath)

Sibling1 Sibling2 Both Sibling1 and Sibling2 class loaders have visibilty into classes loaded
classloader classloader by their parent class loaders (eg: System, Extensions, and Bootstrap)

- /

Class loaders are hierarchical and use a delegation model when loading a class. Class loaders request their
parent to load the class first before attempting to load it themselves. When a class loader loads a class, the child
class loaders in the hierarchy will never reload the class again. Hence uniqueness is maintained. Classes loaded

16

Java - Fundamentals

by a child class loader have visibility into classes loaded by its parents up the hierarchy but the reverse is not true
as explained in the above diagram.

Q. What do you need to do to run a class with a main() method in a package?

Say, you have a class named “Pet” in a project folder “c:\myProject” and package named
com.xyz.client, will you be able to compile and run it as it is?

package com.xyz.client;

public class Pet {
public static void main(String[] args) {
System.out.println("I am found in the classpath");
}
}

To run > c:\myProject> java com.xyz.client.Pet

The answer is no and you will get the following exception: “Exception in thread "main" java.lang.-
NoClassDefFoundError: com/xyz/client/Pet”. You need to set the classpath. How can you do that? One of the
following ways:

1. Set the operating system CLASSPATH environment variable to have the project folder “c:\myProject”. [Shown
in the above diagram as the System —classpath class loader]

2. Set the operating system CLASSPATH environment variable to have a jar file “c:/myProject/client.jar”, which
has the Pet.class file in it. [Shown in the above diagram as the System —classpath class loader].

3. Run it with —cp or —classpath option as shown below:

c:/myProject
OR
c:\>java -classpath c:/myProject/client.jar

c:\>java -cp com.xyz.client.Pet

com.xyz.client.Pet

Important: Two objects loaded by different class loaders are never equal even if they carry the same values, which mean a
class is uniquely identified in the context of the associated class loader. This applies to singletons too, where each class
loader will have its own singleton. [Refer Q51 in Java section for singleton design pattern]

Q. Explain static vs. dynamic class loading?

Static class loading Dynamic class loading

Classes are statically loaded with Java’s
“new” operator.

class MyClass {

public static void main(String argsl]) {
Car ¢ = new Car();
}

}

Dynamic loading is a technique for programmatically invoking the functions of a
class loader at run time. Let us look at how to load classes dynamically.

Class.forName (String className); //static method which returns a Class

The above static method returns the class object associated with the class
name. The string className can be supplied dynamically at run time. Unlike the
static loading, the dynamic loading will decide whether to load the class Car or
the class Jeep at runtime based on a properties file and/or other runtime
conditions. Once the class is dynamically loaded the following method returns an
instance of the loaded class. It's just like creating a class object with no
arguments.

class.newlnstance (); /A non-static method, which creates an instance of a
/lclass (i.e. creates an object).

Jeep myJeep = null ;

/ImyClassName should be read from a .properties file or a Constants class.
Il stay away from hard coding values in your program.
String myClassName = "au.com.Jeep" ;

Class vehicleClass = Class.forName(myClassName) ;

myJeep = (Jeep) vehicleClass.newlnstance();
myJeep.setFuelCapacity(50);

A NoClassDefFoundException is
thrown if a class is referenced with
Java’s “new” operator (i.e. static loading)
but the runtime system cannot find the

referenced class.

A ClassNotFoundException is thrown when an application tries to load in a
class through its string name using the following methods but no definition for the
class with the specified name could be found:

] The forName(..) method in class - Class.
L] The findSystemClass(..) method in class - ClassLoader.
. The loadClass(..) method in class - ClassLoader.

Java - Fundamentals 17

Q. What are “static initializers” or “static blocks with no function names”? When a class is loaded, all blocks
that are declared static and don’t have function name (i.e. static initializers) are executed even before the
constructors are executed. As the name suggests they are typically used to initialize static fields.

public class StaticInitializer {
public static final int A = 5;
public static final int B; //note that it is not = public static final int B = null;
//note that since B is final, it can be initialized only once.

//Static initializer block, which is executed only once when the class is loaded.

static {
if (A == 5)
B = 10;
else
B = 5;
}
public StaticInitializer(){} //constructor is called only after static initializer block

}
The following code gives an Output of A=5, B=10.
public class Test {

System.out.println ("A =" + StaticInitializer.A + ", B =" + StaticInitializer.B);

}

Q 06:

A 06:

What is the difference between constructors and other regular methods? What happens if you do not provide a
constructor? Can you call one constructor from another? How do you call the superclass’s constructor?

Constructors Regular methods

Constructors must have the same name as the class | Regular methods can have any name and can be called any number of
name and cannot return a value. The constructors | times. E.g. for a Pet.class.

are called only once per creation of an object while
regular methods can be called many times. E.g. for a | public void Pet(){} // regular method has a void return type.
Pet.class

method name is shown starting with an uppercase to

public Pet() {} // constructor differentiate a constructor from a regular method. Better naming
convention is to have a meaningful name starting with a lowercase
like:

public void createPet(){} // regular method has a void return type

Q. What happens if you do not provide a constructor? Java does not actually require an explicit constructor in
the class description. If you do not include a constructor, the Java compiler will create a default constructor in the
byte code with an empty argument. This default constructor is equivalent to the explicit “Pet()}}". If a class includes
one or more explicit constructors like “public Pet(int id)” or “Pet(){}" etc, the java compiler does not create the
default constructor “Pet(){}".

Q. Can you call one constructor from another? Yes, by using this() syntax. E.g.

public Pet (int id) {
this.id = id; // “this” means this object

}

public Pet (int id, String type) {
this (id); // calls constructor public Pet (int id)
this.type = type; // ”this” means this object

Q. How to call the superclass constructor? If a class called “SpecialPet” extends your “Pet” class then you can
use the keyword “super” to invoke the superclass’s constructor. E.g.

public SpecialPet (int id) {
super (id) ; //must be the very first statement in the constructor.

}

To call a regular method in the super class use: “super.myMethod();”. This can be called at any line. Some
frameworks based on JUnit add their own initialization code, and not only do they need to remember to invoke

18

Java - Fundamentals

their parent's setup() method, you, as a user, need to remember to invoke theirs after you wrote your initialization
code:

public class DBUnitTestCase extends TestCase {
public void setUp() {
super.setUp () ;
// do my own initialization
}
}

public void cleanUp () throws Throwable
{

try {

. // Do stuff here to clean up your object(s).

}

catch (Throwable t) {}

finally({

super.cleanUp(); //clean up your parent class. Unlike constructors
// super.regularMethod() can be called at any line.

Q07:
A 07:

What are the advantages of Object Oriented Programming Languages (OOPL)? m

The Object Oriented Programming Languages directly represent the real life objects like Car, Jeep, Account,
Customer etc. The features of the OO programming languages like polymorphism, inheritance and
encapsulation make it powerful. [Tip: remember pie which, stands for Polymorphism, Inheritance and
Encapsulation are the 3 pillars of OOPL]

Q 08:
A 08:

How does the Object Oriented approach improve software development?
The key benefits are:

* Re-use of previous work: using implementation inheritance and object composition.

* Real mapping to the problem domain: Objects map to real world and represent vehicles, customers,
products etc: with encapsulation.

= Modular Architecture: Objects, systems, frameworks etc are the building blocks of larger systems.

The increased quality and reduced development time are the by-products of the key benefits discussed above.
If 90% of the new application consists of proven existing components then only the remaining 10% of the code
have to be tested from scratch.

Q 09:

A 09:

How do you express an ‘is a’ relationship and a ‘has a’ relationship or explain inheritance and composition? What
is the difference between composition and aggregation? m

The ‘is a’ relationship is expressed with inheritance and ‘has a’ relationship is expressed with composition. Both
inheritance and composition allow you to place sub-objects inside your new class. Two of the main techniques for
code reuse are class inheritance and object composition.

/ Inheritance [is a] Vs Composition [has a] \
Building isa is a [House is a Building] has a [House has a Bathroom)]
class Building{ class House {
7N hasa | .. Bathroom room = new Bathroom() ;
}
public void getTotMirrors(){
class House extends Building{ room.getNoMirrors();
Bathroom
House ;o }

N\ })
Inheritance is uni-directional. For example House is a Building. But Building is not a House. Inheritance uses
extends key word. Composition: is used when House has a Bathroom. It is incorrect to say House is a

Java - Fundamentals

Bathroom. Composition simply means using instance variables that refer to other objects. The class House will

have an instance variable, which refers to a Bathroom object.

Q. Which one to favor, composition or inheritance? The guide is that inheritance should be only used when

subclass ‘is a’ superclass.

= Don’t use inheritance just to get code reuse. If there is no ‘is a’ relationship then use composition for code
reuse. Overuse of implementation inheritance (uses the “extends” key word) can break all the subclasses, if

the superclass is modified.

= Do not use inheritance just to get polymorphism. If there is no ‘is a' relationship and all you want is
polymorphism then use interface inheritance with composition, which gives you code reuse (Refer Q10

in Java section for interface inheritance).

What is the difference between aggregation and composition?

Aggregation

weaker relationship.

Aggregation is an association in which one class
belongs to a collection. This is a part of a whole
relationship where a part can exist without a whole.
a line item is a whole and product is a
part. If a line item is deleted then corresponding
product need not be deleted. So aggregation has a

| Composition

relationship.

Composition is an association in which one class belongs to a
collection. This is a part of a whole relationship where a part
cannot exist without a whole. If a whole is deleted then all parts are
deleted. An order is a whole and line items are parts.
If an order is deleted then all corresponding line items for that
order should be deleted. So composition has a stronger

Q 10: What do you mean by polymorphism, inheritance, encapsulation, and dynamic binding? @ m

A 10: Polymorphism — means the ability of a single variable of a given type to be used to reference objects of
different types, and automatically call the method that is specific to the type of object the variable references. In a
nutshell, polymorphism is a bottom-up method call. The benefit of polymorphism is that it is very easy to add new
classes of derived objects without breaking the calling code (i.e. getTotArea() in the sample code shown
below) that uses the polymorphic classes or interfaces. When you send a message to an object even though you
don’t know what specific type it is, and the right thing happens, that’s called polymorphism. The process used by
object-oriented programming languages to implement polymorphism is called dynamic binding. Let us look at

some sample code to demonstrate polymorphism:

Sample code:

/lclient or calling code
double dim = 5.0; //ie 5 meters radius or width
List listShapes = new ArrayList(20);

Shape s = new Circle();
listShapes.add(s); //add circle

s = new Square();
listShapes.add(s); //add square

getTotArea (listShapes,dim); //returns 78.5+25.0=103.5

/ILater on, if you decide to add a half circle then define

/la HalfCircle class, which extends Circle and then provide an
/larea(). method but your called method getTotArea(...) remains
/lsame.

s = new HalfCircle();
listShapes.add(s); //add HalfCircle

getTotArea (listShapes,dim); //returns 78.5+25.0+39.25=142.75

/** called method: method which adds up areas of various
** shapes supplied to it.
)
public double getTotArea(List listShapes, double dim){
Iterator it = listShapes.iterator();
double totalArea = 0.0;
/Nloop through different shapes
while(it.hasNext()) {
Shape s = (Shape) it.next();
totalArea += s.area(dim); lIpolymorphic method call

return totalArea ;

For example: given a base
class/interface Shape,
polymorphism allows the
programmer to define
different area(double
dim1) methods for any
number of derived classes
such as Circle, Square etc.
No matter what shape an
object is, applying the area
method to it will return the
right results.

Later on HalfCicle can be
added without breaking
your called code i.e.
method getTotalArea(...)

<<abstract>>
Shape

+area() : double

Circle

Square

+area() : double

+area() : double

L%

HalfCircle

+area() : double

Depending on what the
shape is, appropriate
area(double dim) method
gets called and calculated.

Circle > area is 78.5sqm
Square > area is 25sqm
HalfCircle > areais 39.25
sqm

«interface»
Shape
+area() : double

Circle

Square

+area() : double

+area() : double

HalfCircle

+area() : double

20 Java - Fundamentals

Inheritance - is the inclusion of behavior (i.e. methods) and state (i.e. variables) of a base class in a derived class so
that they are accessible in that derived class. The key benefit of Inheritance is that it provides the formal mechanism for
code reuse. Any shared piece of business logic can be moved from the derived class into the base class as part of
refactoring process to improve maintainability of your code by avoiding code duplication. The existing class is called the
superclass and the derived class is called the subclass. Inheritance can also be defined as the process whereby one
object acquires characteristics from one or more other objects the same way children acquire characteristics from their
parents. There are two types of inheritances:

m Implementation inheritance (aka class inheritance): You can extend an application’s functionality by reusing
functionality in the parent class by inheriting all or some of the operations already implemented. In Java, you can only
inherit from one superclass. Implementation inheritance promotes reusability but improper use of class inheritance can
cause programming nightmares by breaking encapsulation and making future changes a problem. With implementation
inheritance, the subclass becomes tightly coupled with the superclass. This will make the design fragile because if you
want to change the superclass, you must know all the details of the subclasses to avoid breaking them. So when using
implementation inheritance, make sure that the subclasses depend only on the behavior of the superclass, not on
the actual implementation. For example in the above diagram, the subclasses should only be concerned about the
behavior known as area() but not how it is implemented.

@ Interface inheritance (aka type inheritance): This is also known as subtyping. Interfaces provide a mechanism for
specifying a relationship between otherwise unrelated classes, typically by specifying a set of common methods each
implementing class must contain. Interface inheritance promotes the design concept of program to interfaces not to
implementations. This also reduces the coupling or implementation dependencies between systems. In Java, you can
implement any number of interfaces. This is more flexible than implementation inheritance because it won'’t lock you into
specific implementations which make subclasses difficult to maintain. So care should be taken not to break the
implementing classes by modifying the interfaces.

Which one to use? Prefer interface inheritance to implementation inheritance because it promotes the design concept of
coding to an interface and reduces coupling. Interface inheritance can achieve code reuse with the help of object
composition. If you look at Gang of Four (GoF) design patterns, you can see that it favors interface inheritance to
implementation inheritance.

Let’'s assume that savings account and term deposit account | Let’s look at an interface inheritance code sample, which makes use
have a similar behavior in terms of depositing and | of composition for reusability. In the following example the methods
withdrawing money, so we will get the super class to | deposit(...) and withdraw(...) share the same piece of code in
implement this behavior and get the subclasses to reuse this | AccountHelper class. The method calculatelnterest(...) has its specific
behavior. But saving account and term deposit account | implementation in its own class.

have specific behavior in calculating the interest.

Super class Account has reusable code as methods public interface Account {
deposit (double amount) and withdraw (double amount). public abstract double calculatelnterest(double amount);
public abstract void deposit(double amount);
public abstract class Account { public abstract void withdraw(double amount);
public void deposit (double amount) { }
System.out.printin("depositing " + amount);
} Code to interface so that the implementation can change.
public void withdraw (double amount) { public interface AccountHelper {
System.out.printin ("withdrawing " + amount); public abstract void deposit (double amount);
} public abstract void withdraw (double amount);
}

public abstract double calculatelnterest(double amount);
} class AccountHelperlmpl has reusable code as methods deposit
(double amount) and withdraw (double amount).

public class AccountHelperlmpl implements AccountHelper {
public void deposit(double amount) {
System.out.printin("depositing " + amount);

public class SavingsAccount extends Account {

public double calculatelnterest (double amount) {

/I calculate interest for SavingsAccount }
t t*0.03;
) return amoun ‘ public void withdraw(double amount) {
System.out.printin("withdrawing " + amount);
public void deposit (double amount) { }
super.deposit (amount); // get code reuse
/I do something else }

}

public void withdraw (double amount) { public class SavingsAccountimpl implements Account {

Java - Fundamentals 21

super.withdraw (amount); // get code reuse
/I do something else
}
}

public class TermDepositAccount extends Account {

public double calculatelnterest (double amount) {
/I calculate interest for SavingsAccount
return amount * 0.05;

}

public void deposit(double amount) {
super.deposit (amount); // get code reuse
/I do something else

}

public void withdraw(double amount) {
super.withdraw (amount); // get code reuse
/I do something else
}
}

/I composed helper class (i.e. composition).
AccountHelper helper = new AccountHelperimpl ();

public double calculatelnterest (double amount) {
/I calculate interest for SavingsAccount
return amount * 0.03;

}

public void deposit (double amount) {
helper.deposit(amount); // code reuse via composition
}

public void withdraw (double amount) {
helper.withdraw (amount); // code reuse via composition
}

}
public class TermDepositAccountimpl implements Account {

/I composed helper class (i.e. composition).
AccountHelper helper = new AccountHelperimpl ();

public double calculatelnterest (double amount) {
/lcalculate interest for SavingsAccount
return amount * 0.05;

}

public void deposit (double amount) {
helper.deposit (amount) ; // code reuse via composition
}

public void withdraw (double amount) {
helper.withdraw (amount) ; // code reuse via composition
}

The Test class:

public class Test {
public static void main(String|[] args) {
Account acc1 = new SavingsAccountimpl();
acc1.deposit(50.0);

Account acc2 = new TermDepositAccountimpl();
acc2.deposit(25.0);

acc1.withdraw(25);
acc2.withdraw(10);

double cal1 = acc1.calculatelnterest(100.0);
double cal2 = acc2.calculatelnterest(100.0);

System.out.printin("Savings --> " + cal1);
System.out.printin("TermDeposit --> " + cal2);
}
}

The output:

depositing 50.0
depositing 25.0
withdrawing 25.0
withdrawing 10.0
Savings --> 3.0
TermDeposit --> 5.0

Q. Why would you prefer code reuse via composition over inheritance? Both the approaches make use of
polymorphism and gives code reuse (in different ways) to achieve the same results but:

= The advantage of class inheritance is that it is done statically at compile-time and is easy to use. The disadvantage of
class inheritance is that because it is static, implementation inherited from a parent class cannot be changed at run-

22 Java - Fundamentals

time. In object composition, functionality is acquired dynamically at run-time by objects collecting references to other
objects. The advantage of this approach is that implementations can be replaced at run-time. This is possible because
objects are accessed only through their interfaces, so one object can be replaced with another just as long as they
have the same type. the composed class AccountHelperimpl can be replaced by another more
efficient implementation as shown below if required:

public class EfficientAccountHelperImpl implements AccountHelper ({
public void deposit (double amount) {
System.out.println ("efficient depositing " + amount);

}

public void withdraw (double amount) {
System.out.println ("efficient withdrawing " + amount);
}
}

= Another problem with class inheritance is that the subclass becomes dependent on the parent class implementation.
This makes it harder to reuse the subclass, especially if part of the inherited implementation is no longer desirable and
hence can break encapsulation. Also a change to a superclass can not only ripple down the inheritance hierarchy to
subclasses, but can also ripple out to code that uses just the subclasses making the design fragile by tightly coupling
the subclasses with the super class. But it is easier to change the interface/implementation of the composed class.

Due to the flexibility and power of object composition, most design patterns emphasize object composition over
inheritance whenever it is possible. Many times, a design pattern shows a clever way of solving a common problem
through the use of object composition rather then a standard, less flexible, inheritance based solution.

Encapsulation — refers to keeping all the related members (variables and methods) together in an object. Specifying
member variables as private can hide the variables and methods. Objects should hide their inner workings from the
outside view. Good encapsulation improves code modularity by preventing objects interacting with each other in
an unexpected way, which in turn makes future development and refactoring efforts easy.

Sample code

Class MyMarks {
private int vmarks = 0;
private String name;

Member
variables are

public void setMarks(int mark) encapsulated,

throws MarkException { so that they
if(mark > 0) can only be
this.vmarks = mark; accessed via
else { encapsulating
throw new MarkException("No negative methods.

Values");
}
}

public int getMarks(){
return vmarks;
}

I/lgetters and setters for attribute name goes here.

Being able to encapsulate members of a class is important for security and integrity. We can protect variables from
unacceptable values. The sample code above describes how encapsulation can be used to protect the MyMarks object
from having negative values. Any modification to member variable “vmarks” can only be carried out through the setter
method setMarks(int mark). This prevents the object “MyMarks” from having any negative values by throwing an
exception.

Q 11: What is design by contract? Explain the assertion construct?

A 11: Design by contract specifies the obligations of a calling-method and called-method to each other. Design by
contract is a valuable technique, which should be used to build well-defined interfaces. The strength of this
programming methodology is that it gets the programmer to think clearly about what a function does, what pre
and post conditions it must adhere to and also it provides documentation for the caller. Java uses the assert
statement to implement pre- and post-conditions. Java’'s exceptions handling also support design by contract
especially checked exceptions (Refer Q39 in Java section for checked exceptions). In design by contract in
addition to specifying programming code to carrying out intended operations of a method the programmer also
specifies:

23

Java - Fundamentals

Preconditions — This is the part of the contract the calling-method must agree to. Preconditions specify the
conditions that must be true before a called method can execute. Preconditions involve the system state and the
arguments passed into the method at the time of its invocation. If a precondition fails then there is a bug in the
calling-method or calling software component.

On public methods On non-public methods

Preconditions on public methods are enforced by explicit checks
that throw particular, specified exceptions. You should not use
assertion to check the parameters of the public methods but
can use for the non-public methods. Assert is inappropriate
because the method guarantees that it will always enforce the
argument checks. It must check its arguments whether or not
assertions are enabled. Further, assert construct does not throw
an exception of a specified type. It can throw only an
AssertionError.

public void setRate(int rate) {
if(rate <= 0 || rate > MAX_RATE)X
throw new lllegalArgumentException(“Invalid rate - ” + rate);

setCalculatedRate(rate);

You can use assertion to check the parameters of the
non-public methods.

private void setCalculatedRate(int rate) {
assert (rate > 0 && rate < MAX_RATE) : rate;
/[calculate the rate and set it.

}

Assertions can be disabled, so programs must not
assume that assert construct will be always executed:

/\Wrong:
/lif assertion is disabled, “pilotJob” never gets removed
assert jobsAd.remove(pilotJob);

} lICorrect:
boolean pilotJobRemoved = jobsAd.remove(pilotJob);
assert pilotJobRemoved;

Postconditions — This is the part of the contract the called-method agrees to. What must be true after a
method completes successfully. Postconditions can be used with assertions in both public and non-public
methods. The postconditions involve the old system state, the new system state, the method arguments and the
method’s return value. If a postcondition fails then there is a bug in the called-method or called software
component.

public double calcRate(int rate) {
if (rate <= 0 || rate > MAX RATE) {
throw new IllegalArgumentException (“Invalid rate !!!

Y ;
7

}
//logic to calculate the rate and set it goes here

assert this.evaluate(result) < 0 : this; //message sent to AssertionError on failure

return result;

}

Class invariants - what must be true about each instance of a class? A class invariant as an internal invariant
that can specify the relationships among multiple attributes, and should be true before and after any method
completes. If an invariant fails then there could be a bug in either calling-method or called-method. There is
no particular mechanism for checking invariants but it is convenient to combine all the expressions required for
checking invariants into a single internal method that can be called by assertions. For example if you have a class,
which deals with negative integers then you define the isNegative() convenient internal method:

class NegativeInteger {
Integer value = new Integer (-1); //invariant
//constructor
public Negativelnteger (Integer int) {
//constructor logic goes here
assert isNegative();

}

// rest of the public and non-public methods goes here. public methods should call

// assert isNegative(); prior to its return

// convenient internal method for checking invariants.
// Returns true if the integer value is negative

private boolean isNegative () {
return value.intValue() < 0 ;

}

24

Java - Fundamentals

The isNegative() method should be true before and after any method completes, each public method and
constructor should contain the following assert statement immediately prior to its return.

assert isNegative();

Explain the assertion construct? The assertion statements have two forms as shown below:

assert Expressionl;
assert Expressionl : ExpressionZ2;

Where:

. Expression1 - is a boolean expression. If the Expression1 evaluates to false, it throws an AssertionError without any
detailed message.

L] Expression2 - if the Expression1 evaluates to false throws an AssertionError with using the value of the Expression2 as
the error’s detailed message.

If you are using assertions (available from JDK1.4 onwards), you should supply the JVM argument to
enable it by package name or class name.

java -ea[:packagename...|:classname] or java -enableassertions[:packagename...|:classname]
java —ea:Account

Q12:
A12:

What is the difference between an abstract class and an interface and when should you use them?

In design, you want the base class to present only an interface for its derived classes. This means, you don’t want
anyone to actually instantiate an object of the base class. You only want to upcast to it (implicit upcasting, which
gives you polymorphic behavior), so that its interface can be used. This is accomplished by making that class
abstract using the abstract keyword. If anyone tries to make an object of an abstract class, the compiler prevents
it.

The interface keyword takes this concept of an abstract class a step further by preventing any method or function
implementation at all. You can only declare a method or function but not provide the implementation. The class,
which is implementing the interface, should provide the actual implementation. The interface is a very useful and
commonly used aspect in OO design, as it provides the separation of interface and implementation and
enables you to:

= Capture similarities among unrelated classes without artificially forcing a class relationship.

= Declare methods that one or more classes are expected to implement.

= Reveal an object's programming interface without revealing its actual implementation.

= Model multiple interface inheritance in Java, which provides some of the benefits of full on multiple
inheritances, a feature that some object-oriented languages support that allow a class to have more than one

superclass.
Abstract class Interface
Have executable methods and abstract methods. Have no implementation code. All methods are abstract.
Can only subclass one abstract class. A class can implement any number of interfaces.
/ Diamond problem & use of interface \
Shape <<Interface>>
ShapelF
Circle Square CircleOnSquare
Circle Square C/
<<Interface>> <<Interface>>
CirclelF SquarelF
CircleOnSquare
Multiple interface inheritance in JAVA

\ No multiple inheritance in JAVA /

Java - Fundamentals 25

Q. When to use an abstract class?: In case where you want to use implementation inheritance then it is
usually provided by an abstract base class. Abstract classes are excellent candidates inside of application
frameworks. Abstract classes let you define some default behavior and force subclasses to provide any specific
behavior. Care should be taken not to overuse implementation inheritance as discussed in Q10 in Java section.

Q. When to use an interface?: For polymorphic interface inheritance, where the client wants to only deal with a
type and does not care about the actual implementation use interfaces. If you need to change your design
frequently, you should prefer using interface to abstract. Coding to an interface reduces coupling and
interface inheritance can achieve code reuse with the help of object composition. The Spring
framework’s dependency injection promotes code to an interface principle. Another justification for using interfaces
is that they solve the ‘diamond problem’ of traditional multiple inheritance as shown in the figure. Java does not
support multiple inheritance. Java only supports multiple interface inheritance. Interface will solve all the
ambiguities caused by this ‘diamond problem’.

Strategy design pattern lets you swap new algorithms and processes into your program without
altering the objects that use them. Strategy design pattern: Refer Q11 in How would you go about... section.

Q 13: Why there are some interfaces with no defined methods (i.e. marker interfaces) in Java? m
A 13: The interfaces with no defined methods act like markers. They just tell the compiler that the objects of the classes
implementing the interfaces with no defined methods need to be treated differently. java.io.Serializable
(Refer Q23 in Java section), java.lang.Cloneable, java.util.EventListener etc. Marker interfaces are also known as
“tag” interfaces since they tag all the derived classes into a category based on their purpose.
Q 14: When is a method said to be overloaded and when is a method said to be overridden?
A14:
Method Overloading Method Overriding
Overloading deals with multiple methods in the same class | Overriding deals with two methods, one in the parent class and
with the same name but different method signatures. the other one in the child class and has the same name and
signatures.
class MyClass {
public void getinvestAmount(int rate) {...} class BaseClass{
public void getinvestAmount(int rate) {...}
public void getinvestAmount(int rate, long principal) }
{ ...}
} class MyClass extends BaseClass {
public void getinvestAmount(int rate) { ...}
Both the above methods have the same method names | }
but different method signatures, which mean the methods
are overloaded. Both the above methods have the same method names and
the signatures but the method in the subclass MyClass
overrides the method in the superclass BaseClass.
Overloading lets you define the same operation in | Overriding lets you define the same operation in different
different ways for different data. ways for different object types.
Q 15: What is the main difference between an ArrayList and a Vector? What is the main difference between HashMap
and Hashtable? What is the difference between a stack and a queue? FAQ
A 15:

Vector / Hashtable ArrayList / HashMap

Original classes before the introduction of Collections | So if you don’'t need a thread safe collection, use the ArrayList or
API. Vector & Hashtable are synchronized. Any | HashMap. Why pay the price of synchronization unnecessarily at
method that touches their contents is thread-safe. the expense of performance degradation.

Q. So which is better? As a general rule, prefer ArrayList/HashMap to Vector/Hashtable. If your application is a
multithreaded application and at least one of the threads either adds or deletes an entry into the collection
then use new Java collections API‘s external synchronization facility as shown below to temporarily synchronize
your collections as needed:

Map myMap = Collections.synchronizedMap (myMap) ; // single lock for the entire map
List myList = Collections.synchronizedList (myList); // single lock for the entire list

26

Java - Fundamentals

If you are using J2SE5, you should use the new ‘java.util.concurrent’ package for improved
performance because the concurrent package collections are not governed by a single synchronized lock as
shown above. The “java.util.concurrent” package collections like ConcurrentHashMap is threadsafe and at the
same time safely permits any number of concurrent reads as well as tunable number of concurrent writes. The
“java.util.concurrent” package also provides an efficient scalable thread-safe non-blocking FIFO queue like
ConcurrentLinkedQueue.

The “java.util.concurrent” package also has classes like CopyOnWriteArrayList, CopyOnWrite-
ArraySet, which gives you thread safety with the added benefit of immutability to deal with data that changes
infrequently. The CopyOnWriteArrayList behaves much like the ArrayList class, except that when the list is
modified, instead of modifying the underlying array, a new array is created and the old array is discarded. This
means that when a caller gets an iterator (i.e. copyOnWriteArrayListRef.iterator ()), which internally
holds a reference to the underlying CopyOnWriteArrayList object’s array, which is immutable and therefore can be
used for traversal without requiring either synchronization on the list copyOniwriteArrayListRef or need to
clone() the copyOnWriteArrayListRef list before traversal (i.e. there is no risk of concurrent modification) and
also offers better performance.

_Array __List/ Stack etc

Java arrays are even faster than using an ArrayList/Vector
and perhaps therefore may be preferable if you know the
size of your array upfront (because arrays cannot grow
as Lists do).

ArrayList/VVector are specialized data structures that internally
uses an array with some convenient methods like add(..),
remove(...) etc so that they can grow and shrink from their initial
size. ArrayList also supports index based searches with
indexOf(Object obj) and lastindexOf(Object obj) methods.

In an array, any item can be accessed.

These are more abstract than arrays and access is restricted.
For example, a stack allows access to only last item inserted.

First item to be inserted is the first one to be removed.

Queue<E> (added in J2SE 5.0) Stack

Allows access to only last item inserted.

This mechanism is called First In First Out (FIFO).

An item is inserted or removed from one end called the “top” of
the stack. This is called Last In First Out (LIFO) mechanism.

Placing an item in the queue is called “enqueue or
insertion” and removing an item from a queue is called
“dequeue or deletion”. Pre J2SE 5.0, you should write your
own Queue class with enqueue() and dequeue() methods
using an ArrayList or a LinkedList class.

J2SE 5.0 has a java.util.Queue<E> interface.

Placing the data at the top is called “pushing” and removing an
item from the top is called “popping”. If you want to reverse
“XYZ" > ZYX, then you can use a java.util.Stack

Q 16: Explain the Java Collections Framework? FAQ)

A 16: The key interfaces used by the collections framework are List, Set and Map. The List and Set extends the
Collection interface. Should not confuse the Collection interface with the Collections class which is a utility class.

Set (HashSet , TreeSet)

List (ArrayList, LinkedList, Vector etc)

A Set is a collection with unique elements and prevents
duplication within the collection. HashSet and TreeSet are
implementations of a Set interface. A TreeSet is an
ordered HashSet, which implements the SortedSet
interface.

A Listis a collection with an ordered sequence of elements
and may contain duplicates. ArrayList, LinkedList and
Vector are implementations of a List interface. (i.e. an index
based)

The Collections API also supports maps, but within a hierarchy distinct from the Collection interface. A Map is an
object that maps keys to values, where the list of keys is itself a collection object. A map can contain duplicate
values, but the keys in a map must be distinct. HashMap, TreeMap and Hashtable are implementations of a Map
interface. A TreeMap is an ordered HashMap, which implements the SortedMap interface.

Q. How to implement collection ordering? SortedSet and SortedMap interfaces maintain sorted order. The
classes, which implement the Comparable interface, impose natural order. By implementing Comparable, sorting
an array of objects or a collection (List etc) is as simple as:

Arrays.sort (myArray) ;

Collections.sort (myCollection) ; // do not confuse “Collections” utility class with the

W

// “Collection” interface without an “s

Java - Fundamentals

27

For classes that don’t implement Comparable interface, or when one needs even more control over ordering based on
multiple attributes, a Comparator interface should be used.

Comparable interface Comparator interface

The “Comparable” allows itself to compare with another
similar object (i.e. A class that implements Comparable
becomes an object to be compared with). The method
compareTo() is specified in the interface.

The Comparator is used to compare two different objects. The
following method is specified in the Comparator interface.

public int compare (Object ol, Object 02)

Many of the standard classes in the Java library like String,
Integer, Date, File etc implement the Comparable interface

to give the class a "Natural Ordering". String
class uses the following methods:

public int compareTo (0)
public int compareToIgnoreCase (str)

You could also implement your own method in your
own class as shown below:

...imports
public class Pet implements Comparable {

int petld;
String petType;

public Pet(int argPetld, String argPetType) {
petld = argPetld;
this.petType = argPetType;

public int compareTo(Object o) {
Pet petAnother = (Pet)o;

/Inatural alphabetical ordering by type

/lif equal returns 0, if greater returns +ve int,

/lif less returns -ve int

return this.petType.compareTo(petAnother.petType);

public static void main(String[] args) {
List list = new ArrayList();
list.add(new Pet(2, "Dog"));
list.add(new Pet(1, "Parrot"));
list.add(new Pet(2, "Cat"));

Collections.sort(list); / sorts using compareTo method

for (Iterator iter = list.iterator(); iter.hasNext();) {
Pet element = (Pet) iter.next();
System.out.printin(element);
}
}

public String toString() {
return petType;

}

}
Output: Cat, Dog, Parrot

You can have more control by writing your Comparator class. Let us
write a Comparator for the Pet class shown on the left. For most cases
natural ordering is fine as shown on the left but say we require a
special scenario where we need to first sort by the “petld” and then by
the “petType”. We can achieve this by writing a “Comparator” class.

...imports
public class PetComparator implements Comparator, Serializable{

public int compare(Object 01, Object 02) {
int result = 0;

Pet pet = (Pet)o1;
Pet petAnother = (Pet)o2;

/luse Integer class's natural ordering
Integer pld = new Integer(pet.getPetld());
Integer pAnotherld = new Integer(petAnother.getPetld());

result = pld.compareTo(pAnotherld);

/[if ids are same compare by petType
if(result == 0) {
result= pet.getPetType().compareTo
(petAnother.getPetType());

return result;

}

public static void main(String[] args) {
List list = new ArrayList();
list.add(new Pet(2, "Dog"));
list.add(new Pet(1, "Parrot"));
list.add(new Pet(2, "Cat"));

Collections.sort(list, new PetComparator());

for (Iterator iter = list.iterator(); iter.hasNext();){
Pet element = (Pet) iter.next();
System.out.printin(element);
}
}
}

Output: Parrot, Cat, Dog.

Note: some methods are not shown for brevity.

Important: The ordering imposed by a java.uti.Comparator “myComp” on a set of elements “mySet” should be

consistent with equals() method, which means

then
then

if compare (ol,02)

== 0
if compare (ol,02) ! 0

ol.equals (02)
ol.equals (02)

should be true.
should be false.

If a comparator “myComp” on a set of elements “mySet” is inconsistent with equals() method, then SortedSet or
SortedMap will behave strangely and is hard to debug. [For example| if you add two objects o1, 02 to a TreeSet

28 Java - Fundamentals

(implements SortedSet) such that o1.equals(02) == true and compare(o1,02) != 0 the second add operation will return
false and will not be added to your set because o1 and 02 are equivalent from the TreeSet’s perspective. It is always
a good practice and highly recommended to keep the Java API documentation handy and refer to it as required while
coding. Please refer to java.util.Comparator interface API for further details.

Design pattern: Q. What is an Iterator? An Iterator is a use once object to access the objects stored in a collection.
Iterator design pattern (aka Cursor) is used, which is a behavioral design pattern that provides a way to access
elements of a collection sequentially without exposing its internal representation.

Q. Why do you get a ConcurrentModificationException when using an iterator?

Problem: The java.util Collection classes are fail-fast, which means that if one thread changes a collection while another
thread is traversing it through with an iterator the iterator.hasNext() or iterator.next() call will throw
ConcurrentModificationException. Even the synchronized collection wrapper classes SynchronizedMap and
SynchronizedList are only conditionally thread-safe, which means all individual operations are thread-safe but compound
operations where flow of control depends on the results of previous operations may be subject to threading issues.

Collection<String> myCollection = new ArraylList<String>(10);

myCollection.add ("123");
myCollection.add ("456") ;
myCollection.add ("789");

for (Iterator it = myCollection.iterator(); it.hasNext();) {
String myObject = (String)it.next();
System.out.println (myObject) ;
if (someConditionIsTrue) {
myCollection.remove (myObject); //can throw ConcurrentModificationException in single as
//well as multi-thread access situations.

}

Solutions 1-3: for multi-thread access situation:

Solution 1: You can convert your list to an array with list.toArray() and iterate on the array. This approach is not
recommended if the list is large.

Solution 2: You can lock the entire list while iterating by wrapping your code within a synchronized block. This approach
adversely affects scalability of your application if it is highly concurrent.

Solution 3: If you are using JDK 1.5 then you can use the ConcurrentHashMap and CopyOnWriteArrayList classes,
which provide much better scalability and the iterator returned by ConcurrentHashMap.iterator() will not throw
ConcurrentModificationException while preserving thread-safety.

Solution 4: for single-thread access situation:

Use:
it.remove () ; // removes the current object via the Iterator “it” which has a reference to
// your underlying collection “myCollection”. Also can use solutions 1-3.

Avoid:
myCollection.remove (myObject); // avoid by-passing the Iterator. When it.next() is called, can throw the exception
/| ConcurrentModificationException

If you had used any Object to Relational (OR) mapping frameworks like Hibernate, you may have encountered this
exception “ConcurrentModificationException” when you tried to remove an object from a collection such as a java.util Set
with the intention of deleting that object from the underlying database. This exception is not caused by Hibernate but
rather caused by your java.util.lterator (i.e. due to your it .next () call). You can use one of the solutions given above.

Q. What is a list iterator?

The java.util.Listlterator is an iterator for lists that allows the programmer to traverse the list in either direction (i.e.
forward and or backward) and modify the list during iteration.

Java - Fundamentals 29

/ JAVA collection framework \

<interface>

<interface>

- <interface> <interface>

AbstractList Set AbstractMap
Abstract <interface>
Sequential <interface> SortedMap
List <interface> SortedSet Identity
Random _HashMap
LinkedList Access E
HashMap
implements A ‘ ArrayList
Vector . .
<interface> ﬁ - inked
[k | e

o

(Diagram sourced from: http://www.wilsonmar.com/1arrays.htm)

What are the benefits of the Java Collections Framework? Collections framework provides flexibility, performance,
and robustness.

= Polymorphic algorithms — sorting, shuffling, reversing, binary search etc.

= Set algebra - such as finding subsets, intersections, and unions between objects.

= Performance - collections have much better performance compared to the older Vector and Hashtable classes with
the elimination of synchronization overheads.

] Thread-safety - when synchronization is required, wrapper implementations are provided for temporarily
synchronizing existing collection objects. For J2SE 5.0 use java.util.concurrent package.

] Immutability - when immutability is required wrapper implementations are provided for making a collection
immutable.

= Extensibility - interfaces and abstract classes provide an excellent starting point for adding functionality and
features to create specialized object collections.

Q. What are static factory methods?

Some of the above mentioned features like searching, sorting, shuffling, immutability etc are achieved with
java.util.Collections class and java.util.Arrays utility classes. The great majority of these implementations are provided
via static factory methods in a single, non-instantiable (i.e. private constrctor) class. Speaking of static factory
methods, they are an alternative to creating objects through constructors. Unlike constructors, static factory methods are
not required to create a new object (i.e. a duplicate object) each time they are invoked (e.g. immutable instances can be
cached) and also they have a more meaningful names like valueOf, instanceOf, asList etc.

Instead of:

String[] myArray = {"Java", "J2EE", "XML", "JNDI"};

for (int i = 0; i < myArray.length; i++) {
System.out.println (myArrayl[i]);

}

You can use:
String[] myArray = {"Java", "J2EE", "XML", "JNDI"};
System.out.println (Arrays.asList (myArray)); //factory method Arrays.asList (..)

The following static factory method (an alternative to a constructor) example converts a boolean primitive
value to a Boolean wrapper object.

public static Boolean valueOf (boolean b) {
return (b ? Boolean.TRUE : Boolean.FALSE)
}

30 Java - Fundamentals

Q 17: What are some of the best practices relating to Java collection?
A1T:
= Use ArrayList, HashMap etc as opposed to Vector, Hashtable etc, where possible to avoid any
synchronization overhead. Even better is to use just arrays where possible. If multiple threads concurrently
access a collection and at least one of the threads either adds or deletes an entry into the collection,
then the collection must be externally synchronized. This is achieved by:

Map myMap Collections.synchronizedMap (myMap); //conditional thread-safety
List myList Collections.synchronizedList (myList); //conditional thread-safety
/I use java.util.concurrent package for J2SE 5.0 Refer Q16 in Java section under ConcurrentModificationException

= Set the initial capacity of a collection appropriately (e.g. ArrayList, HashMap etc). This is because Collection
classes like ArrayList, HashMap etc must grow periodically to accommodate new elements. But if you have a
very large array, and you know the size in advance then you can speed things up by setting the initial size
appropriately.

HashMaps/Hashtables need to be created with sufficiently large capacity to minimize
rehashing (which happens every time the table grows). HashMap has two parameters initial capacity and
load factor that affect its performance and space requirements. Higher load factor values (default load factor
of 0.75 provides a good trade off between performance and space) will reduce the space cost but will
increase the lookup cost of myMap.get(...) and myMap.put(...) methods. When the number of entries in the
HashMap exceeds the current capacity * loadfactor then the capacity of the HasMap is roughly doubled by
calling the rehash function. It is also very important not to set the initial capacity too high or load factor too
low if iteration performance or reduction in space is important.

= Program in terms of interface not implementation: For example you might decide a LinkedList is the
best choice for some application, but then later decide ArrayList might be a better choice for performance

reason.

Use:
List list = new ArrayList (100); // program in terms of interface & set the initial capacity.

Instead of:
ArrayList list = new ArrayList();

= Return zero length collections or arrays as opposed to returning null: Returning null instead of zero
length collection (use Collections. EMPTY_SET, Collections.EMPTY_LIST, Collections. EMPTY_MAP) is more
error prone, since the programmer writing the calling method might forget to handle a return value of null.

= Immutable objects should be used as keys for the HashMap: Generally you use a java.lang.Integer or
a java.lang.String class as the key, which are immutable Java objects. If you define your own key class then it
is a best practice to make the key class an immutable object (i.e. do not provide any setXXX () methods
etc). If a programmer wants to insert a new key then he/she will always have to instantiate a new object (i.e.
cannot mutate the existing key because immutable key object class has no setter methods). Refer Q20 in
Java section under “Q. Why is it a best practice to implement the user defined key class as an
immutable object?”

= Encapsulate collections: In general collections are not immutable objects. So care should be taken not
to unintentionally expose the collection fields to the caller.

Avoid where possible Better approach

The following code snippet exposes the Set “setCars” | This approach prevents the caller from directly using
directly to the caller. This approach is riskier because | the underlying variable “cars”.

the variable “cars” can be modified unintentionally.
public class CarYard{

public class CarYard{

/... private Set<Car> cars = new HashSet<Car>();
private Set<Car> cars = new HashSet<Car>(); ...

public void addCar(Car car) {
/lexposes the cars to the caller cars.add(car);

public Set<Car> getCars() {

return cars;
} public void removeCar(Car car) {

cars.remove(car);
/lexposes the cars to the caller }
public void setCars(Set<Car> cars) {

Java -

Fundamentals 31

this.cars = cars;

}

...
}

public Set<Car> getCars() {
/luse factory method from the Collections
return Collections.unmodifiableSet (cars);
}
}

= Avoid storing unrelated or different types of objects into same collection: This is analogous to
storing items in pigeonholes without any labeling. To store items use value objects or data objects (as
opposed to storing every attribute in an ArrayList or HashMap). Provide wrapper classes around your
collections API classes like ArrayList, HashMap etc as shown in better approach column. Also where
applicable consider using composite design pattern, where an object may represent a single object or a
collection of objects. Refer Q61 in Java section for UML diagram of a composite design pattern. If you are
using J2SE 5.0 then make use of “generics”. Refer Q55 in Java section for generics.

Avoid where possible Better approach

The code below is hard to maintain and understand by
others. Also gets more complicated as the requirements
grow in the future because we are throwing different
types of objects like Integer, String etc into a list just
based on the indices and it is easy to make mistakes
while casting the objects back during retrieval.

List myOrder = new ArrayList()
ResultSetrs = ...
While (rs.hasNext()) {

List lineltem = new ArrayList();

lineltem.add (new Integer(rs.getint(“itemld”)));
lineltem.add (rs.getString(“description”));

;1'1')'/Order.add(lineltem);
}

return myOrder;
Example 2:
List myOrder = new ArrayList(10);

/[create an order
OrderVO header = new OrderVO();
header.setOrderld(1001);

/ladd all the line items

LineltemVO line1 = new LineltemVO();
line1.setLineltemld(1);

LineltemVO line2 = new LineltemVO();
Line2.setLineltemld(2);

List lineltems = new ArrayList();
lineltems.add(line1);
lineltems.add(line2);

/Ito store objects
myOrder.add(order);// index 0 is an OrderVO object
myOrder.add(lineltems);//index 1 is a List of line items

/Ito retrieve objects
myOrder.get(0);
myOrder.get(1);

Above approaches are bad because disparate objects
are stored in the lineltem collection in example-1 and
example-2 relies on indices to store disparate objects.
The indices based approach and storing disparate
objects are hard to maintain and understand because
indices are hard coded and get scattered across the

When storing items into a collection define value objects as shown
below: (VO is an acronym for Value Object).

public class LineltemVO {
private int itemld;
private String productName;

public int getLineltemld(){return accountld ;}
public int getAccountName(){return accountName;}

public void setLineltemld(int accountld ¥
this.accountld = accountld

/limplement other getter & setter methods

Now let’s define our base wrapper class, which represents an order:

public abstract class Order {
int orderld;
List lineltems = null;

public abstract int countLineltems();

public abstract boolean add(LineltemVO itemToAdd);
public abstract boolean remove(LineltemVO itemToAdd);
public abstract lterator getlterator();

public int getOrderld(){return this.orderld; }

}

Now a specific implementation of our wrapper class:

public class OverseasOrder extends Order {
public OverseasOrder(int inOrderld) {
this.lineltems = new ArrayList(10);
this.orderld = inOrderld;

}

public int countLineltems() { //logic to count }

public boolean add(LineltemVO itemToAdd){
.../ladditional logic or checks
return lineltems.add(itemToAdd);

}

public boolean remove(LineltemVO itemToAdd){
return lineltems.remove(itemToAdd);
}

public Listlterator getlterator(){ return lineltems.lterator();}

}

Now to use:

Order myOrder = new OverseasOrder(1234) ;

32 Java -

Fundamentals

code. If an index position changes for some reason, then
you will have to change every occurrence, otherwise it
breaks your application.

The above coding approaches are analogous to storing
disparate items in a storage system without proper
labeling and just relying on its grid position.

LineltemVO item1 = new LineltemVO();
Iltem1.setltemld(1);
Iltem1.setProductName(“BBQ”);

LineltemVO item2 = new LineltemVO();
ltem1.setltemld(2);
Iltem1.setProductName(“Outdoor chair”);

/lto add line items to order
myOrder.add(item1);
myOrder.add(item2);

Q. How can you code better without nested loops? Avoid nested loops where possible (e.g. for loop within
another for loop etc) and instead make use of an appropriate java collection.

How to avoid nested loops with Java collection classes

e

Code to test if there are duplicate values in an array.

™

Avoid where possible -- nested loops

Better approach -- using a collections class like a Set

public class NestedLoops {
private static String[] strArray ={"Cat", "Dog", "Tiger", "Lion", "Lion"};

public class NonNestedLoop {
private static String[] strArray = {"Cat", "Dog", "Tiger", "Lion", "Lion"};

public static boolean isThereDuplicateUsingLoop() {
boolean duplicateFound = false;
int loopCounter = 0;
for (inti=0; i < strArray.length; i++) {
String str = strArray[i];
int countDuplicate = 0;
for (intj = 0; j < strArray.length; j++) {
String str2 = strArray(j];
if(str.equalslgnoreCase(str2)) {
countDuplicatet++;

}

if(countDuplicate > 1) {
duplicateFound = true;
System.out.printin("duplicate found for " + str);

}

loopCounter++;
}Wlend of inner nested for loop

if(duplicateFound) {
break;

Wlend of outer for loop

System.out.printin("looped " + loopCounter + " times");
return duplicateFound;

}

public static boolean isThereDuplicateUsingCollection() {
boolean duplicateFound = false;
int loopCounter = 0;
Set setValues = new HashSet(10); // create a set

for (inti = 0; i < strArray.length; i++) {
String str = strArray(i];

duplicateFound = true;
System.out.printin("duplicate found for " + str);

setValues.add(str); // add the value to the set
loopCounter++;

if(duplicateFound) {
break;
}

}I'end of for loop

System.out.printin("looped " + loopCounter + " times");
return duplicateFound;

}

public static void main(String[] args) {
isThereDuplicateUsingCollection();

if(setValues.contains(str)) { // check if already has this value

}

public static void main(String[] args) {)

} isThereDuplicateUsingLoop(); output:
) duplicate found for Lion

looped 5 times

output: The approach using a Set is more readable and easier to
duplicate found for Lion maintain and performs slightly better. If you have an array with
looped 20 times 100 items then nested loops will loop through 9900 times and

utilizing a collection class will loop through only 100 times.

v

Java - Fundamentals 33

Q 18: What is the difference between “==" and equals(...) method? What is the difference between shallow comparison
and deep comparison of objects? h

A 18: The questions Q18, Q19, and Q20 are vital for effective coding. These three questions are vital when you are
using a collection of objects using a java.util.Set of persistable Hibernate objects etc. It is easy to
implement these methods incorrectly and consequently your program can behave strangely and also is hard to
debug. So, you can expect these questions in your interviews.

== [shallow comparison] equals() [deep comparison]

The == returns true, if the variable reference points to The equals() - returns the results of running the equals() method of a

the same object in memory. This is a “shallow user supplied class, which compares the attribute values. The equals()

comparison”. method provides “deep comparison” by checking if two objects are
logically equal as opposed to the shallow comparison provided by the
operator ==.

If equals() method does not exist in a user supplied class then the
inherited Object class's equals() method is run which evaluates if the
references point to the same object in memory. The object.equals() works
just like the "==" operator (i.e shallow comparison).

Overriding the Object class may seem simple but there are many ways to
get it wrong, and consequence can be unpredictable behavior. Refer Q19
in Java section.

/ == (identity) \ / equals() method \

\ If (@==b) 2> returns false \ If (a.equals(b)) > returns true
(both objects have same attribute values of id=1
and name="Cat”)

N/

Pet a = new Pet();

Pet a

new Pet()!

Pet Object
Pet b = new Pet();

new Pet();

Pet Object Pet b

If (@==b) 2> returns true (a,b points to the

Pet Object
same object, after a is set to b with a=b) ke

If (a.equals(b)) returns true

a= a=b {}
a a
b o

b @
%jedj \ Pet Objecu

String assignment with the “new” operator follow the same rule as == and equals() as mentioned above.

String str = new String (“ABC”); //Wrong. Avoid this because a new String instance
//is created each time it is executed.

Variation to the above rule:

The “literal” String assignment is shown below, where if the assignment value is identical to another String assignment
value created then a new String object is not created. A reference to the existing String object is returned.

String str = “ABC”; //Right because uses a single instance rather than
//creating a new instance each time it is executed.

Let us look at an example:

34 Java - Fundamentals

public class StringBasics {
public static void main(String[] args) {

String sl = new String("A"); //not recommended, use String sl = "A"
String s2 = new String("A"); //not recommended, use String s2 = "A"
//standard: follows the == and equals() rule like plain java objects.
if (sl == s2) { //shallow comparison
System.out.println ("references/identities are equal"); //never reaches here
}
if (sl.equals(s2)) { //deep comparison
System.out.println("values are equal"); // this line is printed
}
//variation: does not follow the == and equals rule
String s3 = "A"; //goes into a String pool.
String s4 = "A"; //refers to String already in the pool.
if (s3 == s4) { //shallow comparison
System.out.println("references/identities are equal"); //this line is printed
}
if (s3.equals(s4)) { //deep comparison
System.out.println("values are equal"); //this line is also printed

}
}

String class is designed with Flyweight design pattern. When you create a String constant as shown
above in the variation, (i.e. String s3 = “A”, s4= “A”), it will be checked to see if it is already in the String pool. If it is in the
pool, it will be picked up from the pool instead of creating a new one. Flyweights are shared objects and using them can
result in substantial performance gains.

Q. What is an intern() method in the String class?

A pool of Strings is maintained by the String class. When the intern() method is invoked equals(...) method is invoked to
determine if the String already exist in the pool. If it does then the String from the pool is returned. Otherwise, this String
object is added to the pool and a reference to this object is returned. For any two Strings s1 & s2, s1l.intern() ==
s2.intern() only if s1.equals(s2) is true.

Q 19: What are the non-final methods in Java Object class, which are meant primarily for extension?

A 19: The non-final methods are equals(), hashCode(), toString(), clone(), and finalize(). The other methods like
wait(), notify(), notifyAll(), getClass() etc are final methods and therefore cannot be overridden. Let us look at
these non-final methods, which are meant primarily for extension (i.e. inheritance).

Important: The equals() and hashCode() methods prove to be very important, when objects implementing these two
methods are added to collections. If implemented incorrectly or not implemented at all then your objects stored in a
collection like a Set, List or Map may behave strangely and also is hard to debug.

Method Explanation

name

equals() This method checks if some other object passed to it as an argument is equal the object in which this method is
invoked. It is easy to implement the equals() method incorrectly, if you do not understand the contract. The contract
can be stated in terms of 6 simple principles as follows:

E)nuebtlr?c?d with 1. o1.equals(o1) = which means an Object (e.g. 01) should be equal to itself. (aka Reflexive).
access 2. o1.equals(02) if and only 02.equals(o1) & So it will be incorrect to have your own class say “MyPet” to have a

modifier equals() method that has a comparison with an Object of class “java.lang.String” class or with any other built-in
Java class. (aka Symmetric) .

3. o1l.equals(02) && 02.equals(03) implies that 01.equals(03) as well = It means that if the first object o1 equals to
the second object 02 and the second object 02 is equal to the third object 03 then the first object o1 is equal to
the third object 03. For example, imagine that X, Y and Z are 3 different classes. The classes X and Y both
implement the equals() method in such a way that it provides comparison for objects of class X and class Y. Now
if you decide to modify the equals() method of class Y so that it also provides equality comparison with class Z,
then you will be violating this principle because no proper equals comparison exist for class X and class Z
objects. So, if two objects agree that they are equal and follow the above mentioned symmetric principle, then

Java - Fundamentals 35

one of them cannot decide to have a similar contract with another object of different class. (aka Transitive)

4. o1l.equals(02) returns the same as long as o1 and 02 are unmodified > if two objects are equal, they must
remain equal as long as they are not modified. Similarly, if they are not equal, they must remain non-equal as long
as they are not modified. (aka Consistent)

5. lo1.equals(null) & which means that any instantiable object is not equal to null. So if you pass a null as an
argument to your object o1, then it should return false. (aka null comparison)

6. o1l.equals(o2) implies o1.hashCode() == 02.hashCode() -> This is very important. If you define a equals()
method then you must define a hashCode() method as well. Also it means that if you have two objects that are
equal then they must have the same hashCode, however the reverse is not true (i.e. if two objects have the same
hashCode does not mean that they are equal). So, If a field is not used in equals(), then it must not be used in
hashCode() method. (equals() and hashCode() relationship)

public class Pet {
int id;
String name;

public boolean equals (Object obj) {
if (this == obj) return true; // if both are referring to the same object

if ((obj == null) || (obj.getClass() != this.getClass())) {
return false;

}

Pet rhs = (Pet) obj;
return id == rhs.id && (name == rhs.name ||
(name != null && name.equals(rhs.name)));

}

//hashCode () method must be implemented here.

}

hashCode() | This method returns a hashCode() value as an Integer and is supported for the benefit of hashing based
java.util.Collection classes like Hashtable, HashMap, HashSet etc. If a class overrides the equals() method, it
must implement the hashCode() method as well. The general contract of the hashCode() method is that:

me;lhod with 1. Whenever hashCode() method is invoked on the same object more than once during an execution of a Java

public program, this method must consistently return the same integer result. The integer result need not remain

accde.?_s consistent from one execution of the program to the next execution of the same program.

modifier

2. If two objects are equal as per the equals() method, then calling the hashCode() method in each of the two
objects must return the same integer result. So, If a field is not used in equals(), then it must not be used in
hashCode() method.

3. If two objects are unequal as per the equals() method, each of the two objects can return either two different
integer results or same integer results (i.e. if 2 objects have the same hashCode() result does not mean that they
are equal, but if two objects are equal then they must return the same hashCode() result).

public class Pet {
int id;

String name;
public boolean equals (Object obj) {
//as shown above.
}
//both fields id & name are used in equals(), so both fields must be used in
//hashCode () as well.
public int hashCode () {
int hash 9;
hash = (31 * hash) + id;
hash = (31 * hash) + (null == name ? 0 : name.hashCode());
return hash;
}
}
toString() The toString() method provided by the java.lang.Object returns a string, which consists of the class name

36

Java - Fundamentals

followed by an “@” sign and then unsigned hexadecimal representation of the hashcode, for example
Pet@162b91. This hexadecimal representation is not what the users of your class want to see.
method with
public Providing your toString() method makes your class much more pleasant to use and it is recommended
access that all subclasses override this method. The toString() method is invoked automatically when your object
modifier is passed to printin(), assert() or the string concatenation operator (+).
public class Pet ({
int id;
String name;
public boolean equals (Object obj) {
//as shown above.
}
public int hashCode() {
//as shown before
}
public String toString() {
StringBuffer sb = new StringBuffer():;
sb.append (“id=") .append (id) ;
sb.append (%, name=") .append (name) ;
return sb.toString();
}
}
clone() You should override the clone() method very judiciously. Implementing a properly functioning clone method is complex
and it is rarely necessary. You are better off providing some alternative means of object copying (refer Q26 in Java
section) or simply not providing the capability. A better approach is to provide a copy constructor or a static factory
method with method in place of a constructor.
protected /Iconstructor
accggs public Pet (Pet petToCopy) {
modifier
}
/Istatic factory method
public static Pet newlInstance (Pet petToCopy) {
}
The clone() method can be disabled as follows:
public final Object clone() throws CloneNotSupportedException {
throw new CloneNotSupportedException();
}
finalize() Unlike C++ destructors, the finalize() method in Java is unpredictable, often dangerous and generally unnecessary.
Use try{} finally{} blocks as discussed in Q32 in Java section & Q45 in Enterprise section. The finalize() method should
method only be used in rare instances as a safety net or to terminate non-critical native resources. If you do happen to call the
with finalize() method in some rare instances then remember to call the super.finalize() as shown below:
pmﬁeded protected void finalize() throws Throwable {
access try(
modifier //finalize subclass state
}
finally {
super.finalize();
}
}

Q 20: When providing a user defined key class for storing ob'ei:ts in the HashMaps or Hashtables, what methods do you

have to provide or override (i.e. method overriding)?

Pico|

A 20: You should override the equals() and hashCode() methods from the Object class. The default implementation of
the equals() and hashcode(), which are inherited from the java.lang.Object uses an object instance’s memory
location (e.g. MyObject@6c60f2ea). This can cause problems when two instances of the car objects have the
same color but the inherited equals() will return false because it uses the memory location, which is different for

Java - Fundamentals

37

the two instances. Also the toString() method can be overridden to provide a proper string representation of your

object.
/ hashCode() & equals() methods \
myMap (HashMap)

Map myMap = new HashMap(); Because often

two or more
. : 345678965 76854676 keys can hash

storing value: Ke:r:'r;dex e (hash value for (hash value for to the same
myMap.put(“John”, “Sydney”); ’\ 7 _array ‘o‘e “John”) “Sam”) hash value the

" Cyy 2.9 79'\(‘0“ HashMap

/ aive 0 maintains a

O\ . linked list of
4.0 List of keys / / keys that were
(\ oo “John” etc “Sam” etc mapped to the

06\\‘(;‘{\0“ ition and USepp list of keys which hash to the same hash

retrieving value: ’5;\“9&9 ey this k:‘ is p,-eser\t same hash value 345678065. value.
i the
ugh Vi o if i '
A oop thr© cthod List of values
myMap.get(“John”); 5. he equa\s() m “Sydney” etc “Melbourne”
us, List of values for the etc
€s corresponding list of keys

If the key is not found (i.e. equals() method returns false for all
items in the list), then it assumes that the key is not present in the
HashMap “myMap”.

Note: It is simplified for clarity. myMap.containsKey(“John”) also calls hashCode() & equals() methods. If two keys are equal then they must have
the same hashCode() value, But if two keys have the same hashCode() value does not mean that they are equal.

Y

Q. What are the primary considerations when implementing a user defined key?

e Ifaclass overrides equals(), it must override hashCode().

e If 2 objects are equal, then their hashCode values must be equal as well.

o Ifafield is not used in equals(), then it must not be used in hashCode().

e Ifitis accessed often, hashCode() is a candidate for caching to enhance performance.

e ltis a best practice to implement the user defined key class as an immutable (refer Q21) object.

Q. Why it is a best practice to implement the user defined key class as an immutable object?

Problem: As per the code snippet shown below if you use a mutable user defined class “UserKey” as a HashMap
key and subsequently if you mutate (i.e. modify via setter method e.g. key.setName (“Sam”)) the key after the
object has been added to the HashMap then you will not be able to access the object later on. The original key
object will still be in the HashMap (i.e. you can iterate through your HashMap and print it — both prints as “Sam” as

opposed to “John” & Sam) but you cannot access it with map.get (key) or querying it

with

map.containsKey (key) will return false because the key “John” becomes “Sam” in the “List of keys” at the key

index “345678965” if you mutate the key after adding. These types of errors are very hard to trace and fix.

Map myMap = new HashMap (10) ;

//add the key “John”

UserKey key = new UserKey (“John”); //Assume UserKey class is mutable

myMap.put (key, “Sydney”);

//now to add the key “Sam”

key.setName (“Sam”); // same key object is mutated instead of creating a new instance.

// This line modifies the key value “John” to “Sam” in the “List of keys”

// as shown in the diagram above. This means that the key “John” cannot
// accessed. There will be two keys with “Sam” in positions with hash
// values 345678965 and 76854676.

myMap.put (key, “Melbourne”) ;

be

myMap.get (new UserKey (“John”)); // key cannot be accessed. The key hashes to the same position
// 345678965 in the “Key index array” but cannot be found in the “List of keys”

Solution: Generally you use a java.lang.Integer or a java.lang.String class as the key, which are immutable Java
objects. If you define your own key class then it is a best practice to make the key class an immutable object (i.e.
do not provide any setXXX() methods in your key class. e.g. no setName (..) method in the UserKey class). If a
programmer wants to insert a new key then he/she will always have to instantiate a new object (i.e. cannot mutate

the existing key because immutable key object class has no setter methods).

Java - Fundamentals

38

Map myMap = new HashMap (10) ;

//add the key “John”

UserKey keyl = new UserKey (“John”) ;
myMap.put (keyl, “Sydney”);

//Assume UserKey is immutable

//add the key “Sam”
UserKey key2 = new UserKey (“Sam”) ;
myMap.put (key2, “Melbourne”);

//Since UserKey is immutable, new instance is created.

myMap.get (new UserKey (“John”)) ; //Now the key can be accessed

Similar issues are possible with the Set (e.g. HashSet) as well. If you add an object to a “Set” and subsequently
modify the added object and later on try to query the original object it may not be present.
mySet.contains (originalObject) may return false.

introduces enumerated constants, which improves readability and maintainability of your code. Java
programming language enums are more powerful than their counterparts in other languages. As shown
below a class like “Weather” can be built on top of simple enum type “Season” and the class “Weather” can be
made immutable, and only one instance of each “Weather” can be created, so that your Weather class does not
have to override equals() and hashCode() methods.

public class Weather ({

public enum Season {WINTER, SPRING, SUMMER, FALL}

private final Season season;

private static final List<Weather> listWeather = new ArrayList<Weather> ()
private Weather (Season season) { this.season =
public Season getSeason () { return season;}

season; }

static {
for (Season season : Season.values()) { //using J2SE 5.0 for each loop
listWeather.add (new Weather (season)) ;

}
}

public static ArrayList<Weather> getWeatherList ()
public String toString(){ return season;}

{ return 1listWeather; }

//takes advantage of toString() method of Season.

Q 21: What is the main difference between a String and a StringBuffer class? m
A 21:

StringBuffer / StringBuilder (added in J2SE 5.0)

String is immutable: you can’t modify a string
object but can replace it by creating a new
instance. Creating a new instance is rather
expensive.

/l\nefficient version using immutable String
String output = “Some text”
Int count = 100;
for(int i =0; i<count; i++) {
output +=i;

return output;
The above code would build 99 new String

objects, of which 98 would be thrown away
immediately. Creating new objects is not

efficient.

StringBuffer is mutable: use StringBuffer or StringBuilder when you want
to modify the contents. StringBuilder was added in Java 5 and it is
identical in all respects to StringBuffer except that it is not synchronized,
which makes it slightly faster at the cost of not being thread-safe.

IIMore efficient version using mutable StringBuffer
StringBuffer output = new StringBuffer(110);// set an initial size of 110
output.append(“Some text”);
for(int i =0; i<count; i++) {
output.append(i);

return output.toString();

The above code creates only two new objects, the StringBuffer and the
final String that is returned. StringBuffer expands as needed, which is
costly however, so it would be better to initialize the StringBuffer with the
correct size from the start as shown.

Another important point is that creation of extra strings is not limited to overloaded mathematical operator “+” but
there are several methods like concat(), trim(), substring(), and replace() in String classes that generate new
string instances. So use StringBuffer or StringBuilder for computation intensive operations, which offer better
performance.

Q. What is an immutable object? Immutable objects whose state (i.e. the object’s data) does not change once it is
instantiated (i.e. it becomes a read-only object after instantiation). Immutable classes are ideal for representing

Java - Fundamentals

39

numbers (e.g. java.lang.Integer, java.lang.Float, java.lang.BigDecimal etc are immutable objects), enumerated
types, colors (e.g. java.awt.Color is an immutable object), short lived objects like events, messages etc.

Q. What are the benefits of immutable objects?
e Immutable classes can greatly simplify programming by freely allowing you to cache and share the references to
the immutable objects without having to defensively copy them or without having to worry about their values

becoming stale or corrupted.

e Immutable classes are inherently thread-safe and you do not have to synchronize access to them to be used in a
multi-threaded environment. So there is no chance of negative performance consequences.

o Eliminates the possibility of data becoming inaccessible when used as keys in HashMaps or as elements in
Sets. These types of errors are hard to debug and fix. Refer Q20 in Java section under “Q. Why it is a best
practice to implement the user defined key class as an immutable object? “

Q. How will you write an immutable class?

Writing an immutable class is generally easy but there can be some tricky situations. Follow the following guidelines:

1. Aclass is declared final (i.e. final classes cannot be extended).
public final class MyImmutable { .. }

2. All its fields are final (final fields cannot be mutated once assigned).
private final int[] myArray; //do not declare as = private final int[] myArray = null;

3. Do not provide any methods that can change the state of the immutable object in any way — not just setXXX
methods, but any methods which can change the state.

4. The “this” reference is not allowed to escape during construction from the immutable class and the immutable
class should have exclusive access to fields that contain references to mutable objects like arrays, collections

and mutable classes like Date etc by:

o Declaring the mutable references as private.

e Not returning or exposing the mutable references to the caller (this can be done by defensive copying)

Wrong way to write an immutable class \
Wrong way to write a constructor:

public final class Mylmmutable {
private final int[] myArray;

public Mylmmutable(int[] anArray) {
this.myArray = anArray; // wrong
}

public String toString() {
StringBuffer sb = new StringBuffer("Numbers are: ");
for (inti = 0; i < myArray.length; i++) {
sb.append(myArray[i] + " ");

}
return sb.toString();

}
}

/I the caller could change the array after calling the
constructor.

int[] array = {1,2};

Mylmmutable mylmmutableRef = new Mylmmutable(array) ;
System.out.printin("Before constructing " + mylmmutableRef);
array[1] = 5; // change (i.e. mutate) the element
System.out.printin("After constructing " + mylmmutableRef);

Out put:

Before constructing Numbers are: 1 2

Right way to write an immutable class
Right way is to copy the array before assigning in the constructor.

public final class Mylmmutable {
private final int[] myArray;

public Mylmmutable(int[] anArray) {
this.myArray = anArray.clone(); // defensive copy
}

public String toString() {
StringBuffer sb = new StringBuffer("Numbers are: ");
for (inti = 0; i < myArray.length; i++) {
sb.append(myArray[i] + " ");

}
return sb.toString();

}
}

/I the caller cannot change the array after calling the constructor.

int[] array = {1,2};

Mylmmutable mylmmutableRef = new Mylmmutable(array) ;
System.out.printin("Before constructing " + mylmmutableRef);
array[1] = 5; // change (i.e. mutate) the element
System.out.printin("After constructing " + mylmmutableRef);

Out put:
Before constructing Numbers are: 1 2

40 Java - Fundamentals

After constructing Numbers are: 1 5

As you can see in the output that the “Mylmmutable” object
has been mutated. This is because the object reference gets
copied as discussed in Q22 in Java section.

After constructing Numbers are: 1 2

As you can see in the output that the “Mylmmutable” object has not
been mutated.

Wrong way to write an accessor. A caller could get the array
reference and then change the contents:

public int[] getArray() {
return myArray;

}

Right way to write an accessor by cloning.

public int[] getAray () {
return (int[]) myArray.clone();

}

Beware of using the clone() method on a collection like a Map, List, Set etc because they are not only difficult
to implement correctly refer Q19 in Java section but also the default behavior of an object’s clone() method automatically
yields a shallow copy. You have to deep copy the mutable objects referenced by your immutable class. Refer Q26 in Java
section for deep vs. shallow cloning and Q22 in Java section for why you will be modifying the original object if you do not

deep copy.

Q. How would you defensively copy a Date field in your immutable class?

public final class MyDiary {
private Date myDate = null;

public MyDiary(Date aDate){

this.myDate = new Date(aDate.getTime()); /I defensive copying by not exposing the “myDate” reference
}
public Date getDate() {
return new Date(myDate.getTime); /I defensive copying by not exposing the “myDate” reference
}

}

Q 22: What is the main difference between pass-by-reference and pass-by-value? m

A 22: Other languages use pass-by-reference or pass-by-pointer. But in Java no matter what type of argument you
pass the corresponding parameter (primitive variable or object reference) will get a copy of that data, which is
exactly how pass-by-value (i.e. copy-by-value) works.

In Java, if a calling method passes a reference of an object as an argument to the called method then the passed-
in reference gets copied first and then passed to the called method. Both the original reference that was
passed-in and the copied reference will be pointing to the same object. So no matter which reference you use, you

will be always modifying the same original object, which is how the pass-by-reference works as well.

/ Pass-by-value for primitive variables vs Object references \
Primitive variables - Object references

public void first(){ _gtores i— P : 10 public void first(){ @

inti=10:@— | Car ¢ = new Car("red") @’ %or

int x = second(i); \l/ /[At this point o

/At this point Copy of | /color is Red S 7 Car object

[Ivalue of i is still 10 k=10 second(c); o) _

/Ivalue of x is 11 o\ //At this point String color = red

} o0 /lcolor is Blue

public int second(int k) o

k++@—actsonk——pl k=11

) <
public void second(Car d) Changes

return k ; { color = blue
} modifies the copy k d-SetCQ|0r(b|Ue>’/< modifies the original
but not the ort rnyal /lcolor is blue object through copied
ginal. } reference

If your method call involves inter-process (e.g. between two JVMs) communication, then the reference of the
calling method has a different address space to the called method sitting in a separate process (i.e. separate

Java - Fundamentals 41

JVM). Hence inter-process communication involves calling method passing objects as arguments to called method
by-value in a serialized form, which can adversely affect performance due to marshaling and unmarshaling cost.

Note: As discussed in Q69 in Enterprise section, EJB 2.x introduced local interfaces, where enterprise beans that can be used
locally within the same JVM using Java’s form of pass-by-reference, hence improving performance.

Q 23:

A 23:

What is serialization? How would you exclude a field of a class from serialization or what is a transient variable?
What is the common use? What is a serial version id? s m

Serialization is a process of reading or writing an object. It is a process of saving an object’s state to a sequence of
bytes, as well as a process of rebuilding those bytes back into a live object at some future time. An object is
marked serializable by implementing the java.io.Serializable interface, which is only a marker interface -- it simply
allows the serialization mechanism to verify that the class can be persisted, typically to a file.

Transient variables cannot be serialized. The fields marked transient in a serializable object will not be

transmitted in the byte stream. An example would be a file handle, a database connection, a system thread etc.
Such objects are only meaningful locally. So they should be marked as transient in a serializable class.

/ Serialization \

class Car implerrents Serializable
String color = null;
transient Hle th =null;

!

N

Serialization can adversely affect performance since it:

Car Object

= Depends on reflection.
= Has an incredibly verbose data format.
= |s very easy to send surplus data.

Q. When to use serialization? Do not use serialization if you do not have to. A common use of serialization is to
use it to send an object over the network or if the state of an object needs to be persisted to a flat file or a
database. (Refer Q57 on Enterprise section). Deep cloning or copy can be achieved through serialization. This
may be fast to code but will have performance implications (Refer Q26 in Java section).

To serialize the above “Car” object to a file (sample for illustration purpose only, should use try {} catch {} block):

Car car = new Car(); // The “Car” class implements a java.io.Serializable interface
FileOutputStream fos = new FileOutputStream(filename) ;

ObjectOutputStream out = new ObjectOutputStream (fos);

out.writeObject(car); // serialization mechanism happens here

out.close() ;

The objects stored in an HTTP session should be serializable to support in-memory replication of sessions to
achieve scalability (Refer Q20 in Enterprise section). Objects are passed in RMI (Remote Method Invocation)
across network using serialization (Refer Q57 in Enterprise section).

Q. What is Java Serial Version ID? Say you create a “Car” class, instantiate it, and write it out to an object
stream. The flattened car object sits in the file system for some time. Meanwhile, if the “Car” class is modified by
adding a new field. Later on, when you try to read (i.e. deserialize) the flattened “Car” object, you get the
java.io.InvalidClassException — because all serializable classes are automatically given a unique identifier. This
exception is thrown when the identifier of the class is not equal to the identifier of the flattened object. If you really
think about it, the exception is thrown because of the addition of the new field. You can avoid this exception being
thrown by controlling the versioning yourself by declaring an explicit serialVersionUID. There is also a small

42

Java - Fundamentals

performance benefit in explicitly declaring your serialVersionUID (because does not have to be calculated). So, it
is best practice to add your own serialVersionUID to your Serializable classes as soon as you create them as

shown below:

public class Car {

static final long serialVersionUID = 1L;

}

//assign a long value

Alternatively you can use the serialver tool comes with Sun’s JDK. This tool takes a full class name on the
command line and returns the serialVersionUID for that compiled class.

static final long serialVersionUID =

10275439472837494L;

//generated by serialver tool.

Q 24:
A 24:

Explain the Java I/O streaming concept and the use of the decorator design pattern in Java 1/0? @
Java input and output is defined in terms of an abstract concept called a “stream”, which is a sequence of data.

There are 2 kinds of streams.

= Byte streams (8 bit bytes) > Abstract classes are: InputStream and OutputStream
= Character streams (16 bit UNICODE) - Abstract classes are: Reader and Writer

Jjava.io.” classes use the decorator design pattern. The decorator design pattern attaches
responsibilities to objects at runtime. Decorators are more flexible than inheritance because the inheritance
attaches responsibility to classes at compile time. The java.io.* classes use the decorator pattern to construct
different combinations of behavior at runtime based on some basic classes.

Attaching responsibilities to classes at

compile time using subclassing.

Inheritance (aka subclassing) attaches
responsibilities to classes at compile time. When
you extend a class, each individual changes you
make to child class will affect all instances of the
child classes. Defining many classes using
inheritance to have all possible combinations is
problematic and inflexible.

Attaching responsibilities to objects at runtime using a decorator
design pattern.

By attaching responsibilities to objects at runtime, you can apply changes
to each individual object you want to change.

File file = new File (“c:/temp”);
FileInputStream fis = new FileInputStream(file) ;
BufferedInputStream bis = new BufferedInputStream(£fis) ;

Decorators decorate an object by enhancing or restricting functionality of
an object it decorates. The decorators add or restrict functionality to
decorated objects either before or after forwarding the request. At runtime
the BufferedinputStream (bis), which is a decorator (aka a wrapper
around decorated object), forwards the method call to its decorated object
FileInputStream (fis). The “bis” will apply the additional functionality of
buffering around the lower level file (i.e. fis) I/O.

/ java.io.* class hierarchy \
java.lang.Object
| | | | |
java.io.lInputStream java.io.OutputStream java.lang.System java.io.Reader java.io.Witer
java.io.FilelnputStream java.io.FileOutputStream java.io.InputStreamReader java.io.OutputStream\\titer
Note: Only a few subclasses of abstract classes are java.io.BufferedReader || java.io.FileReader java.io.FileViter
shown for clarity.

N

J

Q. How does the new I/O (NIO) offer better scalability and better performance?

Java - Fundamentals 43

Java has long been not suited for developing programs that perform a lot of /O operations. Furthermore,
commonly needed tasks such as file locking, non-blocking and asynchronous I/O operations and ability to map file
to memory were not available. Non-blocking 1/0 operations were achieved through work around such as
multithreading or using JNI. The New I/O API (aka NIO) in J2SE 1.4 has changed this situation.

A server’s ability to handle several client requests effectively depends on how it uses 1/0 streams. When a server
has to handle hundreds of clients simultaneously, it must be able to use I/O services concurrently. One way to
cater for this scenario in Java is to use threads but having almost one-to-one ratio of threads (100 clients will have
100 threads) is prone to enormous thread overhead and can result in performance and scalability problems
due to consumption of memory stacks (i.e. each thread has its own stack. Refer Q34, Q42 in Java section) and
CPU context switching (i.e. switching between threads as opposed to doing real computation.). To overcome this
problem, a new set of non-blocking 1/0 classes have been introduced to the Java platform in java.nio package.
The non-blocking I/O mechanism is built around Selectors and Channels. Channels, Buffers and Selectors are
the core of the NIO.

g Non-blocking /0 (i.e. New I/0) I
Process
Client-1 Channel Key-5 Key-4 | | Key-3 Key-2 Key-1
client-2 client-1 client-3 client-2 client-1

= =

Selector

Client-2 Channel
sequentially processed
(unlike threads, no context switching and separate
stack allocations are required)
Client-3 Channel

S /

A Channel class represents a bi-directional communication channel (similar to InputStream and OutputStream)
between datasources such as a socket, a file, or an application component, which is capable of performing one or
more I/O operations such as reading or writing. Channels can be non-blocking, which means, no 1/O operation will
wait for data to be read or written to the network. The good thing about NIO channels is that they can be
asynchronously interrupted and closed. So if a thread is blocked in an I/O operation on a channel, another thread
can interrupt that blocked thread.

A Selector class enables multiplexing (combining multiple streams into a single stream) and demultiplexing
(separating a single stream into multiple streams) I/O events and makes it possible for a single thread to efficiently
manage many |I/O channels. A Selector monitors selectable channels, which are registered with it for /O events
like connect, accept, read and write. The keys (i.e. Key1, Key2 etc represented by the SelectionKey class)
encapsulate the relationship between a specific selectable channel and a specific selector.

Buffers hold data. Channels can fill and drain Buffers. Buffers replace the need for you to do your own buffer
management using byte arrays. There are different types of Buffers like ByteBuffer, CharBuffer, DoubleBuffer, etc.

NIO uses a reactor design pattern, which demultiplexes events (separating single stream into
multiple streams) and dispatches them to registered object handlers. The reactor pattern is similar to an observer
pattern (aka publisher and subscriber design pattern), but an observer pattern handles only a single source of
events (i.e. a single publisher with multiple subscribers) where a reactor pattern handles multiple event sources
(i.e. multiple publishers with multiple subscribers). The intent of an observer pattern is to define a one-to-many
dependency so that when one object (i.e. the publisher) changes its state, all its dependents (i.e. all its
subscribers) are notified and updated correspondingly.

Another sought after functionality of NIO is its ability to map a file to memory. There is a specialized form of a
Buffer known as “MappedByteBuffer”, which represents a buffer of bytes mapped to a file. To map a file to
“MappedByteBuffer”, you must first get a channel for a file. Once you get a channel then you map it to a buffer and
subsequently you can access it like any other “ByteBuffer”. Once you map an input file to a “CharBuffer”, you can
do pattern matching on the file contents. This is similar to running “grep” on a UNIX file system.

44

Java - Fundamentals

Another feature of NIO is its ability to lock and unlock files. Locks can be exclusive or shared and can be held
on a contiguous portion of a file. But file locks are subject to the control of the underlying operating system.

Q 25:
A 25:

How can you improve Java I/O performance?
Java applications that utilize Input/Output are excellent candidates for performance tuning. Profiling of Java
applications that handle significant volumes of data will show significant time spent in 1/O operations. This means
substantial gains can be had from 1/O performance tuning. Therefore, I/O efficiency should be a high priority for
developers looking to optimally increase performance.

The basic rules for speeding up 1/O performance are

= Minimize accessing the hard disk.

= Minimize accessing the underlying operating system.
= Minimize processing bytes and characters individually.

Let us look at some of the techniques to improve /O performance.

= Use buffering to minimize disk access and underlying operating system. As shown below, with buffering
large chunks of a file are read from a disk and then accessed a byte or character at a time.

Without buffering : inefficient code With Buffering: yields better performance
try{ try{
File f = new File("myFile.txt"); File f = new File("myFile.txt");
FileInputStream fis = new FilelnputStream(f); FileInputStream fis = new FilelnputStream(f);
int count = 0; BufferedinputStream bis = new BufferedInputStream(fis);
intb =0; int count = 0;
while((b = fis.read()) != -1)X intb=0;
if(b=="\n") { while((b = bis.read()) !=-1)¥
count++; if(b=="\n") {
} count++;
}

/I fis should be closed in a finally block.
fis.close() ; /Ibis should be closed in a finally block.
} bis.close() ;
catch(IOException io){} }
catch(IOException io){}
Note: fis.read() is a native method call to the
underlying operating system. Note: bis.read() takes the next byte from the input buffer and only
rarely access the underlying operating system.

Instead of reading a character or a byte at a time, the above code with buffering can be improved further by
reading one line at a time as shown below:

FileReader fr = new FileReader (f);
BufferedReader br = new BufferedReader (fr);
while (br.readLine() != null) count++;

By default the System.out is line buffered, which means that the output buffer is flushed when a new line
character (i.e. “\n”) is encountered. This is required for any interactivity between an input prompt and display
of output. The line buffering can be disabled for faster I/O operation as follows:

FileOutputStream fos = new FileOutputStream(file);
BufferedOutputStream bos = new BufferedOutputStream(fos, 1024);
PrintStream ps = new PrintStream(bos, false);

/I To redirect standard output to a file instead of the “System” console which is the default for both “System.out” (i.e.
/I standard output) and “System.err” (i.e. standard error device) variables

System. setOut (ps) ;
while (someConditionIsTrue)

System.out.println (“blah.blah..”);
}

Java - Fundamentals 45

It is recommended to use logging frameworks like Log4J with SLF4J (Simple Logging Facade for Java),
which uses buffering instead of using default behavior of System.out.printin(.....) for better performance.
Frameworks like Log4J are configurable, flexible, extensible and easy to use.

= Use the NIO package, if you are using JDK 1.4 or later, which uses performance-enhancing features like
buffers to hold data, memory mapping of files, non-blocking 1/0 operations etc.

= 1/O performance can be improved by minimizing the calls to the underlying operating systems. The Java
runtime itself cannot know the length of a file, querying the file system for isDirectory(), isFile(), exists() etc
must query the underlying operating system.

= Where applicable caching can be used to improve performance by reading in all the lines of a file into a Java
Collection class like an ArrayList or a HashMap and subsequently access the data from an in-memory
collection instead of the disk.

Q 26: What is the main difference between shallow cloning and deep cloning of objects? m
A 26: The default behavior of an object's clone() method automatically yields a shallow copy. So to achieve a deep copy
the classes must be edited or adjusted.

Shallow copy: If a shallow copy is performed on obj-1 as shown in fig-2 then it is copied but its contained objects
are not. The contained objects Obj-1 and Obj-2 are affected by changes to cloned Obj-2. Java supports shallow
cloning of objects by default when a class implements the java.lang.Cloneable interface.

Deep copy: If a deep copy is performed on obj-1 as shown in fig-3 then not only obj-1 has been copied but the

objects contained within it have been copied as well. Serialization can be used to achieve deep cloning. Deep
cloning through serialization is faster to develop and easier to maintain but carries a performance overhead.

/ Shallow Vs Deep cloning \

Cloned
Obj-2

contained
Obj-1

contains contains

contained contained

contained contained
Obj-1 Obj-2

contained
Obj-2

Obj-1 Obj-2

contained
Obj-2

contained
Obj-1

Fig-3:Deep cloning

_ Fig-1:Original Object Fig-2:Shallow cloning 4

invoking clone() method on a collection like HashMap, List etc returns a shallow copy of HashMap,
List, instances. This means if you clone a HashMap, the map instance is cloned but the keys and values
themselves are not cloned. If you want a deep copy then a simple method is to serialize the HashMap to a
ByteArrayOutputSream and then deserialize it. This creates a deep copy but does require that all keys and values
in the HashMap are Serializable. Main advantage of this approach is that it will deep copy any arbitrary object
graph. Refer Q23 in Java section for deep copying using Serialization. Alternatively you can provide a static
factory method to deep copy. to deep copy a list of Car objects.

public static List deepCopy(List listCars) {

List copiedList = new ArrayList (10);

for (Object object : listCars) { //JDK 1.5 for each loop
Car original = (Car)object;
Car carCopied = new Car(); //instantiate a new Car object
carCopied.setColor ((original.getColor()));
copiedList.add (carCopied) ;

}

return copiedList;

46 Java - Fundamentals
Q 27: What is the difference between an instance variable and a static variable? How does a local variable compare to
an instance or a static variable? Give an example where you might use a static variable?
A 27:
Static variables Instance variables
Class variables are called static variables. There is only one | Instance variables are non-static and there is one
occurrence of a class variable per JVM per class loader. | occurrence of an instance variable in each class instance
When a class is loaded the class variables (aka static | (i.e. each object). Also known as a member variable or a
variables) are initialized. field.
A static variable is used in the singleton pattern. (Refer Q51 in Java section). A static variable is used with a final
modifier to define constants.
Local variables Instance and static variables
Local variables have a narrower scope than instance | Instance variables have a narrower scope than static
variables. variables.
The lifetime of a local variable is determined by execution | Instance and static variables are associated with objects and
path and local variables are also known as stack variables | therefore live in the heap. Refer Q34 in Java section for
because they live on the stack. Refer Q34 for stack & heap. stack & heap.
For a local variable, it is illegal for code to fail to assign it a | Both the static and instance variables always have a value. If
value. It is the best practice to declare local variables only | your code does not assign them a value then the run-time
where required as opposed to declaring them upfront and | system will implicity assign a default value (e.g.
cluttering up your code with some local variables that never | null/0/0.0/false).
get used.
Java does not support global, universally accessible variables. You can get the same sorts of effects with classes that
have static variables.
Q 28: Give an example where you might use a static method? m
A 28: Static methods prove useful for creating utility classes, singleton classes and factory methods (Refer Q51,
Q52 in Java section). Utility classes are not meant to be instantiated. Improper coding of utility classes can lead to
procedural coding. java.lang.Math, java.util.Collections etc are examples of utility classes in Java.
Q 29: What are access modifiers? [LF] {8
A 29:
_ Modifier __Used with __Description
public Outer classes, interfaces, A class or interface may be accessed from outside the
constructors, Inner classes, methods package. Constructors, inner classes, methods and field
and field variables variables may be accessed wherever their class is
accessed.
protected Constructors, inner classes, methods, Accessed by other classes in the same package or any
and field variables. subclasses of the class in which they are referred (i.e. same
package or different package).
private Constructors, inner classes, Accessed only within the class in which they are declared
methods and field variables,
No modifier: Outer classes, inner classes, Accessed only from within the package in which they are
(Package by interfaces, constructors, methods, and | declared.
default). field variables
Q 30: Where and how can you use a private constructor? m
A 30: Private constructor is used if you do not want other classes to instantiate the object and to prevent subclassing.
The instantiation is done by a public static method (i.e. a static factory method) within the same class.
= Used in the singleton design pattern. (Refer Q51 in Java section).
= Used in the factory method design pattern (Refer Q52 in Java section). e.g. java.util.Collections class (Refer
Q16 in Java section).
= Used in utility classes e.g. StringUtils etc.
Q 31: What is a final modifier? Explain other Java modifiers? FAQ
A 31: Afinal class can’t be extended i.e. A final class can not be subclassed. A final method can’t be overridden when its

class is inherited. You can’t change value of a final variable (i.e. it is a constant).

Java - Fundamentals 47

Modifier | Class | Method Variable
static A static inner class is just an inner | A static method is called by classname.method | Class variables are
class associated with the class, (e.g Math.random()), can only access static called static variables.
rather than with an instance of the | variables. There is only one
class. occurrence of a class
variable per JVM per
class loader.
abstract An abstract class cannot be Method is defined but contains no N/A
instantiated, must be a superclass | implementation code (implementation code is
and a class must be declared included in the subclass). If a method is
abstract whenever one or more abstract then the entire class must be abstract.
methods are abstract.
synchronized N/A Acquires a lock on the class for static N/A
methods.

Acquires a lock on the instance for non-
static methods.

transient N/A N/A variable should not be
serialized.
final Class cannot be inherited (i.e. Method cannot be overridden. Makes the variable
extended) immutable.
native N/A Platform dependent. No body, only signature. N/A

Be prepared for tricky questions on modifiers like, what is a “volatile”? Or what is a “const’? Etc. The
reason it is tricky is that Java does have these keywords “const” and “volatile” as reserved, which means you can’t
name your variables with these names but modifier “const” is not yet added in the language and the modifier
“volatile” is very rarely used.

The “volatile” modifier is used on instance variables that may be modified simultaneously by other threads. The
modifier volatile only synchronizes the variable marked as volatile whereas “synchronized” modifier synchronizes
all variables. Since other threads cannot see local variables, there is no need to mark local variables as volatile.

For example:

volatile int number;
volatile private List listItems = null;

Java uses the “final” modifier to declare constants. A final variable or constant declared as “final” has a value that
is immutable and cannot be modified to refer to any other objects other than one it was initialized to refer to. So
the “final” modifier applies only to the value of the variable itself, and not to the object referenced by the variable.
This is where the “const” modifier can come in very useful if added to the Java language. A reference variable
or a constant marked as “const” refers to an immutable object that cannot be modified. The reference variable
itself can be modified, if it is not marked as “final”. The “const” modifier will be applicable only to non-primitive
types. The primitive types should continue to use the modifier “final”.

Q. If you want to extend the “java.lang.String” class, what methods will you override in your extending
class?

You would be tempted to say equals(), hashCode() and toString() based on Q19, Q20 in Java section but the
“java.lang.String” class is declared final and therefore it cannot be extended.

Q 32:
A 32:

What is the difference between final, finally and finalize() in Java? m

= final - constant declaration. Refer Q31 in Java section.

= finally - handles exception. The finally block is optional and provides a mechanism to clean up regardless of
what happens within the try block (except System.exit(0) call). Use the finally block to close files or to release
other system resources like database connections, statements etc. (Refer Q45 in Enterprise section)

= finalize() - method helps in garbage collection. A method that is invoked before an object is discarded by the
garbage collector, allowing it to clean up its state. Should not be used to release non-memory resources like
file handles, sockets, database connections etc because Java has only a finite number of these resources and
you do not know when the garbage collection is going to kick in to release these non-memory resources
through the finalize() method. Refer Q19 in Java Section.

Q 33:
A 33:

Why would you prefer a short circuit “&&, ||” operators over logical “& , |” operators?

Firstly NullPointerException is by far the most common RuntimeException. If you use the logical operator you can
get a NullPointerException. This can be avoided easily by using a short circuit “&&” operator as shown below.

48

Java - Fundamentals

There are other ways to check for null but short circuit && operator can simplify your code by not having to declare
separate if clauses.

if ((obj !'= null) & obj.equals(newObj)) { //can cause a NullPointerException if obj == null
// because obj.equals (newObj) is always executed.

}

Short-circuiting means that an operator only evaluates as far as it has to, not as far as it can. If the variable 'obj'
equals null, it won't even try to evaluate the 'obj.equals(newObj)’ clause as shown in the following example. This
protects the potential NullPointerException.

if((obj != null) && obj.equals(newObj)) { //cannot get a NullPointerException because

//0obj.equals (newObj) is executed only if obj != null
}

Secondly, short-circuit “&&” and “||” operators can improve performance in certain situations. For example:

if ((number <= 7) || (doComputeIntensiveAnalysis (number) <= 13)) { //the CPU intensive
//computational method in bold is executed only if number > 7.

}

Q 34:

A 34:

How does Java allocate stack and heap memory? Explain re-entrant, recursive and idempotent
methods/functions? m

Each time an object is created in Java it goes into the area of memory known as heap. The primitive variables like
int and double are allocated in the stack (i.e. Last In First Out queue), if they are local variables and in the heap if
they are member variables (i.e. fields of a class). In Java methods and local variables are pushed into stack when
a method is invoked and stack pointer is decremented when a method call is completed. In a multi-threaded
application each thread will have its own stack but will share the same heap. This is why care should be taken in
your code to avoid any concurrent access issues in the heap space. The stack is thread-safe because each thread
will have its own stack with say 1MB RAM allocated for each thread but the heap is not thread-safe unless
guarded with synchronization through your code. The stack space can be increased with the —Xss option.

/ Java stack & heap memory allocation \

Stack

public class StackRef {

public void first(){.\
second(); 7
/lafte

} 4 ::ilfnmo

P}
\ second()

public void second() { first()

Carc =new Car() l:
} i

Heap
} .
second() refc -——f--——-——_3 ;-e
first()
public class HeapRef{ @
Carc=new Car(), @—+—— 1 °
public void first() {
c=new Car(); ®___ |

}
}

N

Java - Fundamentals 49

All Java methods are automatically re-entrant. It means that several threads can be executing the same method
at once, each with its own copy of the local variables. A Java method may call itself without needing any special
declarations. This is known as a recursive method call. Given enough stack space, recursive method calls are
perfectly valid in Java though it is tough to debug. Recursive methods are useful in removing iterations from many
sorts of algorithms. All recursive functions are re-entrant but not all re-entrant functions are recursive. ldempotent
methods are methods, which are written in such a way that repeated calls to the same method with the same
arguments yield same results. [For example| clustered EJBs, which are written with idempotent methods, can
automatically recover from a server failure as long as it can reach another server (i.e. scalable).

Q 35:
A 35:

Explain Outer and Inner classes (or Nested classes) in Java? When will you use an Inner Class? @

In Java not all classes have to be defined separate from each other. You can put the definition of one class inside
the definition of another class. The inside class is called an inner class and the enclosing class is called an outer
class. So when you define an inner class, it is a member of the outer class in much the same way as other
members like attributes, methods and constructors.

Q. Where should you use inner classes? Code without inner classes is more maintainable and readable.
When you access private data members of the outer class, the JDK compiler creates package-access member
functions in the outer class for the inner class to access the private members. This leaves a security hole. In
general we should avoid using inner classes. Use inner class only when an inner class is only relevant in the
context of the outer class and/or inner class can be made private so that only outer class can access it. Inner
classes are used primarily to implement helper classes like Iterators, Comparators etc which are used in the
context of an outer class.

Member inner class Anonymous inner class

public class MyStack { public class MyStack {
private Object[] items = null; private Object[] items = null;
;).L.Jb"C Iterator iterator() { ;).L.Jb“C Iterator iterator() {
return new Stacklterator(); return new lIterator {
/linner class public boolean hasNext() {...}
class Stacklterator implements Iterator{ }
}
public boolean hasNext(){...} }
}
}

Explain outer and inner classes?

Class Type Description Example +

Outer Package Top level class. Only type JVM /lpackage scope
class member class can recognize. class Outside{}
or interface
Inner static nested Defined within the context of the | //package scope
class class or top-level class. Must be static & class Outside {
interface can access static members of its static class Inside{ }

containing class. No relationship | }
between the instances of outside

and Inside classes. [Outside.class ,Outside$Inside.class|
Inner Member class Defined within the context of class Outside{
class outer class, but non-static. Until class Inside(){}

an object of Outside class has
been created you can’t create

Inside. [Outside.class , Outside$Inside.class]
Inner Local class Defined within a block of code. class Outside {
class Can use final local variables and void first() {

final method parameters. Only final inti=5;

visible within the block of code class Inside{}

that defines it.
}

[Outside.class , Outside1Inside.class|

50

Java - Fundamentals

Inner Anonymous Just like local class, but no /IAWT example
class class name is used. Useful when only | class Outside{
one instance is used in a void first() {
method. Most commonly used in button.addActionListener (new ActionListener()
AWT/SWING event model,
Spring framework hibernate call public void actionPerformed(ActionEvent e) {
back methods etc. System.out.printin(“The button was pressed!”);
»;
}
}
[Outside.class , Outside$1.class|

If you have used the Spring framework with the Hibernate framework (Both are very popular frameworks,
Refer section “Emerging Technologies/Frameworks”), it is likely that you would have used an anonymous inner
class (i.e. a class declared inside a method) as shown below:

//anonymous inner classes can only access local variables if they are declared as final
public Pet getPetById(final String id) {
return (Pet) getHibernateTemplate ().execute (new HibernateCallback() ({
public Object doInHibernate (Session session) {
HibernateTemplate ht = getHibernateTemplate () ;
// .. can access variable “id”
return myPet;

});

Q. Are the following valid java statements?
Line: OuterClass.StaticNestedClass nestedObject = new OuterClass.StaticNestedClass() ;
Yes. The above line is valid. It is an instantiation of a static nested inner class.

OuterClass outerObject = new OuterClass();
Line: OuterClass.InnerClass innerObject = outerObject.new InnerClass();

Yes. The above line is valid. It is an instantiation of a member inner class. An instance of an inner class can exist
only within an instance of an outer class. The sample code for the above is shown below:

public class OuterClass {
static class StaticNestedClass {
StaticNestedClass () {
System.out.println ("StaticNestedClass") ;
}
}

class InnerClass ({
InnerClass () {
System.out.println ("InnerClass") ;

}

Q 36:
A 36:

What is type casting? Explain up casting vs. down casting? When do you get ClassCastException? m
Type casting means treating a variable of one type as though it is another type.

When up casting primitives as shown below from left to right, automatic conversion occurs. But if you go from
right to left, down casting or explicit casting is required. Casting in Java is safer than in C or other languages that
allow arbitrary casting. Java only lets casts occur when they make sense, such as a cast between a float and an
int. However you can't cast between an int and a String (is an object in Java).

byte = short = int 2 long > float > double

int 1 = 5;
long j = i; //Right. Up casting or implicit casting
byte bl = i; //Wrong. Compile time error “Type Mismatch”.

byte b2 = (byte) i ; //Right. Down casting or explicit casting is required.

Java - Fundamentals 51

When it comes to object references you can always cast from a subclass to a superclass because a subclass
object is also a superclass object. You can cast an object implicitly to a super class type (i.e. upcasting). If this
were not the case polymorphism wouldn’t be possible.

/ Upcasting vs Downcasting \

Vehicle v1 = new Car(); /IRight.upcasting or implicit casting

Object Vehicle v2 = new Vehicle();
Carc0 =v1; //Wrong. compile time error "Type Mismatch".
Vehicle /IExplicit or down casting is required
Car c1 = (Car)v1; /I Right. down casting or explicit casting.
I I /I v1 has knowledge of Car due to line1
Bus Car Car c2 = (Car)vz; //Wrong. Runtime exception ClassCastException

/Iv2 has no knowledge of Car.
Bus b1 = new BMW(); //Wrong. compile time error "Type Mismatch"

BMW Car ¢3 = new BMW(); /IRight.upcasting or implicit casting
Car c4 = (BMW)v1; //Wrong. Runtime exception ClassCastException
Object o = v1; /Iv1 can only be upcast to its parent or
Car ¢5 = (Car)v1; /Iv1 can be down cast to Car due to line 1.

o /

You can cast down the hierarchy as well but you must explicitly write the cast and the object must be a
legitimate instance of the class you are casting to. The ClassCastException is thrown to indicate that code
has attempted to cast an object to a subclass of which it is not an instance. If you are using J2SE 5.0 then
“generics” will eliminate the need for casting (Refer Q55 in Java section) and otherwise you can deal with the
problem of incorrect casting in two ways:

= Use the exception handling mechanism to catch ClassCastException.

try{
Object o = new Integer(l);
System.out.println((String) o);

}

catch (ClassCastException cce) ({
logger.log(“Invalid casting, String is expected..Not an Integer”);
System.out.println(((Integer) o) .toString());

}

= Use the instanceof statement to guard against incorrect casting.

if (v2 instanceof Car) {
Car c2 = (Car) v2;
}

The “instanceof” and “typecast” constructs are shown for the illustration purpose only.
Using these constructs can be unmaintainable due to large if and elseif statements and can affect
performance if used in frequently accessed methods or loops. Look at using visitor design pattern to avoid
these constructs where applicable. (Refer Q11 in How would you go about section...).

Points-to-ponder: You can also get a ClassCastException when two different class loaders load the same class because they
are treated as two different classes.

Q 37:

A37:

What do you know about the Java garbage collector? When does the garbage collection occur? Explain different
types of references in Java? mh

Each time an object is created in Java, it goes into the area of memory known as heap. The Java heap is called
the garbage collectable heap. The garbage collection cannot be forced. The garbage collector runs in low
memory situations. When it runs, it releases the memory allocated by an unreachable object. The garbage
collector runs on a low priority daemon (i.e. background) thread. You can nicely ask the garbage collector to
collect garbage by calling System.gc() but you can’t force it.

52

What is an unreachable object?

An object’s life has no meaning unless something has reference to it. If you can’t reach it then you can’t ask it to
do anything. Then the object becomes unreachable and the garbage collector will figure it out. Java automatically
collects all the unreachable objects periodically and releases the memory consumed by those unreachable objects
to be used by the future reachable objects.

Java - Fundamentals

/

Garbage Collection & Unreachable Objects

Car a
Car b

a
b

N

Case 1

new Car();
new Car()

Case 2

a = new Car() }

Case 3

Case

null;
null;

)

®—ref b

®—refa

Heap

@——ref a‘>®

Car object

@ —refb
—=2

Car object

>

Car object

Car object

Car object

Q>

Car object

2>

Car object

Car object

reachable

unreachable

reachable

unreachable

reachable

unreachable

unreachab

We can use the following options with the Java command to enable tracing for garbage collection events.

java -verbose:gc

Explain types of references in Java? java.lang.ref package can be used to declare soft, weak and phantom

references.

Garbage Collector won’t remove a strong reference.

A soft reference will only get removed if memory is low. So it is useful for implementing caches while

avoiding memory leaks.

A weak reference will get removed on the next garbage collection cycle. Can be used for implementing
canonical maps. The java.util. WeakHashMap implements a HashMap with keys held by weak references.
A phantom reference will be finalized but the memory will not be reclaimed. Can be useful when you want to

be notified that an object is about to be collected.

//reports on each garbage collection event.

Java - Fundamentals 53

Q 38:

If you have a circular reference of objects, but you no longer reference it from an execution thread, will this object
be a potential candidate for garbage collection? m

A 38: Yes. Refer diagram below.

/ Garbage Collecting Circular References \

Before buildCar() returns After buildCar() returns

Stack Heap Stack Heap

Both the Car & Engine are not reachable
and potential candidate for Garbage

K Collection.

sample code

public void buildCar() {
Car ¢ = new Car();
Engine e = new Engine();
/llets create a circular reference
c.engine = ¢;
e.car =¢;

buildCar()

Q 39:

A 39:

Discuss the Java error handling mechanism? What is the difference between Runtime (unchecked) exceptions
and checked exceptions? What is the implication of catching all the exceptions with the type “Exception”?
e

Errors: When a dynamic linking failure or some other “hard” failure in the virtual machine occurs, the virtual
machine throws an Error. Typical Java programs should not catch Errors. In addition, it's unlikely that typical Java
programs will ever throw Errors either.

Exceptions: Most programs throw and catch objects that derive from the Exception class. Exceptions indicate
that a problem occurred but that the problem is not a serious JVM problem. An Exception class has many
subclasses. These descendants indicate various types of exceptions that can occur. For example,
NegativeArraySizeException indicates that a program attempted to create an array with a negative size. One
exception subclass has special meaning in the Java language: RuntimeException. All the exceptions except
RuntimeException are compiler checked exceptions. If a method is capable of throwing a checked exception it
must declare it in its method header or handle it in a try/catch block. Failure to do so raises a compiler error. So
checked exceptions can, at compile time, greatly reduce the occurrence of unhandled exceptions surfacing at
runtime in a given application at the expense of requiring large throws declarations and encouraging use of poorly-
constructed try/catch blocks. Checked exceptions are present in other languages like C++, C#, and Python.

ﬁhrowable and its subclassesx

Object

4'&

Throwable

ZAN

Error ‘
Exception

LinkageError

I0Exception RuntimeException

AN

NullPointerException

- —/

54

Java - Fundamentals

Runtime Exceptions (unchecked exception)

A RuntimeException class represents exceptions that occur within the Java virtual machine (during runtime). An
example of a runtime exception is NullPointerException. The cost of checking for the runtime exception often
outweighs the benefit of catching it. Attempting to catch or specify all of them all the time would make your code
unreadable and unmaintainable. The compiler allows runtime exceptions to go uncaught and unspecified. If you
like, you can catch these exceptions just like other exceptions. However, you do not have to declare it in your
“throws" clause or catch it in your catch clause. In addition, you can create your own RuntimeException
subclasses and this approach is probably preferred at times because checked exceptions can complicate method
signatures and can be difficult to follow.

Q. What are the exception handling best practices:

1. Q. Why is it not advisable to catch type “Exception”?

Exception handling in Java is polymorphic in nature. For example if you catch type Exception in your code then it
can catch or throw its descendent types like /OException as well. So if you catch the type Exception before the
type IOException then the type Exception block will catch the entire exceptions and type IOException block is
never reached. In order to catch the type /OException and handle it differently to type Exception, IOException
should be caught first (remember that you can’t have a bigger basket above a smaller basket).

/ Catching Exceptions \

Wrong approach

try{}
catch(Exception ex){ basket
/Ithis block is reached

}
catch(IOException ioe) { Hint: As shown in the diagram, think
//this block is never reached of catching an exception in a basket.

You should always have the smaller

/[There is a bigger basket

J/above me who will catch it basket above the bigger basket.
IIbefore | can. Otherwise the bigggr basket will
} catch all the exceptions and the

smaller basket will not catch any.

Right approach

tryl}

catch(IOException ioe){

catch(Exception ex) {

}

o /

The diagram above is an example for illustration only. In practice it is not recommended to catch type
“Exception”. We should only catch specific subtypes of the Exception class. Having a bigger basket (i.e.
Exception) will hide or cause problems. Since the RunTimeException is a subtype of Exception, catching the type
Exception will catch all the run time exceptions (like NullPointerException, ArraylndexOutOfBoundsException) as
well.

basket

The FileNotFoundException is extended (i.e. inherited) from the /OException. So (subclasses have to
be caught first) FileNotFoundException (small basket) should be caught before IOException (big basket).

2. Q. Why should you throw an exception early?

The exception stack trace helps you pinpoint where an exception occurred by showing you the exact sequence of
method calls that lead to the exception. By throwing your exception early, the exception becomes more accurate
and more specific. Avoid suppressing or ignoring exceptions. Also avoid using exceptions just to get a flow control.

Instead of:
// assume this line throws an exception because filename == null.
InputStream in = new FileInputStream (fileName) ;

Java - Fundamentals 55

Use the following code because you get a more accurate stack trace:

if (filename == null) {
throw new IllegalArgumentException(“file name is null”);
}

InputStream in = new FileInputStream(fileName) ;

3. Why should you catch a checked exception late in a catch {} block?

You should not try to catch the exception before your program can handle it in an appropriate manner. The natural
tendency when a compiler complains about a checked exception is to catch it so that the compiler stops reporting
errors. It is a bad practice to sweep the exceptions under the carpet by catching it and not doing anything with it.
The best practice is to catch the exception at the appropriate layer (e.g. an exception thrown at an integration layer
can be caught at a presentation layer in a catch {} block), where your program can either meaningfully recover
from the exception and continue to execute or log the exception only once in detail, so that user can identify the
cause of the exception.

4. Q. When should you use a checked exception and when should you use an unchecked exception?

Due to heavy use of checked exceptions and minimal use of unchecked exceptions, there has been a hot debate
in the Java community regarding true value of checked exceptions. Use checked exceptions when the client code
can take some useful recovery action based on information in exception. Use unchecked exception when client
code cannot do anything. Convert your SQLException into another checked exception if the client
code can recover from it. Convert your SQLException into an unchecked (i.e. RuntimeException) exception, if the
client code can not recover from it. (Note: Hibernate 3 & Spring uses RuntimeExceptions prevalently).

Important: throw an exception early and catch an exception late but do not sweep an exception under the carpet
by catching it and not doing anything with it. This will hide problems and it will be hard to debug and fix.

A note on key words for error handling:

throw / throws — used to pass an exception to the method that called it.

try — block of code will be tried but may cause an exception.

catch — declares the block of code, which handles the exception.

finally — block of code, which is always executed (except System.exit(0) call) no matter what program flow, occurs
when dealing with an exception.

assert — Evaluates a conditional expression to verify the programmer’s assumption.

Q 40:
A 40:

What is a user defined exception? @
User defined exceptions may be implemented by defining a new exception class by extending the Exception class.
public class MyException extends Exception {
/* class definition of constructors goes here */
public MyException () {
super () ;
}
public MyException (String errorMessage) {
super (errorMessage) ;

}
}

Throw and/or throws statement is used to signal the occurrence of an exception. To throw an exception:
throw new MyException(“I threw my own exception.”)

To declare an exception: public myMethod () throws MyException {..}

Q41:
A41:

What are the flow control statements in Java?

The flow control statements allow you to conditionally execute statements, to repeatedly execute a block of
statements, or to just change the sequential flow of control.

56 Java - Fundamentals

Flow control | Keyword

types
Looping while, do-while, for

The body of the while loop is executed only if the expression is true, so it may not be executed even
once:

while(i < 5){...}

The body of the do-while loop is executed at least once because the test expression is evaluated
only after executing the loop body. Also, don't forget the ending semicolon after the while
expression.

do { .. } while(i < 5);
The for loop syntax is:
for (exprl; expr2; expr3)
{ // body
}

expr1 > is for initialization, expr2 - is the conditional test, and expr3 - is the iteration expression.
Any of these three sections can be omitted and the syntax will still be legal:

for(; ;) {} // an endless loop
Decision if-else, switch-case
making
The if-else statement is used for decision-making -- that is, it decides which course of action needs
to be taken.
if (x == 5) {..} else {..}
The switch statement is also used for decision-making, based on an integer expression. The
argument passed to the switch and case statements should be int, short, char, or byte. The
argument passed to the case statement should be a literal or a final variable. If no case matches, the
default statement (which is optional) is executed.
int i = 1;
switch (i)
{
case 0:
System.out.println ("Zero") ;break; //if break; is omitted case 1: also executed
case 1:
System.out.println ("One") ;break; //if break; is omitted default: also executed
default:
System.out.println ("Default") ;break;
}
Branching break, continue, label:, return
The break statement is used to exit from a loop or switch statement, while the continue statement
is used to skip just the current iteration and continue with the next. The return is used to return from
a method based on a condition. The label statements can lead to unreadable and unmaintainable
spaghetti code hence should be avoided.
Exception try-catch-finally, throw
handling

Exceptions can be used to define ordinary flow control. This is a misuse of the idea of exceptions,
which are meant only for exceptional conditions and hence should be avoided.

Q 42: What is the difference between processes and threads? m

A 42: A process is an execution of a program but a thread is a single execution sequence within the process. A process
can contain multiple threads. A thread is sometimes called a lightweight process.

Java - Fundamentals 57

/ Process vs Threads \
@ocess (JVM) \
| Thread 2 | | Thread 3 |

Stack Stack Stack

Each thread has its
own stack memory

method1() method1() method1()

Single heap per process Heap

shared by all the threads

A JVM runs in a single process and threads in a JVM share the heap belonging to that process. That is why
several threads may access the same object. Threads share the heap and have their own stack space. This is
how one thread’s invocation of a method and its local variables are kept thread safe from other threads. But the
heap is not thread-safe and must be synchronized for thread safety.

Q 43: Explain different ways of creating a thread? [LF] [Z¥8
A 43: Threads can be used by either :

= Extending the Thread class
= Implementing the Runnable interface.

class Counter extends Thread {

//method where the thread execution will start
public void run() {
//logic to execute in a thread

}

//let’s see how to start the threads
public static void main(String[] args) {
Thread tl1 = new Counter() ;
Thread t2 = new Counter() ;
tl.start(); //start the first thread. This calls the run() method.
t2.start(); //this starts the 2™ thread. This calls the run() method.

}
class Counter extends Base implements Runnable {

//method where the thread execution will start
public void run () {
//logic to execute in a thread

}

//let us see how to start the threads
public static void main (String[] args) {
Thread tl = new Thread(new Counter());
Thread t2 = new Thread(new Counter()) ;
tl.start(); //start the first thread. This calls the run() method.
t2.start(); //this starts the 2" thread. This calls the run() method.

}

Q. Which one would you prefer and why? The Runnable interface is preferred, as it does not require your
object to inherit a thread because when you need multiple inheritance, only interfaces can help you. In the above
example we had to extend the Base class so implementing Runnable interface is an obvious choice. Also note
how the threads are started in each of the different cases as shown in the code sample. In an OO approach you

58 Java - Fundamentals
should only extend a class when you want to make it different from it's superclass, and change it's behavior. By
implementing a Runnable interface instead of extending the Thread class, you are telling to the user that the class
Counter that an object of type Counter will run as a thread.
Q 44: Briefly explain high-level thread states?
A 44: The state chart diagram below describes the thread states. (Refer Q107 in Enterprise section for state chart
diagram).
/ Thread states(StateMachine diagram) \
Object.notify(); .
Runnable Object.notifyAll(); Sleeping
Waiting
hread.sleep();
Scheduler swa PO
or Thread.yield();
Running data/sync
(finished) (executing) @ Blocked on I/O
or
Synchronized
\ another thread closes socket /
(Diagram sourced from: http://www.wilsonmar.com/1threads.htm)
= Runnable — waiting for its turn to be picked for execution by the thread scheduler based on thread priorities.
= Running: The processor is actively executing the thread code. It runs until it becomes blocked, or voluntarily
gives up its turn with this static method Thread.yield(). Because of context switching overhead, yield() should
not be used very frequently.
= Waiting: A thread is in a blocked state while it waits for some external processing such as file I/O to finish.
= Sleeping: Java threads are forcibly put to sleep (suspended) with this overloaded method:
Thread.sleep(milliseconds), Thread.sleep(milliseconds, nanoseconds);
= Blocked on I/0O: Will move to runnable after I/O condition like reading bytes of data etc changes.
= Blocked on synchronization: Will move to Runnable when a lock is acquired.
= Dead: The thread is finished working.
Q 45: What is_the difference between yield and sleeping? What is the difference between the methods sleep() and
wait()?
A 45: When a task invokes yield(), it changes from running state to runnable state. When a task invokes sleep(), it
changes from running state to waiting/sleeping state.
The method wait(1000), causes the current thread to sleep up to one second. A thread could sleep less than 1
second if it receives the notify() or notifyAll() method call. Refer Q48 in Java section on thread communication.
The call to sleep(1000) causes the current thread to sleep for exactly 1 second.
Q 46: How does thread synchronization occurs inside a monitor? What levels of synchronization can you apply? What is
the difference between synchronized method and synchronized block? FAQ
A 46: In Java programming, each object has a lock. A thread can acquire the lock for an object by using the

synchronized keyword. The synchronized keyword can be applied in method level (coarse grained lock — can
affect performance adversely) or block level of code (fine grained lock). Often using a lock on a method level is
too coarse. Why lock up a piece of code that does not access any shared resources by locking up an entire

Java - Fundamentals 59

method. Since each object has a lock, dummy objects can be created to implement block level synchronization.
The block level is more efficient because it does not lock the whole method.

class MethodLevel { class BlockLevel {
/Ishared among threads /Ishared among threads
SharedResource X, Y ; SharedResource X,y ;
//[dummy objects for locking
pubic void synchronized method1() { Object xLock = new Object(), yLock = new Object();
/Imultiple threads can't access
} pubic void method1() {
synchronized(xLock){
pubic void synchronized method2() { Ilaccess x here. thread safe
/Imultiple threads can't access }
) /ldo something here but don't use SharedResource x,y
public void method3() { /I because will not be thread-safe
//not synchronized
//Imultiple threads can access synchronized(xLock) {
} synchronized(yLock) {
} /laccess x,y here. thread safe
}
}

/Ido something here but don't use SharedResource X,y
/Ibecause will not be thread-safe
Ylend of method1

The JVM uses locks in conjunction with monitors. A monitor is basically a guardian who watches over a sequence
of synchronized code and making sure only one thread at a time executes a synchronized piece of code. Each
monitor is associated with an object reference. When a thread arrives at the first instruction in a block of code it
must obtain a lock on the referenced object. The thread is not allowed to execute the code until it obtains the lock.
Once it has obtained the lock, the thread enters the block of protected code. When the thread leaves the block, no
matter how it leaves the block, it releases the lock on the associated object.

Q. Why synchronization is important? Without synchronization, it is possible for one thread to modify a shared
object while another thread is in the process of using or updating that object’s value. This often causes dirty data
and leads to significant errors. The disadvantage of synchronization is that it can cause deadlocks when two
threads are waiting on each other to do something. Also synchronized code has the overhead of acquiring lock,
which can adversely affect the performance.

Q. What is a ThreadLocal class? ThreadlLocal is a handy class for simplifying development of thread-safe
concurrent programs by making the object stored in this class not sharable between threads. ThreadLocal class
encapsulates non-thread-safe classes to be safely used in a multi-threaded environment and also allows you to
create per-thread-singleton. |[For ThreadLocal examplei Refer Q15 (What is a Session?) in Emerging
Technologies/Frameworks section. Refer Q51 in Java section for singleton design pattern.

Q47:
AA4T:

What is a daemon thread?

Daemon threads are sometimes called "service" or “background” threads. These are threads that normally run at a
low priority and provide a basic service to a program when activity on a machine is reduced. An example of a
daemon thread that is continuously running is the garbage collector thread. The JVM exits whenever all non-
daemon threads have completed, which means that all daemon threads are automatically stopped. To make a
thread as a daemon thread in Java - myThread. setDaemon (true) ;

Q 48:

A 48:

How can threads communicate with each other? How would you implement a producer (one thread) and a
consumer (another thread) passing data (via stack)?

The wait(), notify(), and notifyAll() methods are used to provide an efficient way for threads to communicate with
each other. This communication solves the ‘consumer-producer problem’. This problem occurs when the
producer thread is completing work that the other thread (consumer thread) will use.

60 Java - Fundamentals

If you imagine an application in which one thread (the producer) writes data to a file while a second
thread (the consumer) reads data from the same file. In this example the concurrent threads share the same
resource file. Because these threads share the common resource file they should be synchronized. Also these
two threads should communicate with each other because the consumer thread, which reads the file, should wait
until the producer thread, which writes data to the file and notifies the consumer thread that it has completed its
writing operation.

Let's look at a sample code where count is a shared resource. The consumer thread will wait inside the
consume() method on the producer thread, until the producer thread increments the count inside the produce()
method and subsequently notifies the consumer thread. Once it has been notified, the consumer thread waiting
inside the consume() method will give up its waiting state and completes its method by consuming the count (i.e.
decrementing the count).

Thread communication (Consumer vs Producer threads)

Class ConsumerProducer {
private int count;

public synchronized void consume(){
while(count == 0) {
try {
wait()
}
catch(InterruptedException ie) {
//keep trying
}
}
count --; //consumed

}

private synchronized void produce(){
count+ +;

notify(); // notify the consumer that count has been incremented.

N _

For regular classes you can use the Observer interface and the Observable class to implement the
consumer/producer communications with a model/view/controller architecture. The Java programming language
provides support for the Model/View/Controller architecture with two classes:

e Observer -- any object that wishes to be notified when the state of another object changes.
e Observable -- any object whose state may be of interest, and in whom another object may register an interest.

They are suitable for any system wherein objects need to be automatically notified of changes that occur in other
objects. @ Your ConfigMgr class can be notified to reload resource properties on change to *.properties file(s).

Q. What does join() method do? t.join () allows the current thread to wait indefinitely until thread “t” is finished.
t.join (5000) allows the current thread to wait for thread “t” to finish but does not wait longer than 5 seconds.

try {
t.join(5000); //current thread waits for thread “t” to complete but does not wait more than 5 sec
if (t.isAlive ()) {
//timeout occurred. Thread “t” has not finished
}
else {
//thread “t” has finished
}
}

Java - Fundamentals 61

Q 49: If 2 different threads hit 2 different synchronized methods in an object at the same time will they both continue?
A 49: No. Only one method can acquire the lock.
/ Thread synchronization \
Thread1
run(){ Car1 object
carl.method2(); Lok mon 3 synchronized method1() {}
} - method1() js not bugy.==="""
“0620.\5bu - synchronized method2() {}
et
Thread2 2.No: method3() {}
Ot gt is not synchfo“‘zed
carl.method1 () &= K method30) 1S n
car2.method1();@—_| 4. Aways°"
carl.method3()@— | 3.
} () ok. Methodz() i not busy Car2 object
> synchronized method1()
Thread3
ron e Mo methad 10 s busy. = Sdpsynchronized method2()
car2.method2();\o&&F---—""""")
car2.method3(); 6.Always ok. method3() is not synchronized ———» method3() {}
_L J
If your job requires deeper understanding of threads then please refer to the following articles by Allen Holub at
http://www.javaworld.com. There are number of parts (part 1 — Part - 8) to the article entitted “Programming Java threads in
the real world”. URLs for some of the parts are: http://www.javaworld.com/javaworld/jw-09-1998/jw-09-threads.html,
http://www.javaworld.com/javaworld/jw-10-1998/jw-10-toolbox.html, etc.
Q 50: Explain threads blocking on 1/0?
A 50: Occasionally threads have to block on conditions other than object locks. 1/0 is the best example of this. Threads

block on I/O (i.e. enters the waiting state) so that other threads may execute while the I/O operation is performed.
When threads are blocked (say due to time consuming reads or writes) on an I/O call inside an object’s
synchronized method and also if the other methods of the object are also synchronized then the object is
essentially frozen while the thread is blocked.

Be sure to not synchronize code that makes blocking calls, or make sure that a non-synchronized method
exists on an object with synchronized blocking code. Although this technique requires some care to ensure that
the resulting code is still thread safe, it allows objects to be responsive to other threads when a thread holding its
locks is blocked.

Note: The java.nio.* package was introduced in JDK1.4. The coolest addition is non-blocking 1/0 (aka NIO that stands for New
1/0). Refer Q24 in Java section for NIO.

| Note: Q51 & Q52 in Java section are very popular questions on design patterns.

Q 51:
A 51:

What is a singleton pattern? How do you code it in Java? m m

A singleton is a class that can be instantiated only one time in a JVM per class loader. Repeated calls always
return the same instance. Ensures that a class has only one instance, and provide a global point of access. It
can be an issue if singleton class gets loaded by multiple class loaders or JVMs.

public class OnlyOne {
private static OnlyOne one = new OnlyOne () ;
// private constructor. This class cannot be instantiated from outside and
// prevents subclassing.
private OnlyOne () {}
public static OnlyOne getlInstance() {

return one;

}

62

Java - Fundamentals

To use it:

//No matter how many times you call, you get the same instance of the object.

OnlyOne myOne = OnlyOne.getInstance();

The constructor must be explicitly declared and should have the private access modifier, so that it cannot
be instantiated from out side the class. The only way to instantiate an instance of class OnlyOne is through the
getinstance() method with a public access modifier.

Q. When to use: Use it when only a single instance of an object is required in memory for a single point of
access. For example the following situations require a single point of access, which gets invoked from various
parts of the code.

] Accessing application specific properties through a singleton object, which reads them for the first time from
a properties file and subsequent accesses are returned from in-memory objects. Also there could be
another piece of code, which periodically synchronizes the in-memory properties when the values get
modified in the underlying properties file. This piece of code accesses the in-memory objects through the
singleton object (i.e. global point of access).

] Accessing in-memory object cache or object pool, or non-memory based resource pools like sockets,
connections etc through a singleton object (i.e. global point of access).

Q. What is the difference between a singleton class and a static class? Static class is one approach to make a class
singleton by declaring all the methods as static so that you can’t create any instance of that class and can call the static methods
directly.

Q 52:
A 52:

What is a factory pattern? m

A Factory method pattern (aka Factory pattern) is a creational pattern. The creational patterns abstract the
object instantiation process by hiding how the objects are created and make the system independent of the object
creation process. An Abstract factory pattern is one level of abstraction higher than a factory method pattern,
which means it returns the factory classes.

Factory method pattern (aka Factory pattern) Abstract factory pattern

Factory for what? Factory pattern returns one of the
several product subclasses. You should use a factory
pattern If you have a super class and a number of sub-
classes, and based on some data provided, you have to
return the object of one of the subclasses. Let’s look at
a sample code:

/ Factory pattern \
Factory Product hierachy
<<abstract>>
ShapeFactory Shape
+getShape(int shapeld)() +draw()
SimpleShapeFactory Circle Square
+getShape (int shapeld)()| [+draw() +draw()
T T 7N)
I e | |
I

public interface Const {
public static final int SHAPE_CIRCLE =1;
public static final int SHAPE_SQUARE =2;
public static final int SHAPE_HEXAGON =3;
}

An Abstract factory pattern is one level of abstraction higher than
a factory method pattern, which means the abstract factory
returns the appropriate factory classes, which will later on
return one of the product subclasses. Let's look at a sample code:

public class ComplexShapeFactory extends ShapeFactory {
throws BadShapeException {
public Shape getShape(int shapeTypeld){
Shape shape = null;
if(shapeTypeld == Const. SHAPE_HEXAGON) {
shape = new Hexagon();//complex shape

else throw new BadShapeException
(“shapeTypeld=" + shapeTypeld);
return shape;

}
}

Now let's look at the abstract factory, which returns one of the
types of ShapeFactory:

public class ShapeFactoryType
throws BadShapeFactoryException {

public static final int TYPE_SIMPLE = 1;
public static final int TYPE_COMPLEX = 2;

public ShapeFactory getShapeFactory(int type) {
ShapeFactory sf = null;

if(type == TYPE_SIMPLE) {

Java - Fundamentals

63

public class ShapeFactory {
public abstract Shape getShape(int shapeld);

}

public class SimpleShapeFactory extends
ShapeFactory throws BadShapeException {
public Shape getShape(int shapeTypeld){
Shape shape = null;
if(shapeTypeld == Const.SHAPE_CIRCLE) {
/lin future can reuse or cache objects.
shape = new Circle();

}

else if(shapeTypeld == Const. SHAPE_SQUARE) {
/lin future can reuse or cache objects
shape = new Square();

else throw new BadShapeException
(“ShapeTypeld="+ shapeTypeld);

return shape;
}
}

Now let's look at the calling code,
factory:

which uses the

ShapeFactory factory = new SimpleShapeFactory();

llIreturns a Shape but whether it is a Circle or a
lISquare is not known to the caller.

Shape s = factory.getShape(1);

s.draw(); // circle is drawn

llIreturns a Shape but whether it is a Circle or a
lISquare is not known to the caller.

sf = new SimpleShapeFactory();

}
else if (type == TYPE_COMPLEX) {
sf = new ComplexShapeFactory();

else throw new BadShapeFactoryException(“No factory!!”);

return sf;

}
}

Now let’s look at the calling code, which uses the factory:

ShapeFactoryType abFac = new ShapeFactoryType();
ShapeFactory factory = null;
Shape s = null;

lIreturns a ShapeFactory but whether it is a
lISimpleShapeFactory or a ComplexShapeFactory is not
llknown to the caller.

factory = abFac.getShapeFactory(1);//returns SimpleShapeFactory

lIreturns a Shape but whether it is a Circle or a Pentagon is
/Inot known to the caller.

s = factory.getShape(2); //returns square.
s.draw(); //draws a square

lIreturns a ShapeFactory but whether it is a
lISimpleShapeFactory or a ComplexShapeFactory is not
llknown to the caller.

factory = abFac.getShapeFactory(2);
lIreturns a Shape but whether it is a Circle or a Pentagon is
/Inot known to the caller.

s = factory.getShape(2);
s.draw(); //Square is drawn

s = factory.getShape(3); //returns a pentagon.
s.draw(); //draws a pentagon

Q. Why use factory pattern or abstract factory pattern? Factory pattern returns an instance of several (product
hierarchy) subclasses (like Circle, Square etc), but the calling code is unaware of the actual implementation class.
The calling code invokes the method on the interface for example Shape and using polymorphism the correct
draw() method gets invoked [Refer Q10 in Java section for polymorphism]. So, as you can see, the factory pattern
reduces the coupling or the dependencies between the calling code and called objects like Circle, Square etc. This
is a very powerful and common feature in many frameworks. You do not have to create a new Circle or a new
Square on each invocation as shown in the sample code, which is for the purpose of illustration and simplicity. In
future, to conserve memory you can decide to cache objects or reuse objects in your factory with no changes
required to your calling code. You can also load objects in your factory based on attribute(s) read from an external
properties file or some other condition. Another benefit going for the factory is that unlike calling constructors
directly, factory patterns have more meaningful names like getShape(...), getinstance(...) etc, which may make
calling code more clear.

Q. Can we use the singleton pattern within our factory pattern code? Yes. Another important aspect to
consider when writing your factory class is that, it does not make sense to create a new factory object for each
invocation as it is shown in the sample code, which is just fine for the illustration purpose.

ShapeFactory factory = new SimpleShapeFactory() ;

To overcome this, you can incorporate the singleton design pattern into your factory pattern code. The singleton
design pattern will create only a single instance of your SimpleShapeFactory class. Since an abstract factory
pattern is unlike factory pattern, where you need to have an instance for each of the two factories (i.e.
SimpleShapeFactory and ComplexShapeFactory) returned, you can still incorporate the singleton pattern as an
access point and have an instance of a HashMap, store your instances of both factories. Now your calling method
uses a static method to get the same instance of your factory, hence conserving memory and promoting object
reuse:

ShapeFactory factory =
factory.getShape () ;

ShapeFactory. getFactoryInstance();//returns a singleton

64 Java - Fundamentals

Note: Since questions on singleton pattern and factory pattern are commonly asked in the interviews, they are included as part
of this section. To learn more about design patterns refer Q11, Q12 in How would you go about section...?

Q 53: What is a socket? How do you facilitate inter process communication in Java?

A 53: A socket is a communication channel, which facilitates inter-process communication (For example
communicating between two JVMs, which may or may not be running on two different physical machines). A
socket is an endpoint for communication. There are two kinds of sockets, depending on whether one wishes to
use a connectionless or a connection-oriented protocol. The connectionless communication protocol of the
Internet is called UDP. The connection-oriented communication protocol of the Internet is called TCP. UDP
sockets are also called datagram sockets. Each socket is uniquely identified on the entire Internet with two
numbers. The first number is a 32-bit (IPV4 or 128-bit is IPV6) integer called the Internet Address (or IP address).
The second number is a 16-bit integer called the port of the socket. The IP address is the location of the machine,
which you are trying to connect to and the port number is the port on which the server you are trying to connect is
running. The port numbers 0 to 1023 are reserved for standard services such as e-mail, FTP, HTTP etc.

/ Sockets \

Sending Process(JVM) Receiving Process(JVM)
port: 6678 sockets IP address: 127.0.0.1
port: 6678
~
Operating System N Operating System

\ LNetwork communication /

The lifetime of the socket is made of 3 phases: Open Socket = Read and Write to Socket = Close Socket

To make a socket connection you need to know two things: An IP address and port on which to listen/connect. In
Java you can use the Socket (client side) and ServerSocket (Server side) classes.

Q 54: How will you call a Web server from a stand alone Java application/Swing client/Applet?
A 54: Using the java.net.URLConnection and its subclasses like HttpURLConnection and JarURLConnection.

URLConnection HttpClient (i.e. a browser)

Supports HEAD, GET, POST, PUT, DELETE, TRACE and Supports HEAD, GET, POST, PUT, DELETE, TRACE and
OPTIONS OPTIONS.

Does not support cookies. Does support cookies.

Can handle protocols other than http like ftp, gopher, mailto Handles only http.

and file.

public class TestServletWriter ({
public static void main(String[] args)throws Exception({

String host = "localhost"; //i.e 127.0.0.1
String protocol = "http"; //request/response paradigm
int port = 18080;
String strURL = protocol + "://" + host + ":" + port + "/myRootContext/myServlet";

java.net.URL servletURL = new java.net.URL (strURL) ;

java.net.URLConnection con = servletURL.openConnection() ;

con.setDoInput (true) ;

con.setDoOutput (true) ;

con.setUseCaches (false) ;
con.setRequestProperty ("Content-Type", "application/x-www-form-urlencoded") ;

// Write the arguments as post data
ObjectOutputStream out = new ObjectOutputStream(con.getOutputStream()) ;

out.writeObject ("Hello Servlet"); //write a serializable object to the servlet.
out.flush ()
out.close() ;

Java - Fundamentals 65

ObjectInputStream ois = new ObjectInputStream(con.getInputStream());//this line is a must
// even if you have nothing to read back from the web server because http is a
// request/response paradigm.

String msg = (String)ois.readObject();
System.out.println (msg) ;

}

Sun provides JSSE (Java Secure Socket Extension) as the technology to accomplish HTTPS over the Web.

This section would not be complete without discussing some of the exciting changes in the J2SE external version 5.0 and
the internal version 1.5.0 (“Tiger”) release.

Q 55: Explain some of the new features in J2SE 5.0, which improves ease of development? m

A 55: The J2SE 5.0 release is focused along the key areas of ease of development, scalability, performance, quality,
etc. The new features include generics, metadata (aka annotations), autoboxing and auto-unboxing of
primitive types, enhanced “for” loop, enumerated type, static import, C style formatted output, formatted
input, varargs, etc. The following code sample depicts some of these new features. Brief explanation follows the
sample code, so if you do not understand any part of the code, come back to it after reading the brief explanation.

package sample;

//static import
import static sample.SampleStaticValues.NUM ZERO;

import java.util.ArrayList;
import java.util.List;
import java.util.Scanner;
public class CombinedNewFeatures {
enum OddEven {odd,even} //use of enum keyword. An enum is a special classs.

public static void main(String[] args) {

//read from keyboard using the java.util.Scanner
Scanner keyboard = new Scanner (System.in);

System.out.println ("Enter your first number?");
int il = keyboard.nextInt () ;

System.out.println ("Enter your second number?");
int i2 = keyboard.nextInt () ;

//using generics for type safety
List<Integer> numlList = new ArrayList<Integer>();

//using auto-boxing to convert primitive int il,i2 to wrapper Integer object.
numList.add (il) ;

numList.add (i2) ;

//numList.add ("just to prove type safety");//won't compile! Requires an Integer to be added

//":" should be read as "foreach". So should read as, foreach "num" value in numList.
for (Integer num : numList) {

//using auto-unboxing feature to convert wrapper Integer object "num" to primitive.
if (num >= 9) {

// C style printf. System.out.printf(String arg0, Object ...argl).

// this feature is possible due to var-args feature.

System.out.printf ("num is: %$1s, list size: %2s \n", num, numList.size());

//"%" symbol means we are using the format specifier, "1" means first arg.

// Refer java.util.Formatter class API for the format specification details.

}

//need not do SampleStaticValues.NUM ZERO due to static import feature
if (num % 2 == NUM ZERO) {
System.out.println("The num " + num +

is: " + OddEven.even) ;

}
else {

66 Java - Fundamentals

System.out.println ("The num " + num + " is: " + OddEven.odd) ;

}
CombinedNewFeatures cnf = new CombinedNewFeatures() ;

//invoking methods using varargs
cnf.addNumbers (il) ;
cnf.addNumbers (il,i2) ;
cnf.addNumbers (il,i2,5) ;

}

//method using varargs
public void addNumbers (Object ...args) {
int sum = 0;
for (Object object : args) {
sum += (Integer)object;
}

System.out.println("sum is " + sum);

@SuppressWarnings ("deprecation") //metatag (annotation)
public static void end() {
Thread.currentThread () .stop(); //stop() is a deprecated method

}

package sample;

public class SampleStaticValues {
public static int NUM ZERO = 0;
public static int NUM ONE = O;

package sample;
public class ExtendedCombinedNewFeatures extends CombinedNewFeatures ({

@Override //metatag. If you spell the methodName incorrectly, you will get a compile error.
public void addNumbers (Object ...args) {
//overrides baseclass methods

}

@Override //metatag
public void addValues (Object ...args) { //compile error! must override a superclass method

e
}

Scanner API provide a more robust mechanism for reading in data types rather than simply parsing strings from buffered
System.in calls. Prior to Scanner feature was introduced, to read from standard input it would be necessary to write
exception handling code and wrap an InputStreamReader and a BufferedReader around System.in. Scanner class
throws an unchecked exception InputMismatchException, which you could optionally catch. Scanner API simplifies your
code as follows:

Scanner keyboard = new Scanner (System.in); //no more wrapping with InputStreamReader and
//BufferedReader around System.in
System.out.println ("Enter your first number?");

int il = keyboard.nextInt () ; //no more parsing strings e.g. new Integer ("5").intValue();
System.out.println ("Enter your second number?");
int i2 = keyboard.nextInt () ; //no more parsing strings e.g. new Integer (str).intValue();

Generics allow you to pass types as arguments to classes just like values are passed to methods as parameters.
Generics are mainly intended for Java Collections API. The J2SE 5.0 compiler will check the type for you. So, the error
detection has been moved to compile time as opposed to runtime and ClassCastException is not likely to be thrown. It is
used in a typsafe manner and you do not have to cast when taking values out of the list.

List<Integer> numlList = new ArrayList<Integer> () ; //used in a typesafe way.
//numlList.add ("just to prove type safety"); //won't compile! An Integer value is required.

//Error detection has been moved to compile time as opposed to Runtime.
for (Integer num : numList) { //you do not have to cast when you take values out of the list.

Java - Fundamentals 67

}

Auto boxing/unboxing makes a programmer’s life easier by not having to write manual code for conversion between
primitive types such as int, float etc and wrapper types Integer, Float etc. The J2SE 5.0 will automatically box and unbox
this for you. So this is a convenience feature and is not a performance booster.

//using auto-boxing to convert primitive int il,i2 to wrapper Integer object.
numList.add (il); // no more code like -> numList.add(new Integer (il)); autoboxed for you
numList.add(i2); // no more code like -> numList.add(new Integer (i2)); autoboxed for you

for (Integer num : numList) {

//using auto-unboxing feature to convert wrapper Integer object "num" to primitive.
if(num >= 9){ // no more code like if (num.intValue() >= 9) unboxed for you

printf method (C style) takes the arguments of a format string and varargs format specifiers. The varargs feature
allows you to have as many format specifiers as you want. Refer java.util. Formatter API for format details. The printf()
feature would not be possible if not for varargs feature, which will be discussed next.

// System.out.printf (String arg0, Object ...argl).this feature is possible due to var-args feature.
System.out.printf ("num is: %$1s, list size: %2s \n", num, numList.size());//format specifiers in bold
//"%" symbol means we are using the format specifier, "1" means first arg.

//Refer java.util.Formatter class API for the format specification details.

Varargs enables the compiler to assemble the array for you based on the argument list you pass to a method. The three
periods next to the parameter type (e.g. public void myMethod(Object ... args)) denotes varargs. The type must be Object
and it must be the last argument or the only argument to the method. You can also pass primitive values due to the new
Autoboxing feature.

//method using varargs

public void addNumbers (Object ...args){ //only argument to the method. .. means varargs
int sum = 0;
for (Object object : args) { // compiler converts to an object array > Object[] args

sum += (Integer)object;

}

System.out.println("sum is " + sum);

The above method can be called following ways:

//invoking methods using varargs

cnf.addNumbers (il) ; // one arg -> gets converted to Object[] args of size 1
cnf.addNumbers (11,12) ; // two arguments -> gets converted to Object[] args of size 2
cnf.addNumbers (i1,12,5) ; // three arguments -> gets converted to Object[] args of size 3

The printf() method would not be possible, if not for varargs feature.

// C style printf. System.out.printf(String arg0, Object ...argl).
// this feature is possible due to var-args feature.
System.out.printf ("num is: %1s, list size: %$2s \n", num, numlList.size()); // two arguments

Static imports let you avoid qualifying static members with class names. Once the static member is imported then you
can use it in your code without the class name prefix.

//static import
import static sample.SampleStaticValues.NUM ZERO;

//need not do SampleConstants.NUM ZERO due to static import feature
if (num % 2 == NUM ZERO) {
System.out.println ("The num " + num + " is: " + OddEven.even) ;

}
package sample;
public class SampleStaticValues {

public static int NUM ZERO = 0;
public static int NUM ONE = 0;

68 Java - Fundamentals

Enhanced for loop eliminates error-proneness of iterators and does not require any index variables. Also known as a
“foreach” loop.

//":" should be read as "foreach". So should read as, foreach "num" value in numList.
for (Integer num : numList) { // no index variables.

}

Enumerated types are type safe and force users of your class to use one of the acceptable values. Using static final
integer values are type-unsafe and can lead to subtle bugs in your code as shown below:

public class PartyNeeds {
public static final int PLATES
public static final int CUPS =

= l;
2;

For simplicity assume that PartyNeeds has 2 values 1 for plates and 2 for cups, but nothing is stoping the programmer
from assigning any other values like 3 or 4.

int partyItem = 3; //oops not a proper value as per class PartyNeeds but can happen and go
//unnoticed

Enum will solve the above problem and it is a special type of class.
enum OddEven {odd,even} //use of “enum” keyword. An “enum” is a special classs.

if (num % 2 == NUM ZERO) {

System.out.println ("The num " + num + " is: " + OddEven.even) ;
}
else {

System.out.println ("The num " + num + " is: " + OddEven.odd) ;

}

Metadata lets you avoid writing boilerplate code, by enabling tools to generate it from annotations provided by the coder.
This is a declarative style programming.

public class CombinedNewFeatures {

public void addNumbers (Object ...args) {
int sum = 0;
for (Object object : args) {
sum += (Integer)object;
}

System.out.println("sum is " + sum);

}

Now, the subclass of the above class with the @Override annotation can be written as shown below. If you misspell the
overridden method name, you will get a compile error. This will safeguard your method from not being called at runtime.
By adding the @Override metatag, the compiler complaints if you do not actually perform an override.

package sample;
public class ExtendedCombinedNewFeatures extends CombinedNewFeatures {
@Override //metatag. If you spell the methodName incorrectly, you will get a compile error.

public void addNumbers (Object ...args) {
//overrides baseclass methods

}

@Override //metatag

public void addValues (Object ...args) { //compile error! must override a superclass method
/..

}

Java - Swing 69

Java — Swing

Q 56: What is the difference between AWT and Swing?

A 56: Swing provides a richer set of components than AWT. They are 100% Java-based. There are a few other
advantages to Swing over AWT:

Swing provides both additional components like JTable, JTree etc and added functionality to AWT-replacement
components.

Swing components can change their appearance based on the current “look and feel” library that's being used.
Swing components follow the Model-View-Controller (MVC) paradigm, and thus can provide a much more
flexible UI.

Swing provides “extras” for components, such as: icons on many components, decorative borders for
components, tool tips for components etc.

Swing components are lightweight (less resource intensive than AWT).

Swing provides built-in double buffering (which means an off-screen buffer [image] is used during drawing
and then the resulting bits are copied onto the screen. The resulting image is smoother, less flicker and quicker
than drawing directly on the screen).

Swing provides paint debugging support for when you build your own component i.e.-slow motion rendering.

Swing also has a few disadvantages:

If you're not very careful when programming, it can be slower than AWT (all components are drawn).
Swing components that look like native components might not behave exactly like native components.

Q 57: How will you go about building a Swing GUI client?
A 57: The steps involved in building a Swing GUI are:

Firstly, you need a container like a Frame, a Window, or an Applet to display components like panels, buttons,
text areas etc. The job of a container is to hold and display components. A container is also a component
(note: uses a composite design pattern). A JPanel is a container as well.

import javax.swing.JFrame;
import javax.swing.JTextArea;

public class MyFrame extends JFrame {

public static void main (String[] args) {
JFrame frame = new JFrame ("Frame Title");
...// rest of the code to follow

Create some components such as panels, buttons, text areas etc.

//create a component to add to the frame
final JTextArea comp = new JTextAreal();
JButton btn = new JButton ("click");

Add your components to your display area and arrange or layout your components using the LayoutManagers.
You can use the standard layout managers like FlowLayout, BorderLayout, etc. Complex layouts can be
simplified by using nested containers for example having JPanels within JPanels and each JPanel can use its
own LayoutManager. You can create components and add them to whichever JPanels you like and JPanels
can be added to the JFrame’s content pane.

// Add the component to the frame's content pane;

// by default, the content pane has a border layout
frame.getContentPane () .add (comp, BorderLayout.CENTER) ;
frame.getContentPane () .add (btn, BorderLayout.SOUTH) ;

Attach listeners to your components. Interacting with a Component causes an Event to occur. To associate a
user action with a component, attach a listener to it. Components send events and listeners listen for events.

70

Java - Swing

Different components may send different events, and require different listeners. The listeners are interfaces,
not classes.

//Anonymous inner class registering a listener
// as well as performing the action logic.
btn.addActionListener (new ActionListener () ({
public void actionPerformed (ActionEvent ae) ({
comp.setText ("Button has been clicked");
}
}) i

e Show the frame.

// set the frame size and Show the frame
int width = 300;

int height = 300;

frame.setSize (width, height);
frame.setVisible (true) ;

For Applets, you need to write the necessary HTML code.

Q 58:
A 58:

Explain the Swing Action architecture? m

The Swing Action architecture is used to implement shared behavior between two or more user interface
components. For example, the menu items and the tool bar buttons will be performing the same action no matter
which one is clicked. Another distinct advantage of using actions is that when an action is disabled then all the
components, which use the Action, become disabled.

The javax.swing.Action interface extends the ActionListener interface and is an abstraction of a
command that does not have an explicit Ul component bound to it. The Action architecture is an implementation of
a command design pattern. This is a powerful design pattern because it allows the separation of controller logic
of an application from its visual representation. This allows the application to be easily configured to use different
Ul elements without having to re-write the control or call-back logic.

Defining action classes:

class FileAction extends AbstractAction {
//Constructor
FileAction (String name) {
super (name) ;

}

public void actionPerformed (ActionEvent ae) {
//add action logic here
}
}

To add an action to a menu bar:

JMenu fileMenu = new JMenu (“File”);

FileAction newAction = new FileAction (“New”) ;

JMenultem item = fileMenu.add (newAction) ;

item.setAccelarator (KeyStroke.getKeyStroke ('N’, Event.CTRL MASK));

To add action to a toolbar

private JToolBar toolbar = new JToolBar();
toolbar.add (newAction) ;

So, an action object is a listener as well as an action.

Q 59:
A 59:

How does Swing painting happen? How will you improve the painting performance?

If you want to create your own custom painting code or troubleshoot your Swing components, then you need to
understand the basic concept of Swing painting.

e Swing GUI painting starts with the highest component that needs to be repainted and works it way down the
hierarchy of components. This painting process is coordinated by the AWT painting system, but Swing repaint

Java - Swing 71

manager and double-buffering code, which means an off-screen buffer [image] is used during drawing and
then the resulting bits are copied onto the screen. The resulting image is smoother, less flicker and quicker
than drawing directly on the screen.

Swing components generally repaint themselves whenever necessary. For example when you invoke the
setTextt() on a component etc. This happens behind the scenes using a callback mechanism by invoking the
repaint() method. If a component’s size or position needs to change then the call to revalidate() method
precedes the call to repaint() method.

Like event handling code, painting code executes on the event-dispatching thread (Refer Q62 in Java
Section). So while an event is being handled, no painting will occur and similarly while painting is happening
no events will take place.

You can provide your own painting by overriding the paintComponent() method. This is one of 3 methods
used by JComponents to paint themselves.

public class MyFramePainting extends JFrame {
public static void main(String[] args) {
JFrame frame = new JFrame ("Frame Title");

MyPanel panel = new MyPanel () ;

panel.setOpaque (true) ; //if opaque (i.e. solid) then Swing painting system
//does not waste time painting behind the component.

panel.setBackground (Color.white) ;

panel.setLayout (new FlowLayout()) ;

...//add to contentPane, display logic etc
}
public class MyPanel extends JPanel implements MouseListener({
Color col = Color.blue;

public void paintComponent (Graphics gr) {
super.paintComponent (gr) ;

gr.setColor (col) ;
gr.drawlLine (5,5, 200,200);
}

public MyPanel () {
addMouseListener (this); //i.e the Panel itself
}

public void mouseClicked (MouseEvent ev) {
col = Color.red;
repaint(); //invokes paintComponent (). Never invoke paintComponent () method directly

}

...//other mouse events like onMousePressed etc

}

By default, the paintComponent() method paints the background if the component is opaque, then it performs
any custom painting. The other two methods are paintBorder(Graphics g) and paintChildren(Graphics g),
which tells to paint any border and paint any components contained by this component respectively. You
should not invoke or override these two methods.

Q. How will you improve the painting performance?

On components with complex output, the repaint() method should be invoked with arguments which define
only the clip rectangle that needs updating (rectangle origin is on top left corner). No paintXXXX()
methods (including paint() method) should not be explicitly invoked. Only repaint() method can be explicitly
invoked (which implicitly calls paintComponent() method) and only paintComponent() should be overridden if
required.

public void mouseClicked (MouseEvent ev) {

col = Color.red;
repaint(0,0,50,50); //invokes paintComponent with a rectangle. The origin is at top left.

72 Java - Swing

e You should never turn off double buffering for any Swing components.
e The Swing painting efficiency can be optimized by the following two properties:

opaque: If the opaque (i.e. solid) property is set to true with myComponent.setOpaque(true) then the Swing
painting system does not have to waste time trying to paint behind the component hence improves

performance.
/ Swing containment hierarchy using JPanels within JPanels and the painting process \
Top-level container paints itself
P p } JFrame ‘

. L . o l:| Opaque (solid)
First paints its solid grey background and then tells the JPanel to paint itself. If -
the content pane is not opaque then messy repaints will occur. \ Content pane ‘ Non-opaque

‘ l:| (transparent)

We could make a JPanel a content pane by setting setOpaque(true). This will ‘
remove unnecessary painting of the container content pane. JPanel - 1 (opaque)
(using say BorderLayout)

If JPanel is opaque (e.g. JPanel -2) , it paints its
background first & then the JPanel-2 asks its children
JButton 1 and JButton 2 to paint themselves.

If JPanel is non-opaque (e.g. JPanel 4), It looks up the
containment hierarchy to find the closest opaque ‘
component (i.e. JPanel - 1). The opaque container JPanel ‘

-1 paints itself first and then ask its children JPanel -4 and Jpanel - 2 (opaque) JPanel - 3 (opaque) JPag(;L—qt‘(;;on-
JLabel to paint themselves. (using say GridLayout) B(E?dsg:l?asy?)};t) (using say FlowLayout)

Opaque components like JButton 1, JButton 2 etc paint ‘
themselves when repaint() method is called.

Non-opaque components like JLabel, look up its hierarchy
to find the closest opaque component, which is Jpanel-1
(because JPanel - 4 is opaque as well). The JPanel -1

aints itself first and then ask its children JPanel - 4 and -
.’}Llabellto pairl1t themselves. I I ‘ ko ‘ ‘ <Litiiten 2 ‘ JTextField JLabel /

optimizedDrawingEnabled: This is a read only property (isOptimizedDrawingEnabled()) in JComponent, so
the only way components can change the default value is to subclass and override this method to return the
desired value. It's always possible that a non-ancestor component in the containment tree could overlap your
component. In such a case the repainting of a single component within a complex hierarchy could require a lot
of tree traversal to ensure 'correct' painting occurs.

true: The component indicates that none of its immediate children overlap.
false: The component makes no guarantees about whether or not its immediate children overlap

Q 60: If you add a component to the CENTER of a border layout, which directions will the component stretch? m
A 60: The component will stretch both horizontally and vertically. It will occupy the whole space in the middle.

Q 61: What is the base class for all Swing components?

A 61:
As you can see from the diagram below, containers collect components. Sometimes you want to
add a container to another container. So, a container should be a component. For example
container.getPreferredSize() invokes getPreferredSize() of all contained components. Composite design pattern
is used in GUI components to achieve this. A composite object is an object, which contains other objects.
Composite design pattern manipulates composite objects just like you manipulate individual components. Refer
Q11 in How would you go about...? section.

Java - Swing 73

/ Composite Design Pattern \

Component

-------- >

+operation1()

+operation2()
L /N / _I Composite
Leaf
+operation1() 1
+operation1() +operation2()
+operation2() +addComponent()
+removeComponent()

N /

All the Swing components start with ‘J’. The hierarchy diagram is shown below. JComponent is the base class.

Swing Hierarchy \

Component

JLabel

A

ainer JList

JComponent JMenuBar

Window
JOptionPane
JPanel
< JFrame > JDialog

Y

JScrollBar

A
Applet
A
JApplet
AbstractButton
k JToggleButton JButton JMenultem

(Diagram source: http://www.particle.kth.se/~fmi/kurs/PhysicsSimulation/Lectures/07A/swingDesign.html)

1

Q 62: Explain the Swing event dispatcher mechanism? FAQ

A 62: Swing components can be accessed by the Swing event dispatching thread. A few operations are guaranteed to
be thread-safe but most are not. Generally the Swing components should be accessed through this event-
dispatching thread. The event-dispatching thread is a thread that executes drawing of components and event-
handling code. For example the paint() and actionPerformed() methods are automatically executed in the event-
dispatching thread. Another way to execute code in the event-dispatching thread from outside event-handling or

74 Java - Swing
drawing code, is using SwingUtilities invokeLater() or invokeAndWait() method. Swing lengthy initialization
tasks (e.g. /O bound and computationally expensive tasks), should not occur in the event-dispatching
thread because this will hold up the dispatcher thread. If you need to create a new thread for example, to
handle a job that's computationally expensive or I/O bound then you can use the thread utility classes such as
SwingWorker or Timer without locking up the event-dispatching thread.
e SwingWorker — creates a background thread to execute time consuming operations.
e Timer — creates a thread that executes at certain intervals.
However after the lengthy initialization the GUI update should occur in the event dispatching thread, for thread
safety reasons. We can use invokelLater() to execute the GUI update in the event-dispatching thread. The other
scenario where invokeLater() will be useful is that the GUI must be updated as a result of non-AWT event.
Q 63: What do you understand by MVC as used in a JTable? FAQ
A 63: MVC stands for Model View Controller architecture. Swing “J” components (e.g. JTable, JList, JTree etc) use a
modified version of MVC. MVC separates a model (or data source) from a presentation and the logic that
manages it.
/ Swing MVC architecture (e.g. JTable) \
Component
(Eg: JTable):View & controller
Model ul
Eg: TableModel UlDelegate ~=-> Manager
for JTable look-and-feel
e Component (e.g. JTable, JTree, and JList): coordinates actions of model and the Ul delegate. Each generic
component class handles its own individual view-and-controller responsibilities.
e Model (e.g. TableModel): charged with storing the data.
¢ UlDelegate: responsible for getting the data from model and rendering it to screen. It delegates any look-and-
feel aspect of the component to the Ul Manager.
Q 64: Explain layout managers?
A 64: Layout managers are used for arranging GUI components in windows. The standard layout managers are:

e FlowLayout: Default layout for Applet and Panel. Lays out components from left to right, starting new rows if
necessary.

e BorderLayout: Default layout for Frame and Dialog. Lays out components in north, south, east, west and
center. All extra space is placed on the center.

e CardLayout: stack of same size components arranged inside each other. Only one is visible at any time. Used
in TABs.

e GridLayout: Makes a bunch of components equal in size and displays them in the requested number of rows
and columns.

e GridBagLayout: Most complicated but the most flexible. It aligns components by placing them within a grid of
cells, allowing some components to span more than one cell. The rows in the grid aren’t necessarily all the
same height, similarly, grid columns can have different widths as well.

Java - Swing 75

e BoxLayout: is a full-featured version of FlowLayout. It stacks the components on top of each other or places
them in a row.

Complex layouts can be simplified by using nested containers for example having panels within panels and each
panel can use its own LayoutManager. It is also possible to write your own layout manager or use manual
positioning of the GUI components. Note: Further reading on each LayoutManagers is recommended for Swing
developers.

The AWT containers like panels, dialog boxes, windows etc do not perform the actual laying out
of the components. They delegate the layout functionality to layout managers. The layout managers make use of
the strategy design pattern, which encapsulates family of algorithms for laying out components in the containers.
If a particular layout algorithm is required other than the default algorithm, an appropriate layout manager can be
instantiated and plugged into the container. For example, panels by default use the FlowLayout but it can be
changed by executing:

panel.setLayout (new GridLayout(4,5));

This enables the layout algorithms to vary independently from the containers that use them. This is one of the key
benefits of the strategy pattern.

Q 65:
A 65:

Explain the Swing delegation event model?

In this model, the objects that receive user events notify the registered listeners of the user activity. In most cases
the event receiver is a component.

e Event Types: ActionEvent, KeyEvent, MouseEvent, WindowEvent etc.
e Event Processors: JButton, JList etc.
o EventListeners: ActionListener, ComponentListener, KeyListener etc.

/ Swing Event Delegation Model \

EVENT

- distributed

EVENT PROCESSOR
N (eg JButton, JList etc)

registers

(eg ActionListener etc)

—
8
!‘g
N EVENT LISTENER «

76 Java - Applet

Java — Applet

Q 66: How will you initialize an applet?

A 66: By writing your initialization code in the applet’s init() method or applet’s constructor.
Q 67: What is the order of method invocation in an applet? m

A 67: The Applet's life cycle methods are as follows:

e public void init() : Initialization method called only once by the browser.

e public void start() : Method called after init() and contains code to start processing. If the user leaves the
page and returns without killing the current browser session, the start () method is called without being
preceded by init ().

e public void stop() : Stops all processing started by start (). Done if user moves off page.

e public void destroy() : Called if current browser session is being terminated. Frees all resources used by the
applet.

Q 68: How would you communicate between applets and servlets? m
A 68: We can use the java.net.URLConnection and java.net.URL classes to open a standard HTTP connection and

“tunnel” to a Web server. The server then passes this information to the servlet. Basically, the applet pretends to

be a Web browser, and the servlet doesn’t know the difference. As far as the servlet is concerned, the applet is

just another HTTP client. Applets can communicate with servlets using GET or POST methods.

The parameters can be passed between the applet and the servlet as name value pairs.

http://www.foo.com/servlet/TestServiet?LastName=Jones&FirstName=Joe).

Objects can also be passed between applet and servlet using object serialization. Objects are serialized to and

from the inputstream and outputstream of the connection respectively.

Q 69: How will you communicate between two Applets? m
A 69: All the applets on a given page share the same AppletContext. We obtain this applet context as follows:

AppletContext ac = getAppletContext () ;

AppletContext provides applets with methods such as getApplet(name), getApplets(), getAudioClip(url),

getimage(url), showDocument(url) and showStatus(status).

Q 70: What is a signed Applet? [LF|[SE] Z¥8
A 70: A signed Applet is a trusted Applet. By default, and for security reasons, Java applets are contained within a

“sandbox”. Refer to the diagram below:

This means that the applets can’t do anything, which might be construed as threatening to the user’'s machine
(e.g. reading, writing or deleting local files, putting up message windows, or querying various system parameters).
Early browsers had no provisions for Java applets to reach outside of the sandbox. Recent browsers, however
(Internet Explorer 4 on Windows etc), have provisions to give “trusted” applets the ability to work outside the
sandbox. For this power to be granted to one of your applets, the applet’s code must be digitally signed with your
unforgeable digital ID, and then the user must state that he trusts applets signed with your ID. The untrusted
applet can request to have privileges outside the sandbox but will have to request the user for privileges every
time it executes. But with the trusted applet the user can choose to remember their answer to the request, which
means they won'’t be asked again.

Java - Applet

\

Signed Applet

localcode RemoteCode

\ Signed unsigned

T

JYM
Sandbox
@O O
OQd:P

Valuable resources like files

etc

7

Q 71: What is the difference between an applet and an application? Can you use an applet as an application?

AT1:

Application

Applet
Applets don’t have a main method. They operate on life
cycle methods init(), start(), stop(), destroy() etc.

Has a static main() method.

Applets can be embedded in HTML pages and
downloaded over the Internet. Has a sandbox security
model.

Has no support for embedding or downloading. Has
no inherent security restriction.

Can only be executed within a Java compatible
container like browser, appletviewer etc.

Applications are executed at command line by java
tool.

Q. Can you use an applet as an application? Yes, by adding a main(String[] args) method to an applet.

Tech Tip #1:

-- If you want to create a new list (i.e. using java.util.List) of items from an array of objects, then it is more efficient and it is
a best practice to use Arrays.asList(...) method as opposed to executing in a loop and copying all elements of an array
one by one.

-- If you want to copy data from one array to another array then it is faster and it is a best practice to use
System.arraycopy(...) method as opposed to executing in a loop and copying all elements of an array one by one.

Q. Which of the following approaches would you prefer and why?

Approach-1
if (“Peter”.equals (name)) {
// ..
}
Approach-2
if (name.equals (“Peter”)) {
{ f oo

}

Approach-1 is preferred because the Approach-2 can throw a java.lang.NullPointerException if name is null.

78

Java — Performance and Memory issues

Java — Performance and Memory issues

Q. Give me an instance where you made a significant contribution in improving performance ?

There is a good chance that the position you are being interviewed for require someone with skills to identify performance
and/or memory issues and ability to optimize performance and solve memory issues. If you happen to be in an interview
with an organization facing serious issues with regards to their Java application relating to memory leaks, performance
problems or a crashing JVM etc then you are likely to be asked questions on these topics. You will find more questions
and answers relating to these key areas (i.e. performance and memory issues) in the Enterprise Java section and “How
would you go about...” sections. You could also demonstrate your skills in these key areas by reflecting back on your
past experiences as discussed in Q82 in Java section. Even though Q82 is a situational or behavioral question, you can
streamline your answer to demonstrate your technical strengths relating to these key areas as well as your behavioral
ability to cope with stress.

Q 72: How would you improve performance of a Java application? m

AT2:

Pool valuable system resources like threads, database connections, socket connections etc. Emphasize on
reuse of threads from a pool of threads. Creating new threads and discarding them after use can adversely
affect performance. Also consider using multi-threading in your single-threaded applications where possible to
enhance performance. Optimize the pool sizes based on system and application specifications and
requirements. Having too many threads in a pool also can result in performance and scalability problems
due to consumption of memory stacks (i.e. each thread has its own stack. Refer Q34, Q42 in Java section)
and CPU context switching (i.e. switching between threads as opposed to doing real computation.).

Minimize network overheads by retrieving several related items simultaneously in one remote invocation if
possible. Remote method invocations involve a network round-trip, marshaling and unmarshaling of
parameters, which can cause huge performance problems if the remote interface is poorly designed. (Refer
Q125 in Enterprise section).

Most applications need to retrieve data from and save/update data into one or more databases. Database calls
are remote calls over the network. In general data should be lazily loaded (i.e. load only when required as
opposed to pre-loading from the database with a view that it can be used later) from a database to conserve
memory but there are use cases (i.e. need to make several database calls) where eagerly loading data and
caching can improve performance by minimizing network trips to the database. Data can be eagerly loaded
with a help of SQL scripts with complex joins or stored procedures and cached using third party frameworks or
building your own framework. At this point your interviewer could intercept you and ask you some pertinent
questions relating to caching like:

Q: How would you refresh your cache?
A: You could say that one of the two following strategies can be used:

1. Timed cache strategy where the cache can be replenished periodically (i.e. every 30 minutes, every
hour etc). This is a simple strategy applicable when it is acceptable to show dirty data at times and also
the data in the database does not change very frequently.

2. Dirty check strategy where your application is the only one which can mutate (i.e. modify) the data in
the database. You can set a “isDirty” flag to true when the data is modified in the database through your
application and consequently your cache can be refreshed based on the “isDirty” flag.

Q: How would you refresh your cache if your database is shared by more than one application?
A: You could use one of the following strategies:

1. Database triggers: You could use database triggers to communicate between applications sharing the
same database and write pollers which polls the database periodically to determine when the cache
should be refreshed. (Refer Q102 in Enterprise section)

2. XML messaging (Refer Enterprise — JMS subsection in Enterprise section) to communicate between
other applications sharing the same database or separate databases to determine when the cache
should be refreshed.

Java — Performance and Memory issues 79

= Optimize your /0O operations: use buffering (Refer Q25 in Java section) when writing to and reading from
files and/or streams. Avoid writers/readers if you are dealing with only ASCII characters. You can use streams
instead, which are faster. Avoid premature flushing of buffers. Also make use of the performance and
scalability enhancing features such as non-blocking and asynchronous /O, mapping of file to memory etc
offered by the NIO (New 1/0).

= Establish whether you have a potential memory problem and manage your objects efficiently: remove
references to the short-lived objects from long-lived objects like Java collections etc (Refer Q73 in Java
section) to minimize any potential memory leaks. Also reuse objects where possible. It is cheaper to recycle
objects than creating new objects each time. Avoid creating extra objects unnecessarily. use
mutable StringBuffer/StringBuilder classes instead of immutable String objects in computation expensive loops
as discussed in Q21 in Java section and use static factory methods instead of constructors to recycle
immutable objects as discussed in Q16 in Java section. Automatic garbage collection is one of the most highly
touted conveniences of Java. However, it comes at a price. Creating and destroying objects occupies a
significant chunk of the JVM's time. Wherever possible, you should look for ways to minimize the number of
objects created in your code:

o For complex objects that are used frequently, consider creating a pool of recyclable objects rather than
always instantiating new objects. This adds additional burden on the programmer to manage the pool, but
in selected cases it can represent a significant performance gain. Use flyweight design pattern to create
a pool of shared objects. Flyweights are typically instantiated by a flyweight factory that creates a limited
number of flyweights based on some criteria. Invoking object does not directly instantiate flyweights. It
gets it from the flyweight factory, which checks to see if it has a flyweight that fits a specific criteria (e.g.
with or without GST etc) in the pool (e.g. HashMap). If the flyweight exists then return the reference to the
flyweight. If it does not exist, then instantiate one for the specific criteria and add it to the pool (e.g.
HashMap) and then return it to the invoking object.

o If repeating code within a loop, avoid creating new objects for each iteration. Create objects before
entering the loop (i.e. outside the loop) and reuse them if possible.

o Use lazy initialization when you want to distribute the load of creating large amounts of objects. Use lazy
initialization only when there is merit in the design.

= Where applicable apply the following performance tips in your code:

o Use ArrayLists, HashMap etc as opposed to Vector, Hashtable etc where possible. This is because the
methods in ArrayList, HashMap etc are not synchronized (Refer Q15 in Java Section). Even better is to
use just arrays where possible.

o Set the initial capacity of a collection (e.g. ArrayList, HashMap etc) and StringBuffer/StringBuilder
appropriately. This is because these classes must grow periodically to accommodate new elements. So,
if you have a very large ArrayList or a StringBuffer, and you know the size in advance then you can speed
things up by setting the initial size appropriately. (Refer Q17, Q21 in Java Section).

o Minimize the use of casting or runtime type checking like instanceof in frequently executed methods or
in loops. The “casting” and “instanceof’ checks for a class marked as final will be faster. Using
“instanceof” construct is not only ugly but also unmaintainable. Look at using visitor pattern (Refer Q11
in How would you go about...? section) to avoid “instanceof” constructs in frequently accessed methods.

o Do not compute constants inside a large loop. Compute them outside the loop. For applets compute it in
the init() method. Avoid nested loops (i.e. a “for” loop within another “for” loop etc) where applicable and
make use of a Collection class as discussed in “How can you code better without nested loops ?” --
Q17 in Java section.

o Exception creation can be expensive because it has to create the full stack trace. The stack trace is
obviously useful if you are planning to log or display the exception to the user. But if you are using your
exception to just control the flow, which is not recommended, then throw an exception, which is pre-
created. An efficient way to do this is to declare a public static final Exception in your exception class
itself.

o Avoid using System.out.printin and use logging frameworks like Log4J etc, which uses I/O buffers (Refer
Q25 in Java section).

o Minimize calls to Date, Calendar, etc related classes. [For example:

80

Java — Performance and Memory issues

//Inefficient code
public boolean isInYearCompanyWasEstablished (Date dateSupplied) {
Calendar cal = Calendar.getInstance();
cal.set (1998, Calendar.JAN, 01,0,0,0); //Should be read from a .proprerties file
Date yearStart = cal.getTime ()
cal.setTime (1998, Calendar.DECEMBER, 31,0,0,0);//Should be read from .properties.
Date yearEnd = cal.getTime () ;
return dateSupplied.compareTo (yearStart) >=0 &&
dateSupplied.compareTo (yearEnd) <= 0;

The above code is inefficient because every time this method is invoked 1 “Calendar” object and two
“Date” objects are unnecessarily created. If this method is invoked 50 times in your application then 50
“Calendar” objects and 100 “Date” objects are created. A more efficient code can be written as shown
below using a static initializer block:

llefficient code
private static final YEAR START;
private static final YEAR END;

static{
Calendar cal = Calendar.getInstance();
cal.set (1998, Calendar.JAN, 01,0,0,0); //Should be read from a .proprerties file
Date YEAR START = cal.getTime();
cal.setTime (1998, Calendar.DECEMBER, 31,0,0,0);//Should be read from .properties.
Date YEAR END = cal.getTime () ;

}
public boolean isInYearCompanyWasEstablished (Date dateSupplied) {

return dateSupplied.compareTo (YEAR START) >=0 &&
dateSupplied.compareTo (YEAR END) <= 0;

}

No matter, how many times you invoke the method isInYearCompanyWasEstablished(..), only 1
“Calendar” object 2 “Date” objects are created, since the static initializer block is executed only once
when the class is loaded into the JVM.

o Minimize JNI calls in your code.

Q. When in the development process should you consider performance issues?

Set performance requirements in the specifications, include a performance focus in the analysis and design and
also create a performance test environment.

Q. When designing your new code, what level of importance would you give to the following attributes?

-- Performance
-- Maintainability
-- Extendibility
-- Ease of use

-- Scalability

You should not compromise on architectural principles for just performance. You should make effort to write
architecturally sound programs as opposed to writing only fast programs. If your architecture is sound enough then
it would allow your program not only to scale better but also allows it to be optimized for performance if it is not fast
enough. If you write applications with poor architecture but performs well for the current requirements, what will
happen if the requirements grow and your architecture is not flexible enough to extend and creates a maintenance
nightmare where fixing a code in one area would break your code in another area. This will cause your application
to be re-written. So you should think about extendibility (i.e. ability to evolve with additional requirements),
maintainability, ease of use, performance and scalability (i.e. ability to run in multiple servers or machines) during
the design phase. List all possible design alternatives and pick the one which is conducive to sound design
architecturally (i.e. scalable, easy to use, maintain and extend) and will allow it to be optimized later if not fast
enough. You can build a vertical slice first to validate the above mentioned design attributes as discussed in Q82
in the Java section.

Java — Performance and Memory issues 81

Q. Rank the above attributes in order of importance?

There is no one correct answer for this question. [Hint] It can vary from application to application but typically if
you write 1 - extendable, 2 - maintainable and 3 — ease of use code with some high level performance
considerations, then it should allow you to optimize/tune for 4 - performance and 5 - scale. But if you write a code,
which only performs fast but not flexible enough to grow with the additional requirements, then you may end up re-
writing or carrying out a major revamp to your code. Refer SOA (Service Oriented Architecture) Q15 in How
would you go about... section.

Q 73: How would you detect and minimize memory leaks in Java? m
A 73: In Java, memory leaks are caused by poor program design where object references are long lived and the
garbage collector is unable to reclaim those objects.
Detecting memory leaks:
= Use tools like JProbe, Optimizelt etc to detect memory leaks.
= Use operating system process monitors like task manager on NT systems, ps, vmstat, iostat, netstat etc on
UNIX systems.
= Write your own utility class with the help of totalMemory() and freeMemory() methods in the Java Runtime
class. Place these calls in your code strategically for pre and post memory recording where you suspect to be
causing memory leaks. An even better approach than a utility class is using dynamic proxies (Refer Q11 in
How would you go about section...) or Aspect Oriented Programming (AOP) for pre and post memory
recording where you have the control of activating memory measurement only when needed. (Refer Q3 — Q5
in Emerging Technologies/Frameworks section).
Minimizing memory leaks:
In Java, typically memory leak occurs when an object of a longer lifecycle has a reference to objects of a short life cycle.
This prevents the objects with short life cycle being garbage collected. The developer must remember to remove the references
to the short-lived objects from the long-lived objects. Objects with the same life cycle do not cause any issues because the
garbage collector is smart enough to deal with the circular references (Refer Q38 in Java section).
= Design applications with an object'’s life cycle in mind, instead of relying on the clever features of the JVM.
Letting go of the object’s reference in one’s own class as soon as possible can mitigate memory problems.
myRef = null;
= Unreachable collection objects can magnify a memory leak problem. In Java it is easy to let go of an entire
collection by setting the root of the collection to null. The garbage collector will reclaim all the objects (unless
some objects are needed elsewhere).
= Use weak references (Refer Q37 in Java section) if you are the only one using it. The WeakHashMap is a
combination of HashMap and WeakReference. This class can be used for programming problems where you
need to have a HashMap of information, but you would like that information to be garbage collected if you are
the only one referencing it.
= Free native system resources like AWT frame, files, JNI etc when finished with them. Frame,
Dialog, and Graphics classes require that the method dispose() be called on them when they are no longer
used, to free up the system resources they reserve.
Q 74: Why does the JVM crash with a core dump or a Dr.Watson error? m
A 74: Any problem in pure Java code throws a Java exception or error. Java exceptions or errors will not cause a core

dump (on UNIX systems) or a Dr.Watson error (on WIN32systems). Any serious Java problem will result in an
OutOfMemoryError thrown by the JVM with the stack trace and consequently JVM will exit. These Java stack
traces are very useful for identifying the cause for an abnormal exit of the JVM. So is there a way to know that
OutOfMemoryError is about to occur? The Java J2SE 5.0 has a package called java.lang.management which
has useful JMX beans that we can use to manage the JVM. One of these beans is the MemoryMXBean.

An OutOfMemoryError can be thrown due to one of the following 4 reasons:

82

Java — Performance and Memory issues

JVM may have a memory leak due to a bug in its internal heap management implementation. But this is highly
unlikely because JVMs are well tested for this.

The application may not have enough heap memory allocated for its running. You can allocate more JVM
heap size (with —Xmx parameter to the JVM) or decrease the amount of memory your application takes to
overcome this. To increase the heap space:

java -Xms1024M -Xmx1024M

Care should be taken not to make the —Xmx value too large because it can slow down your application. The
secret is to make the maximum heap size value the right size.

Another not so prevalent cause is the running out of a memory area called the “perm” which sits next to the
heap. All the binary code of currently running classes is archived in the “perm” area. The ‘perm’ area is
important if your application or any of the third party jar files you use dynamically generate classes.
“perm” space is consumed when XSLT templates are dynamically compiled into classes, J2EE
application servers, JasperReports, JAXB etc use Java reflection to dynamically generate classes and/or
large amount of classes in your application. To increase perm space:

java -XX:PermSize=256M -XX:MaxPermSize=256M

The fourth and the most common reason is that you may have a memory leak in your application as
discussed in Q73 in Java section.

[Good read/reference: “Know your worst friend, the Garbage Collector” http://java.sys-
con.com/read/84695.htm by Romain Guy]

Q. So why does the JVM crash with a core dump or Dr.Watson error?

Both the core dump on UNIX operating system and Dr.Watson error on WIN32 systems mean the same thing. The
JVM is a process like any other and when a process crashes a core dump is created. A core dump is a memory
map of a running process. This can happen due to one of the following reasons:

Using JNI (Java Native Interface) code, which has a fatal bug in its native code. using Oracle OCI
drivers, which are written partially in native code or JDBC-ODBC bridge drivers, which are written in non Java
code. Using 100% pure Java drivers (communicates directly with the database instead of through client
software utilizing the JNI) instead of native drivers can solve this problem. We can use Oracle thin driver,
which is a 100% pure Java driver.

The operating system on which your JVM is running might require a patch or a service pack.

The JVM implementation you are using may have a bug in translating system resources like threads, file
handles, sockets etc from the platform neutral Java byte code into platform specific operations. If this JVM’s
translated native code performs an illegal operation then the operating system will instantly kill the
process and mostly will generate a core dump file, which is a hexadecimal file indicating program’s state
in memory at the time of error. The core dump files are generated by the operating system in response to
certain signals. Operating system signals are responsible for notifying certain events to its threads and
processes. The JVM can also intercept certain signals like SIGQUIT which is kill -3 < process id > from the
operating system and it responds to this signal by printing out a Java stack trace and then continue to run.
The JVM continues to run because the JVM has a special built-in debug routine, which will trap the signal -3.
On the other hand signals like SIGSTOP (kill -23 <process id>) and SIGKILL (kill -9 <process id>) will cause
the JVM process to stop or die. The following JVM argument will indicate JVM not to pause on SIGQUIT
signal from the operating system.

java —Xsgnopause

Java — Personal and Behavioral/Situational 83

Java — Personal and Behavioral/Situational

Q 75: Did you have to use any design patterns in your Java project? m

A 75: Yes. Refer Q12 [Strategy], Q16 [Iterator], Q24 [Decorator], Q36 [Visitor], Q51 [Singleton], Q52 [Factory],
Q58 [Command], Q61 [Composite], and Q63 [MVC-Model View Controller] in Java section and Q11, Q12 in
How would you go about... section for a detailed discussion on design patterns with class diagrams and
examples.

http://www.patterndepot.com/put/8/JavaPatterns.htm.

Why use design patterns, you may ask (Refer Q5 in Enterprise section). Design patterns are worthy of mention in
your CV and interviews. Design patterns have a number of advantages:

Capture design experience from the past.

Promote reuse without having to reinvent the wheel.
Define the system structure better.

Provide a common design vocabulary.

Some advice if you are just starting on your design pattern journey:

= If you are not familiar with UML, now is the time. UML is commonly used to describe patterns in pattern
catalogues, including class diagrams, sequence diagrams etc. (Refer Q106 - Q109 in Enterprise section).

= When using patterns, it is important to define a naming convention. It will be much easier to manage a project
as it grows to identify exactly what role an object plays with the help of a naming convention e.g.
AccountFacilityBusinessDelegate, AccountFacilityFactory, AccountFacilityValueObject, AccountDecorator,
AccountVisitor, AccountTransferObject (or AccountFacilityVO or AccountTO).

= Make a list of requirements that you will be addressing and then try to identify relevant patterns that are
applicable. You should not just apply a pattern for the sake of learning or applying a pattern because it could
become an anti-pattern.

IMPORTANT: Technical skills alone are not sufficient for you to perform well in your interviews and progress in your
career. Your technical skills must be complemented with business skills (i.e. knowledge/understanding of the business,
ability to communicate and interact effectively with the business users/customers, ability to look at things from the user’s
perspective as opposed to only technology perspective, ability to persuade/convince business with alternative solutions,
which can provide a win/win solution from users’ perspective as well as technology perspective), ability to communicate
effectively with your fellow developers, immediate and senior management, ability to work in a team as well as
independently, problem solving/analytical skills, organizational skills, ability to cope with difficult situations like stress due
to work load, deadlines etc and manage or deal with difficult people, being a good listener with the right attitude (It is
sometimes possible to have “I know it all attitude”, when you have strong technical skills. This can adversely affect your
ability to be a good listener, ability to look at things in a different perspective, ability to work well in a team and
consequently your progression in your career) etc. Some of these aspects are covered below and should be prepared for
prior to your job interview(s).

Q 76: Tell me about yourself or about some of the recent projects you have worked with? What do you consider your
most significant achievement? Why do you think you are qualified for this position? Why should we hire you and
what kind of contributions will you make? X&)

A 76: [Hint:] Pick your recent projects and enthusiastically brief on it. Interviewer will be looking for how passionate
you are about your past experience and achievements. Also is imperative that during your briefing, you
demonstrate on a high level(without getting too technical) how you applied your skills and knowledge in some of
the following key areas:

Design concepts and design patterns: How you understood and applied them.
Performance and memory issues: How you identified and fixed them.
Exception handling and best practices: How you understood and applied them.
Multi-threading and concurrent access: How you identified and fixed them.

84 Java — Personal and Behavioral/Situational
Some of the questions in this section can help you prepare your answers by relating them to your current or past
work experience. For example:
= Design Concepts: Refer Q7, Q8, Q9, Q10, Q11 etc
= Design Patterns: Refer Q12, Q16, Q24, Q36, Q51, Q52, Q58, Q61, and Q63 in Java section and Q11, Q12
in “How would you go about...?” section for a more detailed discussion.
= Performance issues: Refer Q25, Q72 etc
= Memory issues: Refer Q37, Q38, Q42, Q73, and Q74
= Exception Handling: Refer Q39, Q40 etc
= Multi-threading (Concurrency issues): Refer Q15, Q17, Q21, Q34, Q42 and Q46 etc
Demonstrating your knowledge in the above mentioned areas will improve your chances of being successful in
your Java/J2EE interviews. 90% of the interview questions are asked based on your own resume. So in my view it
is also very beneficial to mention how you demonstrated your knowledge/skills by stepping through a recent
project on your resume.
The two other areas, which | have not mentioned in this section, which are also very vital, are transactions and
security. These two areas will be covered in the next section, which is the Enterprise section (J2EE, JDBC, EJB,
JMS, SQL, XML etc).
Even if you have not applied these skills knowingly or you have not applied them at all, just demonstrating that you
have the knowledge and an appreciation will help you improve your chances in the interviews. Also mention any
long hours worked to meet the deadline, working under pressure, fixing important issues like performance issues,
running out of memory issues etc.
The job seekers should also ask questions to make an impression on the interviewer. Write out specific questions
you want to ask and then look for opportunities to ask them during the interview. For example:
= Do you have any performance or design related issues? = Succinctly demonstrate how you would go about
solving them or how you solved similar problems in your previous assignments.
= Do you follow any software development processes like agile methodology, XP, RUP etc? - Briefly
demonstrate your experience, understanding and/or familiarity with the development methodology of
relevance.
= Do you use any open source frameworks like Spring, Hibernate, Tapestry etc? Any build tools like Ant, Maven
etc, and testing tools like JUnit etc - briefly demonstrate your experience, understanding and/or familiarity
with the framework(s) of relevance.
Many interviewers end with a request to the applicant as to whether they have anything they wish to add. This is
an opportunity for you to end on a positive note by making succinct statements about why you are the best person
for the job by demonstrating your understanding of the key areas and how you applied them in your previous jobs.
Reflect back on your past jobs and pick two to five instances where you used your skills in the key areas
very successfully.
Q 77: Why are you leaving your current position? m
A 77: [Hint]
= Do not criticize your previous employer or co-workers or sound too opportunistic.
= |tis fine to mention a major problem like a buy out, budget constraints, merger or liquidation.
= You may also say that your chance to make a contribution is very low due to company wide changes or
looking for a more challenging senior or designer role.
Q 78: What do you like and/or dislike most about your current and/or last position? m
A 78: [Hint]

The interviewer is trying to find the compatibility with the open position. So
Do not say anything like:

= You dislike overtime.

Java — Personal and Behavioral/Situational 85

You dislike management or co-workers etc.
It is safe to say:

You like challenges.

Opportunity to grow into design, architecture, performance tuning etc

Opportunity to learn and/or mentor junior developers..

You dislike frustrating situations like identifying a memory leak problem or a complex transactional or a
concurrency issue. You want to get on top of it as soon as possible.

Q 79: How do you handle pressure? Do you like or dislike these situations? m
A 79: [Hint] These questions could mean that the open position is pressure-packed and may be out of control. Know
what you are getting into. If you do perform well under stress then give a descriptive example. High achievers tend
to perform well in pressure situations.
Q 80: What are your strengths and weaknesses? Can you describe a situation where you took initiative? Can you
describe a situation where you applied your problem solving skills? m
A 80: [Hint]
Strengths:
= Taking initiatives and being pro-active: You can illustrate how you took initiative to fix a transactional issue,
a performance problem or a memory leak problem.
= Design skills: You can illustrate how you designed a particular application using OO concepts.
= Problem solving skills: Explain how you will break a complex problem into more manageable sub-sections
and then apply brain storming and analytical skills to solve the complex problem. lllustrate how you went
about identifying a scalability issue or a memory leak problem.
= Communication skills: lllustrate that you can communicate effectively with all the team members, business
analysts, users, testers, stake holders etc.
= Ability to work in a team environment as well as independently: lllustrate that you are technically sound
to work independently as well as have the interpersonal skills to fit into any team environment.
= Hard working, honest, and conscientious etc are the adjectives to describe you.
Weaknesses:
Select a trait and come up with a solution to overcome your weakness. Stay away from personal qualities and
concentrate more on professional traits for example:
= | pride myself on being an attention to detail guy but sometimes miss small details. So | am working on
applying the 80/20 principle to manage time and details. Spend 80% of my effort and time on 20% of the
tasks, which are critical and important to the task at hand.
= Some times when there is a technical issue or a problem | tend to work continuously until | fix it without having
a break. But what | have noticed and am trying to practice is that taking a break away from the problem and
thinking outside the square will assist you in identifying the root cause of the problem sooner.
Q 81: What are your career goals? Where do you see yourself in 5-10 years? m
A 81: [Hint] Be realistic. For example

= Next 2-3 years to become a senior developer or a team lead.
= Next 3-5 years to become a solution designer or an architect.

Situational questions: The open-ended questions like last two questions are asked by interviewers to identify specific
characteristics like taking initiative, performance standards, accountability, adaptability, flexibility, sensitivity,
communication skills, ability to cope stress etc. These questions are known as behavioral or situational questions. This

86

Java — Personal and Behavioral/Situational

behavioral technique is used to evaluate a candidate’s future success from past behaviors. The answers to these
questions must describe in detail a particular situation like an event, a project or an experience and how you acted on that
situation and what the results were. Prepare your answers prior to the interview using the “Situation Action Result (SAR)”
approach and avoid fabricating or memorizing your answers. You should try to relate back to your past experiences at
your previous employments, community events, sporting events etc. Sample questions and answers are shown below:

Q 82:

A 82:

Give me an example of a time when you set a goal and were able to achieve it? Give me an example of a time you
showed initiatiative and took the lead? Tell me about a difficult decision you made in the last year? Give me an
example of a time you motivated others? Tell me about a most complex project you were involved in? [FX&

When you were working for the ZCC Software Technology Corporation, the overnight batch process
called the “Data Pacakager” was developed for a large fast food chain which has over 100 stores. This overnight
batch process is responsible for performing a very database intensive search and compute changes like cost of
ingredients, selling price, new menu item etc made in various retail stores and package those changes into XML
files and send those XML data to the respective stores where they get uploaded into their point of sale registers to
reflect the changes. This batch process had been used for the past two years, but since then the number of stores
had increased and so did the size of the data in the database. The batch process, which used to take 6-8 hours to
complete, had increased to 14-16 hours, which obviously started to adversely affect the daily operations of these
stores. The management assigned you with the task of improving the performance of the batch process to 5-6
hours (i.e. suppose to be an overnight process).

After having analyzed the existing design and code for the “Data Packager’, you had to take the
difficult decision to let the management know that this batch process needed to be re-designed and re-written as
opposed to modifying the existing code, since it was poorly designed. It is hard to extend, maintain (i.e. making a
change in one place can break the code some where else and so on) and had no object reuse through caching
(makes too many unnecessary network trips to the database) etc. The management was not too impressed with
this approach and concerned about the time required to rewrite this batch process since the management had
promised the retail stores to provide a solution within 8-12 weeks. You took the initiative and used your
persuasive skills to convince the management that you would be able to provide a re-designed and re-written
solution within the 8-12 weeks with the assistance of 2-3 additional developers and two testers. You were
entrusted with the task to rewrite the batch process and you set your goal to complete the task in 8 weeks. You
decided to build the software iteratively by building individual vertical slices as opposed to the big bang waterfall
approach [Refer subsection “Enterprise — Software development process” in Enterprise — Java section]. You
redesigned and wrote the code for a typical use case from end to end (i.e. full vertical slice) within 2 weeks and
subsequently carried out functional and integration testing to iron out any unforeseen errors or issues. Once the
first iteration is stable, you effectively communicated the architecture to the management and to your fellow
developers. Motivated and mentored your fellow developers to build the other iterations, based on the first
iteration. At the end of iteration, it was tested by the testers, while the developers moved on to the next iteration.

After having enthusiastically worked to your plan with hard work, dedication and teamwork, you were
able to have the 90% of the functionality completed in 9 weeks and spent the next 3 weeks fixing bugs, tuning
performance and coding rest of the functionality. The fully functional data packager was completed in 12 weeks
and took only 3-4 hours to package XML data for all the stores. The team was under pressure at times but you
made them believe that it is more of a challenge as opposed to think of it as a stressful situation. The newly
designed data packager was also easier to maintain and extend. The management was impressed with the
outcome and rewarded the team with an outstanding achievement award. The performance of the newly
developed data packager was further improved by 20% by tuning the database (i.e. partitioning the tables,
indexing etc).

Q 83:

A 83:

Describe a time when you were faced with a stressful situation that demonstrated your coping skills? Give me an
example of a time when you used your fact finding skills to solve a problem? Describe a time when you applied
your analytical and/or problem solving skills?

When you were working for the Surething insurance corporation pty Itd, you were responsible for the
migration of an online insurance application (i.e. external website) to a newer version of application server (i.e. the
current version is no longer supported by the vendor). The migration happened smoothly and after a couple of
days of going live, you started to experience “OutOfMemoryError”, which forced you to restart the application
server every day. This raised a red alert and the immediate and the senior management were very concerned and
consequently constantly calling for meetings and updates on the progress of identifying the root cause of this
issue. This has created a stressful situation.

Java — Personal and Behavioral/Situational 87

You were able to have a positive outlook by believing that this is more of a challenge as opposed to think
of it as a stressful situation. You needed to be composed to get your analytical and problem solving skills to get to
work. You spent some time finding facts relating to “OutOfMemoryError” (Refer Q74 in Java section). You were
tempted to increase the heap space as suggested by fellow developers but the profiling and monitoring did not
indicate that was the case. The memory usage drastically increased during and after certain user operations like
generating PDF reports. The generation of reports used some third party libraries, which dynamically generated
classes from your templates. So you decided to increase the area of the memory known as the “perm”, which sits
next to the heap. This “perm” space is consumed when the classes are dynamically generated from templates
during the report generation.

java -XX:PermSize=256M -XX:MaxPermSize=256M

After you have increased the “perm” size, the “OutOfMemoryError” has disappeared. You kept
monitoring it for a week and everything worked well. The management was impressed with your problem solving,
fact finding and analytical skills, which had contributed to the identification of the not so prevalent root cause and
the effective communication with the other teams like infrastructure, production support, senior management, etc.
The management also identified your ability to cope under stress and offered you a promotion to lead a small team
of 4 developers.

Q 84:

A 84:

Describe a time when you had to work with others in the organization to accomplish the organizational goals?
Describe a situation where others you worked on a project disagreed with your ideas, and what did you do?
Describe a situation in which you had to collect information by asking many questions of several people? What
has bee%)ur experience in giving presentations to small or large groups? How do you show considerations for
others? [ge

You were working for Wealth guard Pty Ltd financial services organization. You were part of a
development team responsible for enhancing an existing online web application, which enables investors and
advisors view and manage their financial portfolios. The websites of the financial services organizations are
periodically surveyed and rated by an independent organization for their ease of use, navigability, content, search
functionality etc. Your organization was ranked 21%' among 23 websites reviewed. Your chief information officer
was very disappointed with this poor rating and wanted the business analysts, business owners (i.e. within the
organization) and the technical staff to improve on the ratings before the next ratings, which would be done in 3
months.

The business analysts and the business owners quickly got into work and came up with a requirements
list of 35 items in consultation with the external business users such as advisors, investors etc. You were assigned
the task of working with the business analysts, business owners (i.e internal), and project managers to provide a
technical input in terms of feasibility study, time estimates, impact analysis etc. The business owners had a pre-
conceived notion of how they would like things done. You had to analyze the outcome from both the business
owners’ perspective and technology perspective. There were times you had to use your persuasive skills to
convince the business owners and analysts to take an alternative approach, which would provide a more robust
solution. You managed to convince the business owners and analysts by providing visual mock-up screen shots of
your proposed solution, presentation skills, ability to communicate without any technical jargons, and listening
carefully to business needs and discussing your ideas with your fellow developers (i.e. being a good listener,
respecting others’ views and having the right attitude even if you know that you are right). You also strongly
believe that good technical skills must be complemented with good interpersonal skills and the right attitude. After
2-3 weeks of constant interaction with the business owners, analysts and fellow developers, you had helped the
business users to finalize the list of requirements. You also took the initiative to apply the agile development
methodology to improve communication and cooperation between business owners and the developers.

You and your fellow developers were not only able to effectively communicate and collaborate with the
business users and analysts but also provided progressive feedback to each other due to iterative approach. The
team work and hard work had resulted in a much improved and more user friendly website, which consequently
improved its ratings from 21% to 13" within 3 months.

Refer Enterprise — Personal subsection in Enterprise section for more situational questions and answers|

Note: For Q75 — Q84 tailor your answers to the job. Also be prepared for the following questions, which ascertain how
you keep your knowledge up to date, what motivates you, your ability to take initiatives, be pro-active, eagerness to work
for the company, etc:

Q 85:

What was the last Java related technical book or article you read? m

88

A 85:

Java — Personal and Behavioral/Situational

Mastering EJB by Ed Roman.

EJB design patterns by Floyd Marinescu.
Bitter Java by Bruce Tate.

Thinking in Java by Bruce Eckel.
Effective Java by Joshua Bloch.

Q. What is your favorite technical book? Effective Java by Joshua Bloch

Q 86:
A 86:

Which Java related website(s) or resource(s) do you use to keep your knowledge up to date beyond Google? m

= http://www.theserverside.com, http://www.javaworld.com, http://www-136.ibm.com/developerworks/Java,
http://www.precisejava.com, http://www.allapplabs.com, http://java.sun.com, http://www.martinfowler.com,
http://www.ambysoft.com etc.

Q 87:
A 87:

What past accomplishments gave you satisfaction? What makes you want to work hard? m

= Material rewards such as salary, perks, benefits etc naturally come into play but focus on your
achievements or accomplishments than on rewards.

= Explain how you took pride in fixing a complex performance issue or a concurrency issue. You could
substantiate your answer with a past experience. while you were working for Bips telecom, you
pro-actively identified a performance issue due to database connection resource leak. You subsequently took
the initiative to notify your team leader and volunteered to fix it by adding finally {} blocks to close the
resources. [Discussed in the Enterprise Java section]

= |f you are being interviewed for a position, which requires your design skills then you could explain that in your
previous job with an insurance company you had to design and develop a sub-system, which gave you
complete satisfaction. You were responsible for designing the data model using entity relationship diagrams
(E-R diagrams) and the software model using the component diagrams, class diagrams, sequence diagrams
etc. [Discussed in the Enterprise Java section]

= |f you are being interviewed for a position where you have to learn new pieces of technology/framework like
dependency injection (e.g. Spring framework), component based web development frameworks like Tapestry,
JSF etc, object to relational mapping frameworks like hibernate etc then you can explain with examples from
your past experience where you were not only motivated to acquire new skills’lknowledge but also proved that
you are a quick and a pro-active learner. [Discussed in the Emerging Technologies/Frameworks section]

= |f the job you are being interviewed for requires production support from time to time, then you could explain
that it gives you satisfaction because you would like to interact with the business users and/or customers to
develop your business and communication skills by getting an opportunity to understand a system from the
users perspective and also gives you an opportunity to sharpen your technical and problem solving skills. If
you are a type of person who enjoys more development work then you can be honest about it and indicate that
you would like to have a balance between development work and support work, where you can develop
different aspects of your skills/lknowledge. You could also reflect an experience from a past job, where each
developer was assigned a weekly roster to provide support.

= You could say that, you generally would like to work hard but would like to work even harder when there are
challenges.

Q 88:
A 88:

Do you have any role models in software development?
= Scott W. Ambler, Martin Fowler, Ed Roman, Floyd Marinescu, Grady Booch etc.

= Gavin King (Hibernate persistence framework), Rod Johnson (Spring framework), Howard M. Lewis Ship
(Tapestry web framework and Hivemind framework), Dennis Sosnoski (JiBX XML binding framework) etc.

Q 89:

Why do you want to work for us? What motivates you? What demotivates you? What are you looking for in your
next job? What is your definition of an ideal job? \m (Research the company prior to the interview). Look at their
website. Know their product lines and their competitors. Learn about their achievements or strengths.

Java — Behaving right in an interview 89

Java — Behaving right in an interview

= Arrive 5-10 minutes before the interview. Never arrive too late or too early. If you are running late due to some
unavoidable situation, call ahead and make sure that the interviewers know your situation. Also, be apologetic for
arriving late due to unfortunate situation.

= First impressions are everything: Firm handshake, maintain eye contact, smile, watch your body language, be
pleasant, dress neatly and know the names of your interviewers and thank them by their names for the
opportunity.

= Try, not to show that you are nervous. Every body is nervous for interviews but try not to show it. [Hint: Just think that
even if you do not get the job, it is a good learning experience and you would do better in your next interview and
appreciate yourself for getting this far. You can always learn from your mistakes and do better at your next interview.]

= ltis good to be confident but do not make up your answer or try to bluff. If you put something in your resume then
better be prepared to back it up. Be honest to answer technical questions because you are not expected to remember
everything (for example, you might know a few design patterns but not all of them etc). If you have not used a design
pattern in question, request the interviewer, if you could describe a different design pattern. Also, try to provide brief
answers, which means not too long and not too short like yes or no. Give examples of times you performed that
particular task. If you would like to expand on your answer, ask the interviewer if you could elaborate or go on. Itis
okay to verify your answers every now and then but avoid verifying or validating your answers too often because
the interviewer might think that you lack self-confidence or you cannot work independently. But if you do not know the
answer to a particular question and keen to know the answer, you could politely request for an answer but should not
request for answers too often. If you think you could find the answer(s) readily on the internet then try to remember the
question and find the answer(s) soon after your interview.

* You should also ask questions to make an impression on the interviewer. Write out specific questions you want to
ask and then look for opportunities to ask them during the interview. Many interviewers end with a request to the
applicant as to whether they have anything they wish to add. This is an opportunity for you to end on a positive note
by making succinct statements about why you are the best person for the job.

= Try to be yourself. Have a good sense of humor, a smile and a positive outlook. Be friendly but you should not tell
the sagas of your personal life. If you cross your boundaries then the interviewer might feel that your personal life will
interfere with your work.

= Be confident. | have addressed many of the popular technical questions in this book and it should improve your
confidence. If you come across a question relating to a new piece of technology you have no experience with like
AOP (Aspect Oriented Programming) or loC (Inversion of Control) or a framework like Tapestry, then you can mention
that you have a very basic understanding and demonstrate that you are a quick leaner by reflecting back on your past
job where you had to quickly learn a new piece of a technology or a framework. Also, you can mention that you keep
a good rapport with a network of talented Java/J2EE developers or mentors to discuss any design alternatives or work
a rounds to a pressing problem.

= Unless asked, do not talk about money. Leave this topic until the interviewer brings it up or you can negotiate this
with your agent once you have been offered the position. At the interview you should try to sell or promote your
technical skills, business skills, ability to adapt to changes, and interpersonal skills. Prior to the interview find
out what skills are required by thoroughly reading the job description or talking to your agent for the specific job and
be prepared to promote those skills (Some times you would be asked why you are the best person for the job?).
You should come across as you are more keen on technical challenges, learning a new piece of technology,
improving your business skills etc as opposed to coming across as you are only interested in money.

= Speak clearly, firmly and with confidence but should not be aggressive and egoistical. You should act interested in
the company and the job and make all comments in a positive manner. Should not speak negatively about past
colleagues or employers. Should not excuse yourself halfway through the interview, even if you have to use the
bathroom. Should not ask for refreshments or coffee but accept it if offered.

= At the end of the interview, thank the interviewers by their names for their time with a firm handshake, maintain
eye contact and ask them about the next steps if not already mentioned to know where you are at the process and
show that you are interested.

90 Java — Behaving right in an interview

In short, arrive on time, be polite, firm hand with a smile and do not act superior, act interested and enthusiastic but not desperate, make
eye contact at all times, ask questions but should not over do it by talking too much, it is okay to be nervous but try not to show it and be
honest with your answers because you are not expected to know the answers for all the technical questions. Unless asked, do not talk
about money and find every opportunity to sell your technical, business and interpersonal skills without over doing it. Finish the interview
with a positive note by asking about the next steps if not already mentioned, a firm hand shake with a “thank you for the interviewer’s
time” with an eye contact and a smile.

General Tip #1:

= Try to find out the needs of the project in which you will be working and the needs of the people within the project.

. 80% of the interview questions are based on your own resume.

. Where possible briefly demonstrate how you applied your skills’/knowledge in the key areas [design concepts, transactional issues,
performance issues, memory leaks etc], business skills, and interpersonal skills as described in this book. Find the right time to
raise questions and answer those questions to show your strength.

= Be honest to answer technical questions, you are not expected to remember everything (for example you might know a few design
patterns but not all of them etc). If you have not used a design pattern in question, request the interviewer, if you could describe a
different design pattern.

= Do not be critical, focus on what you can do. Also try to be humorous to show your smartness.

= Do not act superior. [Technical skills must be complemented with good interpersonal skills]

General Tip #2:

Prepare a skills/knowledge matrix in your Resume. This is very useful for someone who gained wide range of skills/knowledge in a short
span by being a pro-active learner (e.g. extra reading, additional projects, outside work development projects etc).

Java1.3-5.0 18 months
Servlets / JSP 12 months
J2EE (EJB, JMS, JNDI etc) 12 months
XML, XSD, XSLT etc 6 months
Hibernate 6 months
OOA & 00D 12 months
UML 4 months
Design patterns 5 months
SQL 12 months

General Tip #3:

Unless you are applying for a position as a junior or a beginner developer, having your resume start with all the Java training and

certifications may lead to a misunderstanding that you are a beginner. Your first page should concentrate on your achievements and
skills summary (As in General Tip #2) to show that you are a skilled professional.

o Re-designed the data packager application for the XYZ Corporation, to make it more scalable, maintainable and extendable. [Shows
that you have design skills]

« Identified and fixed memory leak issues for the master lock application and consequently improved performance by 20% and further
improved performance by introducing multi-threading and other performance tuning strategies. Identified and fixed some
transactional issues for the Endeavor project, which is a web based e-commerce application. [Shows that you are a pro-active
developer with good understanding of multi-threading, transactional, performance and memory issues. Also shows that
you have worked on transactional and multi-threaded systems and have an eye for identifying potential failures.]

e Received an outstanding achievement award for my design and development work using Java/J2EE at the ABC Corporation.
Published an article entitled “Java Tips and Tricks”. [Shows that you take pride in your achievements]

e Mentored junior developers at JKL Corporation. [Shows that you are an experienced developer who would like to mentor
junior developers and you are not only a technology oriented person but also a people oriented person].

Reference your achievements and accomplishments with specific examples and/or relevant paperwork (but avoid overloading the hiring
manager with paperwork).

Java — Key Points 91

Java — Key Points

= Java is an object oriented (OO) language, which has built in support for multi-threading, socket communication,
automatic memory management (i.e. garbage collection) and also has better portability than other languages across
operating systems.

= Java class loaders are hierarchical and use a delegation model. The classes loaded by a child class loader have
visibility into classes loaded by its parents up the hierarchy but the reverse is not true.

= Java packages help resolve naming conflicts when different packages have classes with the same names. This also
helps you organize files within your project.

= Java does not support multiple implementation inheritance but supports multiple interface inheritance.
= Polymorphism, inheritance and encapsulation are the 3 pillar of an object-oriented language.

= Code reuse can be achieved through either inheritance (“is a” relationship) or object composition (“has a”
relationship). Favor object composition over inheritance.

= When using implementation inheritance, make sure that the subclasses depend only on the behavior of the
superclass, not the actual implementation. An abstract base class usually provides an implementation inheritance.

= Favor interface inheritance to implementation inheritance because it promotes the deign concept of coding to
interface and reduces coupling. The interface inheritance can achieve code reuse through object composition.

= Design by contract specifies the obligations of a calling-method and called-method to each other using pre-
conditions, post-conditions and class invariants.

= When using Java collections API, prefer using ArrayList or HashMap as opposed to Vector or Hashtable to avoid
any synchronization overhead. The ArrayList or HashMap can be externally synchronized for concurrent access by
multiple threads.

= Set the initial capacity of a collection appropriately and program in terms of interfaces as opposed to
implementations.

= The equals() - returns the results of running the equals() method of a user supplied class, which compares the
attribute values. The equals() method provides “deep comparison” by checking if two objects are logically equal as
opposed to the shallow comparison provided by the operator ==.

= The non-final methods equals(), hashCode(), toString(), clone(), and finalize() are defined in the Object class and
are primarily meant for extension. The equals() and hashCode() methods prove to be very important when objects
implementing these two methods are added to collections.

= If a class overrides the equals() method, it must implement the hashCode() method as well. If two objects are equal
as per the equals() method, then calling the hashCode() method in each of the two objects must return the same
hashCode integer result but the reverse is not true (i.e. If two objects have the same hashCode does not mean that
they are equal). If a field is not used in equals()method, then it must not be used in hashCode() method.

= When providing a user defined key class for storing objects in HashMap, you should override equals(), and
hashCode() methods from the Object class.

= Always override the toString() method, but you should override the clone() method very judiciously. The finalize()
method should only be used in rare instances as a safety net or to terminate non-critical native resources.

= String class is immutable and StringBuffer and StringBuilder classes are mutable. So it is more efficient to use a
StringBuffer or a StringBuilder as opposed to a String in a computation intensive situations (i.e. in for, while loops).

= Serialization is a process of writing an object to a file or a stream. Transient variables cannot be serialized.
= Java /O performance can be improved by using buffering, minimizing access to the underlying hard disk and

operating systems. Use the NIO package for performance enhancing features like non-blocking 1/0 operation, buffers
to hold data, and memory mapping of files.

92

Java — Key Points

Each time an object is created in Java it goes into the area of memory known as heap. The primitive variables are
allocated in the stack if they are local method variables and in the heap if they are class member variables.

Threads share the heap spaces so it is not thread-safe and the threads have their own stack space, which is
thread-safe.

The garbage collection cannot be forced, but you can nicely ask the garbage collector to collect garbage.

There two types of exceptions checked (i.e. compiler checked) and unchecked (Runtime Exceptions). It is not
advisable to catch type Exception.

A process is an execution of a program (e.g. JVM process) but a thread is a single execution sequence within the
process.

Threads can be created in Java by either extending the Thread class or implementing the Runnable interface.

In Java each object has a lock and a thread can acquire a lock by using the synchronized key word. The
synchronization key word can be applied in method level (coarse-grained lock) or block level (fine-grained lock
which offers better performance) of code.

Threads can communicate with each other using wait(), notify(), and notifyAll() methods. This communication
solves the consumer-producer problem. These are non-final methods defined in the Object class.

Sockets are communication channels, which facilitate inter-process communication.

The J2SE 5.0 release is focused along the key areas of ease of development, scalability, performance, quality, etc.
The new features include generics, metadata, autoboxing and auto-unboxing of primitive types, enhanced for
loop, enumerated type, static import, C style formatted output with printf(), formatted input with the Scanner
class, varargs, etc.

Swing uses the MVC paradigm to provide loose coupling and action architecture to implement a shared behavior
between two or more user interface components.

Complex layouts can be simplified by using nested containers for example having panels within panels and each
panel can use its own LayoutManager like FlowLayout, BorderLayout, GridLayout, BoxLayout, CardLayout etc.
The containers like panels, dialog boxes, windows etc do not perform the actual laying out of the components. They
delegate the layout functionality to layout managers. The layout managers make use of the strategy design pattern,
which encapsulates family of algorithms for laying out components in the containers.

The AWT containers like panels, dialog boxes, windows etc do not perform the actual laying out of the components.
They delegate the layout functionality to layout managers. The layout managers make use of the strategy design
pattern, which encapsulates family of algorithms for laying out components in the containers.

Swing components should be accessed through an event-dispatching thread. There is a way to access the Swing
event-dispatching thread from outside event-handling or drawing code, is using SwingUltilities’ invokeLater() and
invokeAndWait() methods.

Like event handling code, painting code executes on the event-dispatching thread. So while an event is being
handled, no painting will occur and similarly while painting is happening no events will take place.

The paint() method should not be explicitly invoked. Only repaint() method can be explicitly invoked (which implicitly
calls paintComponent() method) and only paintComponent() method should be overridden if required.

Swing uses a delegation event model, in which the objects that receive user events notify the registered listeners of
the user activity. In most cases the event receiver is a component.

A signed applet can become a trusted applet, which can work outside the sandbox.

In Java typically memory leak occurs when an object of longer life cycle has a reference to objects of a short life
cycle.

You can improve performance in Java by :

1. Pooling your valuable resources like threads, database and socket connections.

Java — Key Points 93

2. Optimizing your I/O operations.

3. Minimizing network overheads, calls to Date, Calendar related classes, use of “casting” or runtime type
checking like “instanceof” in frequently executed methods/loops, JNI calls, etc

4. Managing your objects efficiently by caching or recycling them without having to rely on garbage collection.

5. Using a StringBuffer as opposed to String and ArrayList or HashMap as oppose to Vector or Hashtable

6. Applying multi-threading where applicable.

7. Minimizing any potential memory leaks.

= Finally, very briefly familiarize yourself with some of the key design patterns like:

Decorator design pattern: used by Java I/O API. A popular design pattern.

Reactor design pattern/Observer design pattern: used by Java NIO API.

Visitor design pattern: can be used to avoid instanceof and typecast constructs.

Factory method/abstract factory design pattern: popular pattern, which gets frequently asked in interviews.
Singleton pattern: popular pattern, which gets frequently asked in interviews.

Composite design pattern: used by GUI components and also a popular design pattern

MVC design pattern/architecture: used by Swing components and also a popular pattern.

Command pattern: used by Swing action architecture and also a popular design pattern.

Strategy design pattern: A popular design pattern used by AWT layout managers.

©CONIORA®N =

Refer Q11 in “How would you go about...” section for a detailed discussion and code samples on GoF (Gang of Four)
design patterns.

Recommended reading:

= The famous Gang of Four book: Design Patterns, Eric Gamma, Richard Helm, Ralph Johnson, and John Vlissides
(Addiso-Wesley Publishing Co., 1995; ISBN: 0201633612).

= Effective Java Programming Language Guide — by Joshua Bloch

Tech Tip #2:

Always have the Java API handy and use the standard library to take advantage of the knowledge of the experts who
wrote it and the experience of those who have used it and tested it before you. Every developer should be familiar with
the following key libraries: java.lang and java.util are used very often and java.math and java.io are used less often.
The other libraries can be learned as and when required. If you have a specialized need then first look for a library and if
you cannot find one then you can implement your own. E.g.

/[To copy an array to another array:

String[] arrayl = {"a", "b", "c"};

String[] array2 = new String[2] ;
java.lang.System.arraycopy(arrayl,0,array2,0,2);

/[convert an array to a list
List list = java.util.Arrays.aslist (array2);
System.out.println(list);//prints [a, b]

/lconvert the list back to an array
String[] array3 = (String[])list.toArray(new String[0]) ;

Tech Tip #3:

The data types float and double are primarily designed for engineering and scientific calculations. They are not suited for
financial calculations of monetary values. Use BigDecimal instead. For non decimal values you could either use the
primitive values such as int, long etc or wrapper classes such as Integer, Long etc. If you are using hibernate
as your object to relational mapper and would like to map a monetary data field of “amount” with database data type
numeric (10,2) then prefer using BigDecimal as your object data type.

94 Enterprise Java

ISECTION TWQ

Enterprise Java — Interview questions & answers

= Specification Fundamentals [sF
= Design Concepts

» Design Patterns

= Concurrency Issues [c]
= Performance Issues
= Memory Issues mi

= Exception Handling [EH
= Transactional Issues i
= Security [sg

= Scalability Issues si

= Best Practices Br|

= Coding’

< m X

»wrmar

[€Xe] - Frequently Asked Questions

! Unlike other key areas, the is not always shown against the question but shown above the actual content of relevance within a
question.

Enterprise — J2EE Overview 95

Enterprise - J2EE Overview

Q 01: What is J2EE? What are J2EE components and services? [SF] [ZXe

A 01: J2EE (Java 2 Enterprise Edition) is an environment for developing and deploying enterprise applications. The
J2EE platform consists of J2EE components, services, Application Programming Interfaces (APIs) and protocols
that provide the functionality for developing multi-tiered and distributed Web based applications.

/ J2EE Physical Tiers , Containers, Components , Services & APIs \

Firewall Firewall

< >

Application Server Database Server
Client Tier Application Tier (Middle Tier) Data (EIS) Tier
(XHTML, s\;V:Il:r J2EE Application Server
XML [«HTTP(S)» .
(Browser) / Web Container \ ' JDBC
ﬁ < Tag RDBMS
HTML library
Applet «HTTP
prie) Servlets JSP «JavaMail‘>|:|
CSS =
é g | < § Q = Y
E 5 5 = S % S
«RMI—»{ |, 3@
Application

RvI/1ioP

eJMSﬁM?SSjgi 9

/ EJB Container \
Client Application

(stand alone Java «——RMI/IIOP 1«—IIOP—» Corba Server
program)

Session Beans Entity Beans Message Driven Beans

«—JNDI

Directo
Servic

RMINIIOP
JNDI
JTA
JDBC
JVS
JavalVail
JAF

[Other Services + APIs provided by server/container:

Security (SSL, ACL, JAAS,X.509)

transactions, threading, Resource pooling (Eg: Connection pooling) etc
Fault Tolerance, Load Balancing, clustering

Monitoting, Auditing, Logging etc
[more. e /

96

Enterprise — J2EE Overview

A J2EE component is a self-contained functional software unit that is assembled into a J2EE application with its
related classes and files and communicates with other components. The J2EE specification defines the following
J2EE components:

Component type Components Packaged as

Applet applets JAR (Java ARchive)

Application client Client side Java codes. JAR (Java ARchive)

Web component JSP, Servlet WAR (Web ARchive)

Enterprise JavaBeans Session beans, Entity beans, Message driven beans JAR (EJB Archive)

Enterprise application WAR, JAR, etc EAR (Enterprise ARchive)
Resource adapters Resource adapters RAR (Resource Adapter ARchive)

Q. So what is the difference between a component and a service?

A component is an application level software unit as shown in the table above. All the J2EE components depend
on the container for the system level support like transactions, security, pooling, life cycle management, threading
etc. A service is a component that can be used remotely through a remote interface either synchronously or
asynchronously (e.g. Web service, messaging system, sockets, RPC etc). A service is a step up from “distributed
objects”. A service is a function that has a clearly defined service contract (e.g. interface, XML contract) to their
consumers or clients, self contained and does not depend on the context or state of other services.

Q. What is a Service Oriented Architecture (SOA)?

SOA is an evolution of the fundamentals governing a component based development. Component based
development provides an opportunity for greater code reuse than what is possible with Object Oriented (OO)
development. SOA provides even greater code reuse by utilizing OO development, component based
development and also by identifying and organizing right services into a hierarchy of composite services. SOA
results in loosely coupled application components, in which code is not necessarily tied to a particular database.
SOAs are very popular and there is a huge demand exists for development and implementation of SOAs. Refer
Q14 in How would you go about...? section for a more detailed discussion on SOA and Web services.

Q. What are Web and EJB containers?

Containers (Web & EJB containers) are the interface between a J2EE component and the low level platform
specific functionality that supports J2EE components. Before a Web, enterprise bean (EJB), or application client
component can be executed, it must be assembled into a J2EE module (jar, war, and/or ear) and deployed into its
container.

Q. Why do you need a J2EE server? What services does a J2EE server provide?

A J2EE server provides system level support services such us security, transaction management, JNDI (Java
Naming and Directory Interface) lookups, remote access etc. J2EE architecture provides configurable and non-
configurable services. The configurable service enables the J2EE components within the same J2EE application
to behave differently based on where they are deployed. For example the security settings can be different for the
same J2EE application in two different production environments. The non-configurable services include enterprise
bean (EJB) and servlet life cycle management, resource pooling etc.

Server supports various protocols. Protocols are used for access to Internet services. J2EE platform supports
HTTP (HyperText Transfer Protocol), TCP/IP (Transmission Control Protocol / Internet Protocol), RMI (Remote
Method Invocation), SOAP (Simple Object Access Protocol) and SSL (Secured Socket Layer) protocol.

The J2EE API can be summarized as follows:

J2EE technology category API (Application Programming Interface)

Component model technology | Java Servlet, JavaServer Pages(JSP), Enterprise JavaBeans(EJB).

JAXP (Java API for XML Processing), JAXR (Java API for XML Registries), SAAJ (SOAP
Web Services technology with attachment API for Java), JAX-RPC (Java API for XML-based RPC), JAX-WS (Java
API for XML-based Web Services).

Enterprise — J2EE Overview 97

JDBC (Java DataBase Connectivity), JNDI (Java Naming and Directory Interface), JMS
Other (Java Messaging Service), JCA (J2EE Connector Architecture), JTA (Java Transaction
API), JavaMail, JAF (JavaBeans Activation Framework — used by JavaMail), JAAS (Java
Authentication and Authorization Service), JMX (Java Management eXtensions).

Q 02: Explain the J2EE 3-tier or n-tier architecture? [SF|[DC]| [ZX&
A 02: This is a very commonly asked question. Be prepared to draw some diagrams on the board. The J2EE platform is
a multi-tiered system. A tier is a logical or functional partitioning of a system.

2 — tier system 3 — tier system
/~ 2-Tier (Client/Server) /" 3Tier(orndier) O\
Client M/C 1 Client M/C 2 Client M/C 1 Client M/C 2
Userlinterface UserInterface Userlinterface Userlinterface
/display Logic /display Logic /display logic /display logic
Business Business
logic logic
Database Database
logic lngic Middle-tier server

Business Logic

Database Logic

Business Logic
Database logic . ‘
oo

N ~__
Database Database

When the developers are not disciplined, the | The advantages of the multi-tier architecture are:

display logic, business logic and database

logic are muddled up and/or duplicated ina 2- | = Forced separation of user interface logic and business logic.

tier client server system.] Business logic sits on small number of centralized machines (may be
just one).

] Easy to maintain, to manage, to scale, loosely coupled etc.

Each tier is assigned a unique responsibility in a 3-tier system. Each tier is logically separated and loosely coupled
from each other, and may be distributed.

Client tier represents Web browser, a Java or other application, Applet, WAP phone etc. The client tier makes
requests to the Web server who will be serving the request by either returning static content if it is present in the
Web server or forwards the request to either Servlet or JSP in the application server for either static or dynamic
content.

Presentation tier encapsulates the presentation logic required to serve clients. A Servlet or JSP in the
presentation tier intercepts client requests, manages logons, sessions, accesses the business services, and finally
constructs a response, which gets delivered to client.

Business tier provides the business services. This tier contains the business logic and the business data. All the
business logic is centralized into this tier as opposed to 2-tier systems where the business logic is scattered
between the front end and the backend. The benefit of having a centralized business tier is that same business
logic can support different types of clients like browser, WAP (Wireless Application Protocol) client, other stand-
alone applications written in Java, C++, C# etc.

Integration tier is responsible for communicating with external resources such as databases, legacy systems,
ERP systems, messaging systems like MQSeries etc. The components in this tier use JDBC, JMS, J2EE
Connector Architecture (JCA) and some proprietary middleware to access the resource tier.

Resource tier is the external resource such as a database, ERP system, Mainframe system etc responsible for
storing the data. This tier is also known as Data Tier or EIS (Enterprise Information System) Tier.

98 Enterprise — J2EE Overview

e J2EE Tiers N

High_ Level Logical or
Tiers Functional Tiers
Client Tier

Client Tier
Applets, HTML, WML, JavaScript,
Application Clients etc

Presentation Tier

=
= ! HTML, CSS, GIF Files etc
qoonoon L (static content)
pgoooooo
Web Server
B JSPs, Servlets, Tags etc \
= (dynamic content)

Business Tier

EJB, Java Classes, Business Objects etc

J2EE pettems 90l

Integration Tier

o
(| —
I L

Application Server

JMS, JDBC, Connectors(JCA), etc

Data Tier .
Resource Tier
@ @ :> Databases, ERP & CRM systems, Legacy
RDBMS Systems etc

o /

Note: On a high level J2EE can be construed as a 3-tier system consisting of Client Tier, Middle Tier (or
Application Tier) and Data Tier. But logically or functionally J2EE is a multi-tier (or n-tier) platform.

The advantages of a 3-tiered or n-tiered application: 3-tier or multi-tier architectures force separation among
presentation logic, business logic and database logic. Let us look at some of the key benefits:

= Manageability: Each tier can be monitored, tuned and upgraded independently and different people can have
clearly defined responsibilities.

Scalability: More hardware can be added and allows clustering (i.e. horizontal scaling).

Maintainability: Changes and upgrades can be performed without affecting other components.

Availability: Clustering and load balancing can provide availability.

Extensibility: Additional features can be easily added.

The following diagram gives you a bigger picture of the logical tiers and the components.

Browser (web client)

Enterprise — J2EE Overview

Logical/Functional Tiers and J2EE components

99

Application Server

]

Web container

EJB container

Servlet
(front controller)

Command
objects

BusinessDelegate

Business
Objects

nteract with legacy

systems

KN
£

OWOo« >0«

Z. JNDI lookup for EJB + |
communicate via serializable DTO

Data Transfer Objects (DTQO)

XML messages

. J
[e2
A
o ’\ % @ss% Y
. regpopse 9(/(/7 @%/f S \E_
. % .
%&b e
/7/6' «9%
0”’0 5
A
00/7 b, =]
%
B. Listens on a Topic or Queue for

Legacy
systems

Database
(RDBMS etc)

Message
Oriented
Middleware

(MOM)

(transfer information between tiers)

e >

_
[J]
N
D
1
A ——
LDAP
A. disparate application clients like C++ client, a legacy system Q
etc or a Java client communicates via XML messages g'
CLIENT = Resource
TIER Presentation Tier Business Tier gT; Tier
1 il 1T
Note: thin Note: Presentation Tier should Note: Business logic should be in this tier so that it can be
clients like only have web flow control, shared across by various clients like web applications,
web clients presentation & display logic. If Swing applications, wireless applications, stand alone
and thick GUI you have business logic in this Java, C++ applications etc.
clients like tier it can be used only by web
Swing, Applet, clients like an internet browser Note: Promotes code to interface not implementation. You code to interfaces
Stand alone or an applet, but not by other like JDBC, JMS, JCA etc. Even if the implementation changes e.g. you need to
Java, C++ clients like a Swing thick client, use a different database driver or use a different message oriented
applications Wireless (WAP) application, middleware(MOM), your existing code does not have to change. All you have
etc. Thick stand alone Java/C++ to do is change your database driver implementation library classes or the
clients will applications etc. So to avoid message oriented middleware implementation library classes.
have duplication of business logic,
presentation this tier should not have any Note: Represents data. Databases (access using JDBC), XML messages in Topics/
& Id'SP|ay business logic. Queues (access using JMS), and legacy systems (access using JCA) etc.
ogic.
Note: Steps 1-9 shows a web browser client that communicates via http protocol using the request/response paradigm.
Steps A-D shows asynchronous communication between heterogeneous & homogeneous applications (Java, C++ etc) using XML messages.
Step Z shows invocation of a business logic via session beans from a Swing/Java/EJB thick client by looking up the EJB via JNDI and exchange
information via serializable Data Transfer Objects (DTO). Step M,N shows that a Java application client or an Applet can interact with a Servlet using the
URLConnection (or HttpUrlConnection) classes and exchange information using serializable Data Transfer Objects (DTO).

Q 03: Explain MVC architecture relating to J2EE? FAQ
A 03: This is also a very popular interview question. MVC stands for Model-View-Controller architecture. It divides the
functionality of displaying and maintaining of the data to minimize the degree of coupling (i.e. promotes loose
coupling) between components. It is often used by applications that need the ability to maintain multiple views like
HTML, WML, Swing, XML based Web service etc of the same data. Multiple views and controllers can interface
with the same model. Even new types of views and controllers can interface with a model without forcing a change
in the model design.

100

Enterprise — J2EE Overview

e J2EE MVC (Model-View-Controller) N\

Model

(Entity/Session Beans (EJB),
Plain Java Classes)
Encapsulates business logic and

application state.

)
(éo
%¢
&
®
View) 4 Controller
(JSP, JavaBeans, Swing, UfsoirmAglti::c:(rilrfega: zﬂz?rlttelrgcg)a (Servlet etc)

Custom Tags, etc) : 9 > controls application behavior
Renders the model & has > Maps user actions to model.
only display logic. > selects view for response.
Sends user actions to the iew selection (eg: selecting the next | 3 usually one for each
controller JSP page to display as a response) functionality.

Allows controller to select a
view.
j Controller
<
0y 3
L.
% 4.forwary ’/%
N W
-
SV
= | Model = | 3. read/update
6. Response 59 EJB or Plain Java [+ data database
‘ class ‘ \—

Client Tier Middle Tier (Application Tier) Data Tier

Note: Typical MV C architecture is shown above. Variations are possible (e.g.: Model 1 vs. Model 2

\MVC) /

A model represents the core business logic and state. A model commonly maps to data in the database and will
also contain core business logic.

A view renders the contents of a model. A view accesses the data from the model and adds display logic to
present the data.

A controller acts as the glue between a model and a view. A controller translates interactions with the view into
actions to be performed by the model. User interactions in a Web application appear as GET and POST HTTP
requests. The actions performed by a model include activating business processes or changing the state of the
model. Based on the user interactions and the outcome of the model actions, the controller responds by selecting
an appropriate view.

Q 04:
A 04:

How to package a module, which is, shared by both the Web and the EJB modules? @

Package the modules shared by both Web and EJB modules as dependency jar files. Define the Class-Path:
property in the MANIFEST.MF file in the EJB jar and the Web war files to refer to the shared modules. [Refer Q7
in Enterprise section for diagram: J2EE deployment structure).

The MANIFEST.MF files in the EJB jar and Web war modules should look like:

Manifest-Version: 1.0
Created-By: Apache Ant 1.5
Class-Path: myAppsUtil.jar

Enterprise — J2EE Overview 101

Q 05: Why use design patterns in a J2EE application?
A 05:
= They have been proven. Patterns reflect the experience and knowledge of developers who have successfully
used these patterns in their own work. It lets you leverage the collective experience of the development
community.
Session facade and value object patterns evolved from performance problems experienced due to
multiple network calls to the EJB tier from the Web tier. Fast lane reader and Data Access Object patterns exist
for improving database access performance. The flyweight pattern improves application performance through
object reuse (which minimizes the overhead such as memory allocation, garbage collection etc).
= They provide common vocabulary. Patterns provide software designers with a common vocabulary. |deas
can be conveyed to developers using this common vocabulary and format.
Should we use a Data Access Object (DAO)? How about using a Business Delegate? Should we
use Value Objects to reduce network overhead? Etc.
If you are applying for a senior developer or an architect level role, you should at least know the more common
design patterns like:
-- Factory - Q52 in Java section, Q11 in How would you go about... section.
-- Singleton - @51 in Java section, Q11 in How would you go about... section.
-- Proxy - Q52, Q62 in Enterprise Java section, Q11 in How would you go about... section.
-- Command - Q58 in Java section, Q27, Q110, Q116 in Enterprise Java section, Q11 in How would you go about... section.
-- Template method - Q110, Q116 in Enterprise Java section, Q11 in How would you go about... section.
-- Decorator - Q24 in Java section, Q11 in How would you go about... section.
-- Strategy - Q64 in Java section, Q11 in How would you go about... section.
-- Adapter - Q110, Q116 in Enterprise Java section, Q11 in How would you go about... section.
-- Fagade - Q84 in Enterprise Java section, Q11, Q12, Q15 (i.e. in SOA) in How would you go about... section.
-- Business delegate — Q83 in Enterprise Java section.
-- MVC - Q63 in Java section, Q3, Q27 in Enterprise Java sections.
-- DAO - Q41 in Enterprise Java section.
Q 06: What is the difference between a Web server and an application server? @
A 06:
~Web Server __Application Server B

Supports HTTP protocol. When the Web server receives | Exposes business logic and dynamic content to the client

an HTTP request, it responds with an HTTP response, through various protocols such as HTTP, TCP/IP, 1IOP, JRMP etc.

such as sending back an HTML page (static content) or

delegates the dynamic response generation to some

other program such as CGl scripts or Servlets or JSPs in

the application server.

Uses various scalability and fault-tolerance techniques. Uses various scalability and fault-tolerance techniques. In addition
provides resource pooling, component life cycle management,
transaction management, messaging, security etc.

Provides services for components like Web container for servlet
components and EJB container for EJB components.

Q 07: What are ear, war and jar files? What are J2EE Deployment Descriptors? [SF] X8

A 07: The ear, war and jar are standard application deployment archive files. Since they are a standard, any application

server (at least in theory) will know how to unpack and deploy them.

An EAR file is a standard JAR file with an “.ear” extension, named from Enterprise ARchive file. A J2EE
application with all of its modules is delivered in EAR file. JAR files can’'t have other JAR files. But EAR and WAR
(Web ARchive) files can have JAR files.

An EAR file contains all the JARs and WARSs belonging to an application. JAR files contain the EJB classes and
WAR files contain the Web components (JSPs, Servlets and static content like HTML, CSS, GIF etc). The J2EE
application client's class files are also stored in a JAR file. EARs, JARs, and WARSs all contain one or more XML-
based deployment descriptor(s).

102

Enterprise — J2EE Overview

Deployment Descriptors

A deployment descriptor is an XML based text file with an “.xml” extension that describes a component's
deployment settings. A J2EE application and each of its modules has its own deployment descriptor. Pay attention
to elements marked in bold in the sample deployment descriptor files shown below.

K J2EE deployment structure (ear, war, jar) \
MyApps.ear
MANIFEST.MF
Manifest-Version: 1.0
Craeted-By: Apache Ant

META-INF

application.xml
deployment descriptor

4| |Og4j jar 3rd party Jars | class files, properties files,configuration files etc >

| | MyAppsCommon.jar , MyAppsUtil.jar |ass fil ties fil fi tion files et
(shared by both EJB and Web mOduIeS) \\ class tiles, properties tiles,conftiguration riles etc >

| MyAppsEJB.jar

MANIFEST.MF
class-path: log4j.jar MyAppsCommon.jar MyAppsUtil.jar
META-INF
(ejb-jar.xml)

> deployment descriptor

ejb classes , non-ejb class etc

MyAppsWeb.war

JSP, HTML, CSS, GIF (can have

public sub-folders)
directory
(document MANIFEST.MF
root) \\class-path: log4j.jar MyAppsCommon.jar MyAppsUtil.jar

META-INF

web.xml
WEB-INF K deployment descriptor

Zriva:e ﬂ struts.jar, crimson.jar
Irectory L 3rd party jar files

- /

= application.xml: is a standard J2EE deployment descriptor, which includes the following structural
information: EJB jar modules, Web war modules, <security-role> etc. Also since EJB jar modules are
packaged as jars the same way dependency libraries like log4j.jar, MyAppsUtil.jar etc are packaged. The
application.xml descriptor will distinguish between these two types of jar files by explicitly specifying the EJB
jar modules.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE application PUBLIC "-//Sun Microsystems, Inc.//DTD J2EE Application 1.2//EN"
"http://java.sun.com/j2ee/dtds/application 1 2.dtd">

<application id="Application ID">

<display-name>MyApps</display-name>

<module id="EjbModule 1">

<ejb>MyAppsEJB.jar</ejb>
</module>

<module id="WebModule 1">
<web>
<web-uri>MyAppsWeb.war</web-uri>

Enterprise — J2EE Overview 103

<context-root>myAppsWeb</context-root>
</web>
</module>

<security-role id="SecurityRole 1">
<description>Management position</description>
<role-name>manager</role-name>
</security-role>
</application>

= ejb-jar.xml: is a standard deployment descriptor for an EJB module.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans 1.1//EN"
"http://java.sun.com/j2ee/dtds/ejb-jar 1 1.dtd">
<ejb-jar id="ejb-jar ID">
<display-name>MyAppsEJB</display-name>

<enterprise-beans>

<session id="ContentService">
<ejb-name>ContentService</ejb-name>
<home>ejb.ContentServiceHome</home>
<remote>ejb.ContentService</remote>

<ejb-class>ejb.ContentServiceBean</ejb-class>

<session-type>Stateless</session-type>
<transaction-type>Bean</transaction-type>

</session>

<entity>
<ejb-name>Bid</ejb-name>
<home>ejb.BidHome</home>
<remote>ejb.Bid</remote>
<ejb-class>ejb.BidBean</ejb-class>
<persistence-type>Container</persistence-type>
<prim-key-class>ejb.BidPK</prim-key-class>
<reentrant>False</reentrant>
<cmp-field><field-name>bid</field-name></cmp-field>
<cmp-field><field-name>bidder</field-name></cmp-field>
<cmp-field><field-name>bidDate</field-name></cmp-field>
<cmp-field><field-name>id</field-name></cmp-field>

</entity>

</enterprise-beans>

<!-- OPTIONAL -->

<assembly-descriptor>

<!-- OPTIONAL, can be many -->
<security-role>
<description>
Employee is allowed to
</description>

<role-name>employee</role-name>
</security-role>

<!-- OPTIONAL. Can be many -->
<method-permission>
<!-- Define role name in "security-role" -->
<!-- Must be one or more -->
<role-name>employee</role-name>
<!-- Must be one or more -->
<method>
<ejb-name>ContentService</ejb-name>
<!-- * = all methods -->
<method-name>*</method-name>
</method>
<method>

<ejb-name>Bid</ejb-name>
<method-name>findByPrimaryKey</method-name>
</method>
</method-permission>
<!-- OPTIONAL, can be many. How the container is to manage -->
<!-- transactions when calling an EJB's business methods -->

104 Enterprise — J2EE Overview

<container-transaction>
<!-- Can specify many methods at once here -->
<method>
<ejb-name>Bid</ejb-name>
<method-name>*</method-name>
</method>
<!-- NotSupported|Supports|Required|RequiresNew|Mandatory|Never -->
<trans-attribute>Required</trans-attribute>
</container-transaction>
</assembly-descriptor>

</ejb-jar>
= web.xml: is a standard deployment descriptor for a Web module.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN"
"http://java.sun.com/j2ee/dtds/web-app 2 2.dtd">
<web-app>
<display-name>myWebApplication</display-name>
<context-param>
<param-name>GlobalContext.ClassName</param-name>
<param-value>web.GlobalContext</param-value>
</context-param>

<servlet>
<servlet-name>MyWebController</servlet-name>
<servlet-class>web.MyWebController</servlet-class>
<init-param>
<param-name>config</param-name>
<param-value>/WEB-INF/config/myConfig.xml</param-value>
</init-param>
<load-on-startup>1</load-on-startup>
</servlet>

<servlet-mapping>
<servlet-name>MyWebController</servlet-name>
<url-pattern>/execute/*</url-pattern>
</servlet-mapping>

<error-page>
<error-code>400</error-code>
<location>/WEB-INF/jsp/errors/myError.jsp</location>
</error-page>

<taglib>
<taglib-uri>/WEB-INF/struts-bean.tld</taglib-uri>
<taglib-location>/WEB-INF/lib/taglib/struts/struts-bean.tld</taglib-location>
</taglib>

<security-constraint>
<web-resource-collection>
<web-resource-name>Employer</web-resource-name>
<description></description>
<url-pattern>/execute/employ</url-pattern>
<http-method>POST</http-method>
<http-method>GET</http-method>
<http-method>PUT</http-method>
</web-resource-collection>
<auth-constraint>
<description></description>
<role-name>advisor</role-name>
</auth-constraint>
</security-constraint>

<login-config>
<auth-method>FORM</auth-method>
<realm-name>FBA</realm-name>
<form-login-config>
<form-login-page>/execute/MyLogon</form-login-page>
<form-error-page>/execute/MyError</form-error-page>
</form-login-config>
</login-config>

Enterprise — J2EE Overview 105

<security-role>
<description>Advisor</description>
<role-name>advisor</role-name>
</security-role>

</web-app>

Q 08: Explain J2EE class loaders? [SF|

A 08: J2EE application server sample class loader hierarchy is shown below. (Also refer to Q5 in Java section). As per
the diagram the J2EE application specific class loaders are children of the “System —classpath” class loader.
When the parent class loader is above the “System —classpath” class loader in the hierarchy as shown in the
diagram (i.e. bootstrap class loader or extensions class loader) then child class loaders implicitly have visibility to
the classes loaded by its parents. When a parent class loader is below a “System -classpath” class loader in the
hierarchy then the child class loaders will only have visibility into the classes loaded by its parents only if they
are explicitly specified in a manifest file (MANIFEST.MF) of the child class loader.

As per the diagram, if the EJB module MyAppsEJB.jar wants to refer to MyAppsCommon.jar and
MyAppsUltil.jar we need to add the following entry in the MyAppsEJB.jar's manifest file MANIFEST.MF.

class-path: MyAppsCommon.Jjar MyAppsUtil.jar

/ J2EE application server sample class loader hierarchy \

MyApps.ear

= MyAppsUtil.jar
%yAppsCommon.jar |

7MyAppsEJB.jar |
—] |

MyAppsWeb.war

Application class R gets its own
loader (EAR) i er
EJB class loader
WAR class
WAR class WAR class loader
loader loader

| Note: Application vendor's Server class loader hierarchy might slightly vary /

Bootstrap(JVM)
(rt.jar, i18.jar)

Extensions(JVM)
(lib/ext)

System (JVM)
(-classpath)
o

Application class
loader (EAR)

Each WAR gets its own instance of
class loader. The WEB-INF/lib libraries
are specific to each WAR

This is because the application (EAR) class loader loads the MyAppsCommon.jar and MyAppsUtil.jar. The EJB
class loader loads the MyAppsEJB.jar, which is the child class loader of the application class loader. The WAR
class loader loads the MyAppsWeb.war.

Every J2EE application or EAR gets its own instance of the application class loader. This class loader is also
responsible for loading all the dependency jar files, which are shared by both Web and EJB modules.
third party libraries like log4j, utility (e.g. MyAppsUtility.jar) and common (e.g. MyAppsCommon.jar) jars
etc. Any application specific exception like MyApplicationException thrown by an EJB module should be caught by
a Web module. So the exception class MyApplicationException is shared by both Web and EJB modules.

The key difference between the EJB and WAR class loader is that all the EJB jars in the application share the
same EJB class loader whereas WAR files get their own class loader. This is because the EJBs have inherent
relationship between one another (i.e. EJB-EJB communication between EJBs in different applications but hosted
on the same JVM) but the Web modules do not. Every WAR file should be able to have its own WEB-INF/lib third

106 Enterprise — J2EE Overview

party libraries and need to be able to load its own version of converted logon.jsp servlet. So each Web module is
isolated in its own class loader.

So if two different Web modules want to use two different versions of the same EJB then we need to have two
different ear files. As was discussed in the Q5 in Java section the class loaders use a delegation model where
the child class loaders delegate the loading up the hierarchy to their parent before trying to load it itself only if the
parent can’t load it. But with regards to WAR class loaders, some application servers provide a setting to turn this
behavior off (DelegationMode=false). This delegation mode is recommended in the Servlet 2.3 specification.

As a general rule classes should not be deployed higher in the hierarchy than they are supposed to exist. This is because
if you move one class up the hierarchy then you will have to move other classes up the hierarchy as well. This is because
classes loaded by the parent class loader can’t see the classes loaded by its child class loaders (uni-directional bottom-up
visibility).

Tech Tip #4:

Q. What do the terms internationalization(i18n) and localization(I10n) mean, and how are they related? Localization
(aka 110n, where 10 is the number of letters between the letter ‘I and the letter ‘n’ in the word localization) refers to the adaptation of an
application or a component to meet the language, cultural and other requirements to a specific locale (i.e. a target market).
Internationalization (aka i18n, where 18 is the number of letters between the letter ‘i’ and the letter ‘n’ in the word internationalization)
refers to the process of designing a software so that it can be localized to various languages and regions cost-effectively and easily
without any engineering changes to the software. A useful website on i18n is http://www.i18nfag.com.

Q. What are the characteristics of an internalized program?

-- The same executable can run worldwide without having to recompile for other or new languages.

-- Text messages and GUI component labels are not hard-coded in the program. Instead they are stored outside the
source code in “.properties” files and retrieved dynamically based on the locale.

-- Culturally dependent data such as dates and currencies, appear in formats that conform to end user's region and
language. (e.g. USA - mm/dd/yyyy, AUS - dd/mm/yyyy).

Q. What are the different types of data that vary with region or language?
Messages, dates, currencies, numbers, measurements, phone numbers, postal addresses, tax calculations, graphics,

icons, GUI labels, sounds, colors, online help etc.

Q. What is a Locale? A Locale has the form of xx_YY (xx — is a two character language code && YY is a two character country
code. E.g. en_US (English — United States), en_GB (English - Great Britain), fr_FR (french - France). The java.util.Locale class can be
used as follows:

Locale localel = new Locale (“en”, “US”);
Locale locale2 = Locale.US;

Locale locale3 = new Locale (“en”);

Locale localed4 = new Locale(“en”, “US”, “optional”); // to allow the possibility of more than one
// locale per language/country combination.

locale2.getDefault () .toString() ; // en US

locale2.getLanguage () ; // Nen”
locale2.getCountry () ; // "us”

Resource bundles can be created using the locale to externalize the locale-specific messages:

Message_en_US.properties
Greetings = Hello

Message_fr_FR.properties

Greetings = Bonjour

These resource bundles reside in classpath and gets read at runtime based on the locale.

Enterprise — J2EE Overview 107

Locale currentlLoc = new Locale (“fr”, “FR”);
ResourceBundle messages = ResourceBundle.getBundle (“"Message”, currentloc);
System.out.println (messages.getString (“Greetings”)); //prints Bonjour

When paired with a locale, the closest matching file will be selected. If no match is found then the default file will be the
Message.properties. In J2EE, locale is stored in HTTP session and resource bundles (stored as *.properties files under WEB-
INF/classes directory) are loaded from the web.xml deployment descriptor file. Locale specific messages can be accessed via tags (e.g.
Struts, JSTL etc).

Thejava.text package consists of classes and interfaces that are useful for writing internationalized programs. By default they use the
default locale, but this can be overridden. E.g. NumbeFormat, DateFormat, DecimalFormat, SimpleDateFormat, MessageFormat,
ChoiceFormat, Collator (compare strings according to the customary sorting order for a locale) etc.

DateFormat:
Date now = new Date();
Locale locale = Locale.US;

String s = DateFormat.getDatelInstance (DateFormat.SHORT, locale) .format (now) ;
NumberFormat:

NumberFormat usFormat = NumberFormat.getInstance (Locale.US) ;

String sl = usFormat.format(1785.85); // sl > 1,785.85

NumberFormat germanyFormat = NumberFormat.getInstance (Locale.GERMANY) ;
String s2 = germanyFormat.format (1785.85); // s2 > 1.785,85

To use default locale:
NumberFormat.getInstance () ;
NumberFormat.getPercentInstance () ;
NumberFormat.getCurrencyInstance () ;

To use specific locale:
NumberFormat.getInstance (Locale.US) ;
NumberFormat.getCurrencyInstance (myLocale) ;

Enterprise — Servlet

108

Enterprise - Serviet

Desktop applications (e.g. Swing) are presentation-centric, which means when you click a menu item you know which window would
be displayed and how it would look. Web applications are resource-centric as opposed to being presentation-centric. Web applications
should be thought of as follows: A browser should request from a server a resource (not a page) and depending on the availability of that
resource and the model state, server would generate different presentation like a regular “read-only” web page or a form with input
controls, or a “page-not-found” message for the requested resource. So think in terms of resources, not pages.

Servlets and JSPs are server-side presentation-tier components managed by the web container within an application server. Web
applications make use of http protocol, which is a statel request-response based paradigm.

Q 09: What is the difference between CGI and Servilet? [SF|

A 09:
Traditional CGI

Java Servlet

~ (Common Gateway Interface) N
Traditional CGl creates a heavy weight process to handle each

http request. N number of copies
programs is copied into memo
requests.

Spawns a lightweight Java thread to handle each http
request. Single copy of a type of servlet but N number of
threads (thread sizes can be configured in an application
server).

of the same traditional CGI
ry to serve N number of

\

Servlets (request/response paradigm)

<?xml version="1.0" encoding="UTF-8"?>

Client Tier
HTML,|CSS,
JavaScript, images,

—
<web-app >
<servlet>
Http request <servlet-name>CRMServlet</serviet-name>
[—] <servlet-class>com.devx.CRMServlet</servlet-class>
HHHHHHH </serviet>
Http response] ooooooo <servlet-mapping>

<servlet-name>CRMServlet</serviet-name>
<url-pattern>*.do</url-pattern>
</servlet-mapping>
</web-app>

Application Server
on host “localhost” port:8080

<?xml version="1.0" encoding="UTF-8"?>
<jboss-web>
<context-root>myWebCtxt</context-root>

<ljboss-web>
W#b Container \

Presentation
T
Sel

=

ets

Web Browser-1
client-1

Web Browser-2
client-2

Web Browser-3

response - 1

request - 2—

|

request -1

single instance of CRMServlet handles requests from
multiple browser instances by assigning a thread
from the thread-pool for each request.

Deploment descriptor
WEB-INF/web.xml

Deploment descriptor
WEB-INF/jbossweb.xml

client-2

| —

N

http://myserver:8080/myWebCtxt/crm.do

request - 3
I

response - 3

JTA
JDBC
JVS
JAF

JNDI

RMI/IIOP
JavaMail

internet

package com.devx;
/limport statements
public class CRMServlet extends HttpServlet {
public void init(ServletConfig config) throws ServletException {
super.init(config);

}

protected void doPost(HttpServletRequest req, HttpServletResponse resp)
throws ServletException, IOException {

<html>

<h1>Output to Browser</h1>

<body>Written as html from a Servlet<body>
</html>

request
/ T ServletOutputStream out = resp.getOutputStream();
response —@ out.setContentType(“text/html”);
out.printin("<htmI><h1>Output to Browser</h1>");
out.printin("<body>Written as html from a Serviet<body></htmI>");

}

protected void doGet(HttpServletRequest req, HttpServletResponse resp)

-

throws ServletException, IOException {
doPost(req, resp);

Enterprise — Servlet 109

A Servlet is a Java class that runs within a web container in an application server, servicing multiple client requests
concurrently forwarded through the server and the web container. The web browser establishes a socket connection to
the host server in the URL , and sends the HTTP request. Servlets can forward requests to other servers and servlets
and can also be used to balance load among several servers.

Q. Which protocol is used to communicate between a browser and a servlet? A browser and a servlet communicate
using the HTTP protocol (a stateless request/response based protocol).

Q. What are the two objects a servlet receives when it accepts a call from its client? A “ServletRequest”, which
encapsulates client request from the client and the “ServletResponse”, which encapsulates the communication from the
servlet back to the client.

In addition to both HTTP request and response, HTTP headers are informational additions that convey both essential and
non-essential information. HTTP headers are used to convey MIME (Multipurpose Internet Mail Extension)
type of an HTTP request and also to set and retrieve cookies etc.

Content-Type: text/html
Set-Cookie:AV+USERKEY=AVSe5678f6cltgfd; expires=Monday, 4-Jul-2006 12:00:00; path=/;domain=.lulu.com;

response.setContentType (“text/html”) ;
response.addCookie (myCookie) ;

Q. How would you get the browser to request for an updated page in 10 seconds from the server?
response.setHeader (“Refresh”, 10);

Refresh does not stipulate continual updates. It just specifies in how many seconds the next update should take place.
So, you have to continue to supply “Refresh” in all subsequent responses. The “Refresh” header is very useful because it
lets the servlet display a partial list of items or an introductory image to be displayed while the complete results or real
page is displayed later (say in 10 seconds). You can also specify another page to be reloaded as follows:

respose.setHeader ("Refresh”, “10;URL=http://localhost:8080/myCtxt/crm.do”);

The above setting can be directly set in the <HEAD> section of the HTML page as shown below as opposed to setting it
in the servlet. This is useful for static HTML pages.

<META HTTP-EQUIV="Refresh” CONTENT="5; URL=http://localhost:8080/myCtxt/crm.do” />

Q. What can you do in your Servlet/JSP code to tell browser not to cache the pages? Another useful header is the
Cache-Control as shown below:

response.setHeader (“Cache-Control”, “*no-cache”); //document should never be cached. HTTP 1.1
response.setHeader (“Pragma”, “no-cache”); //HTTP 1.0
response.setDateHeader (“Expires”, 0);

Q. What is the difference between request parameters and request attributes?
Request parameters | Request attributes
Parameters are form data that are sent in the request | Once a servlet gets a request, it can add additional attributes,
from the HTML page. These parameters are generally | then forward the request off to other serviets or JSPs for
form fields in an HTML form like: processing. Servlets and JSPs can communicate with each
other by setting and getting attributes.

<input type="text” name="paraml” />
<input type="text” name="param2” /> request.setAttribute (“calc-value”, new Float (7.0));
request.getAttribute (“calc-value”);

Form data can be attached to the end of the
URL as shown below for GET requests

http://MyServer:8080/MyServliet?
paraml=Peter¶m2=Smith

or sent to the sever in the request body for
POST requests. Sensitive form data should be
sent as a POST request.

You can get them but cannot set them. You can both set the attribute and get the attribute. You can
also get and set the attributes in session and application
request.getParameter ("paraml") ; scopes

request.getParameterNames () ;

110 Enterprise — Servlet

Q. What are the different scopes or places where a servlet can save data for its processing? Data saved in a
request-scope goes out of scope once a response has been sent back to the client (i.e. when the request is completed).

//[save and get request-scoped value
request.setAttribute (“calc-value”, new Float(7.0));
request.getAttribute (“calc-value”);

Data saved in a session-scope is available across multiple requests. Data saved in the session is destroyed when the
session is destroyed (not when a request completes but spans several requests).

//[save and get session-scoped value

HttpSession session = request.getSession (false);
If(session != null) {
session.setAttribute (Vid”, “DX12345”);

value = session.getAttribute (“id”);

Data saved in a ServletContext scope is shared by all servlets and JSPs in the context. The data stored in the servlet
context is destroyed when the servlet context is destroyed.

//save and get an application-scoped value
getServletContext () .setAttribute (“application-value”, “shopping-app”);
value = getServletContext () .getAttribute (“application-value”);

Q. Which code line should be set in a response object before using the PrintWriter or the OutputStream? You
need to set the content type using the setContentType(...) method.

//to return an html
response.setContentType (“text/html”) ;
PrintWriter out = response.getWriter();
out.println (M....”);

//to return an image
response.setContentType (“image/gif”) ;

How does a Servlet differ from an Applet?

Applet Servlet |
Applets execute on a browser. Servlets execute within a web container in an Application Server.
Applets have a graphical user interface. Servlets do not have a graphical user interface.

Q 10: HTTP is a stateless protocol, so, how do you maintain state? How do you store user data between requests? @

Pi [BP| X

A 10: This is a commonly asked interview question. The “http protocol” is a stateless request/response based protocol.
You can retain the state information between different page requests as follows:

HTTP Sessions are the recommended approach. A session identifies the requests that originate from the same
browser during the period of conversation. All the servlets can share the same session. The JSESSIONID is
generated by the server and can be passed to client through cookies, URL re-writing (if cookies are turned off) or
built-in SSL mechanism. Care should be taken to minimize size of objects stored in session and objects
stored in session should be serializable. In a Java servlet the session can be obtained as follows:

HttpSession session = request.getSession(true); //returns a current session or a new session

//To put/get a value in/from the session

Name name = new Name (“Peter”) ;
session.setAttribute (“Firstname”, name); //session.putValue(..) is deprecated as of 2.2
session.getAttribute (“Firstname”);//get a value. session.getValue(..) is deprecated

//1f a session is no longer required e.g. user has logged out, etc then it can be invalidated.
session.invalidate () ;

//you can also set the session inactivity lease period on a per session basis
session.setMaxInactiveInterval (300);//resets inactivity period for this session as 5 minutes

Enterprise — Servlet 111

r Sosonthegare ™

Client Server
(Browser)
Anew session is created on the Senver
i y . side with JSESSIONID where JSESSIOND| Name Value
1. Initial Request[No session]—ppe— state can be rrainiained a5 —» e | S
. xsder irstname er
2 JSESSIONID is passed to dlient with amefvalue pair. .
< the response through @ e e xs0er12345 | LastName Smith
ocookies or URL re-writing oirforei
kﬂeégqu?§§§§acrm3
@ O Clertisesthe JSESSOND. T apdied
for subsequent requests

Q. Session tracking uses cookies by default. What would you do if the cookies are turned off?

If cookies are turned off, you can still enable session tracking using URL rewriting. This involves including the
session ID within the link as the name/value pair as shown below.

http://localhost:8080/myWebCtxt/purchase.do; jsessionid=4FB61319542B5D310B243E4BDD6DC64B

Adding session ID to each and every link is cumbersome and hence is simplified by the following methods:
response.encodeURL(givenURL) to associate a session ID with a given URL and if you are using redirection
then response.encodeRedirectURL(givenURL).

//set a value in the session
public class CRMServlet extends HttpServlet {

protected void doGet (HttpServletRequest req, HttpServletResponse resp) throws
ServletException, IOException {
reqg.getSession() .setAttribute ("key", "ItemNo-1245");
String url = resp.encodeURL ("/myWebCtxt/purchase.do") ;

PrintWriter pw = resp.getWriter();
pw.println ("<html>Sample encoded URL -->purchase</html>");

}

//retrieve the previously set value from the session
public class PurchaseServlet extends HttpServlet {
protected void doGet (HttpServletRequest req, HttpServletResponse resp) throws
ServletException, IOException {
String value = (String)reg.getSession () .getAttribute ("key");

PrintWriter pw = resp.getWriter();
pw.println ("<html>Item to purchase is --> " + value +"</html>");

}

When you invoke the method encodeURL(givenURL) with the cookies turned on, then session ID is not appended
to the URL. Now turn the cookies off and restart the browser. If you invoke the encodeURL(givenURL) with the
cookies turned off, the session ID is automatically added to the URL as follows:

http://localhost:8080/myWebCtxt/purchase.do; jsessionid=4FB61319542B5D310B243E4BDD6DC64B
Q. What is the difference between using getSession(true) and getSession(false) methods?

getSession(true): This method will check whether there is already a session exists for the user. If a session
exists, it returns that session object. If a session does not already exist then it creates a new session for the user.

getSession(false): This method will check whether there is already a session exists for the user. If a session
exists, it returns that session object. If a session does not already exist then it returns null.

112

Enterprise — Servlet

Sessions can be timed out (configured in web.xml) or manually invalidated.

Hidden Fields on the pages can maintain state and they are not visible on the browser. The server treats both
hidden and non-hidden fields the same way.

<INPUT type="hidden” name="Firstname” value="Peter”>
<INPUT type="hidden” name="Lastname” value="”Smith”>

The disadvantage of hidden fields is that they may expose sensitive or private information to others.

URL re-writing will append the state information as a query string to the URL. This should not be used to maintain
private or sensitive information.

Http://MyServer:8080/MyServlet?Firstname=Peter&Lastname=Smith

Cookies: A cookie is a piece of text that a Web server can store on a user’s hard disk. Cookies allow a website to
store information on a user’'s machine and later retrieve it. These pieces of information are stored as name-value
pairs. The cookie data moves in the following manner:

% If you type the URL of a website into your browser, your browser sends the request to the Web server. When
the browser does this it looks on your machine for a cookie file that URL has set. If it finds it, your browser
will send all of the name-value pairs along with the URL. If it does not find a cookie file, it sends no cookie
data.

< The URL’s Web server receives the cookie data and requests for a page. If name-value pairs are received,
the server can use them. If no name-value pairs are received, the server can create a new ID and then sends
name-value pairs to your machine in the header for the Web page it sends. Your machine stores the name
value pairs on your hard disk.

Cookies can be used to determine how many visitors visit your site. It can also determine how many are new
versus repeated visitors. The way it does this is by using a database. The first time a visitor arrives; the site
creates a new ID in the database and sends the ID as a cookie. The next time the same user comes back, the site
can increment a counter associated with that ID in the database and know how many times that visitor returns.
The sites can also store user preferences so that site can look different for each visitor.

Q. How can you set a cookie and delete a cookie from within a Servlet?

//to add a cookie
Cookie myCookie = new Cookie (“aName”, “aValue”);
response.addCookie (myCookie) ;

//to delete a cookie
myCookie.setValue (“aName”, null);
myCookie.setMax (0) ;
myCookie.setPath (“/”) ;
response.addCookie (myCookie) ;

Q. Which mechanism to choose?

State Description
mechanism
HttpSession . There is no limit on the size of the session data kept.

. The performance is good.

. This is the preferred way of maintaining state. If we use the HTTP session with the application server’s
persistence mechanism (server converts the session object into BLOB type and stores it in the
Database) then the performance will be moderate to poor.

When using HttpSession mechanism you need to take care of the following points:

. Remove session explicitly when you no longer require it.

. Set the session timeout value.

. Your application server may serialize session objects after crossing a certain memory limit. This is
expensive and affects performance. So decide carefully what you want to store in a session.

Hidden fields . There is no limit on size of the session data.
. May expose sensitive or private information to others (So not good for sensitive information).
= The performance is moderate.

URL rewriting = There is a limit on the size of the session data.

Enterprise — Servlet 113

. Should not be used for sensitive or private information.
. The performance is moderate.

Cookies = There is a limit for cookie size.
. The browser may turn off cookies.
. The performance is moderate.

The benefit of the cookies is that state information can be stored regardless of which server the client talks to
and even if all servers go down. Also, if required, state information can be retained across sessions.

Q 11: Explain the life cycle methods of a serviet? [SF] X8

A 11: The Web container is responsible for managing the servlet’s life cycle. The Web container creates an instance of
the servlet and then the container calls the init() method. At the completion of the init() method the servlet is in
ready state to service requests from clients. The container calls the servlet's service() method for handling each
request by spawning a new thread for each request from the Web container’s thread pool [It is also possible to
have a single threaded Servlet, refer Q16 in Enterprise section]. Before destroying the instance the container will
call the destroy() method. After destroy() the servlet becomes the potential candidate for garbage collection.

Serviet Life Cycle \

instantiate
& call init()

called once) init()

/ ready to serve requests

handle multiple
requests and send
response.

thread 1 : client request
thread 2 : client request
thread 3 : client request

service()

destroy()

called once)

N _/

Q. What would be an effective use of the Servlet init() method? One effective use of the Servlet init() method
is the creation and caching of thread-safe resource acquisition mechanisms such, as JDBC DataSources, EJB
Homes, and Web Services SOAP Mapping Registry.

Q. How would you call a method in the EJB from a servilet?

MyBeanHome home = null;

public void init (ServletConfig config) throws ServletException {

//1. JINDI lookup is hard coded for illustration purpose but should use a declarative

//approach involving web.xml file and server specific deployment descriptor files because

//if the server location changes, hardcoding may require reasonable amount of changes &

//testing. Lookup for JBoss server is shown below:

Properties JjndiProps = new Properties();

jndiProps.setProperty (Context.INITIAL CONTEXT FACTORY,
“org.jnp.interfaces.NamingContextFactory”) ;

jndiProps.setProperty (Context.URL PKG PREFIXES,”org.jboss.naming:org.jnp.interfaces”);

jndiProps.setProperty (Context.PROVIDER URL, “jnp://localhost:1099”);

Context ctx = new InitialContext (jndiProps) ;

//2. lookup home (or localHome) interface. Shown for illustration. Should prefer using the
//Service Locator pattern. Refer Q87 in Enterprise section.

Object ref = ctx.lookup (“ejb/MyBean”) ;

home = (MyBeanHome) PortableRemoteObject.narrow (ref, MyBeanHome.class);

114

Enterprise — Servlet

public void doGet (HttpServletRequest req, HttpServletResponse res)throws ServletException,
IOException
{

//3. create a remote or a local interface

MyBean bean = home.create() ;

//4. Now you can call business method on remote interface
bean.invokeBusinessMethod (...) ;

Q. Is it possible to share an HttpSession between a Servlet/JSP and EJB? You can pass an HttpSession as a
parameter to an EJB method only if all objects in session are serializable. This is because they are “passed-by-
value” and if any values in the HttpSession are altered inside the EJB then it won’t be reflected back to the
HttpSession in the Servlet.

Even though it is possible to pass an HttpSession object, it is a bad practice in terms of design because you are
unnecessarily coupling your presentation tier (i.e. Servlet/JSP) object with your business-tier (i.e. EJB) objects. So
rather than passing the whole, large HttpSession create a class (i.e. Plain Old Java Object) that acts as a value
object (aka Data Transfer Object — refer Q85 in Enterprise section) that holds all the data you need to pass back
and forth between your presentation tier and business tier. This approach would also be flexible enough to handle
a scenario where your EJBs in the business tier need to support a non-http based client like a stand alone Java
application or a WAP client.

Q. How does an HTTP Servlet handle client requests? All client requests are handled through the service()
method. The service method dispatches the request to an appropriate method like doGet(), doPost() etc to
handle that request.

Q12:
A12:

Explain the directory structure of a Web application? @ @ m

Refer Q7 in Enterprise section for diagram: J2EE deployment structure and explanation in this section where
MyAppsWeb.war is depicting the Web application directory structure. The directory structure of a Web application
consists of two parts:

/ Directory structure of a web application \

crm.war
(web archive)

*.jsp, *.html, *.css, *.gif
public (can have sub-folders)
directory < MANIFEST.MF >
c r

(document lass-path: log4j.jar MyAppsCommon.jar MyAppsUtil.ja

root
) META-INF
web.xml
deployment descriptor
WEB-INF Jboss-web.xml
application server specific deployment descriptor
private
e

struts.jar, crimson.jar >

directory li

3rd party jar files

class files
classes

K e.g. CRMServlet /

= A public resource directory (document root): The document root is where JSP pages, client-side classes
and archives, and static Web resources are stored.

= A private directory called WEB-INF: which contains following files and directories:

web.xml: Web application deployment descriptor.

application server specific deployment descriptor e.g. jposs-web.xml etc.

*.tld: Tag library descriptor files.

classes: A directory that contains server side classes like servlets, utility classes, JavaBeans etc.

lib: A directory where JAR (archive files of tag libraries, utility libraries used by the server side classes)
files are stored.

Enterprise — Servlet

115

JSP resources usually reside directly or under subdirectories of the document root, which are directly
accessible to the user through the URL. If you want to protect your Web resources then hiding the JSP files
behind the WEB-INF directory can protect the JSP files from direct access. Refer Q35 in Enterprise section.

Q 13: What is the difference between doGet () and doPost () or GET and POST? [SF|[SE] [ZX&
A 13: Prefer using doPost() because it is secured and it can send much more information to the server..

GET or doGet()

The request parameters are transmitted as a query string
appended to the request. All the parameters get appended to
the URL in the address bar. Allows browser bookmarks but not
appropriate for transmitting private or sensitive information.

http://MyServer/MyServlet?name=paul

This is a security risk. In an HTML you can specify as follows:

<form name="SSS” method="GET” >

POST or doPost()
The request parameters are passed with the body of the
request.

More secured. In HTML you can specify as follows:

<form name="SSS” method="POST" >

GET was originally intended for static resource retrieval.

POST was intended for form submits where the state of the
model and database are expected to change.

GET is not appropriate when large amounts of input data are
being transferred. Limited to 1024 characters.

Since it sends information through a socket back to the
server and it won’'t show up in the URL address bar, it can

send much more information to the server. Unlike doGet(), it
is not restricted to sending only textual data. It can also send
binary data such as serialized Java objects.

Q. If you want a servlet to take the same action for both GET and POST request, what would you do? You
should have doGet call doPost, or vice versa.

protected void doPost (HttpServletRequest req,
throws ServletException,

HttpServletResponse resp)
IOException

ServletOutputStream out = resp.getOutputStream() ;

out.setContentType (“text/html”) ;

out.println ("<html><hl>Output to Browser</hl>") ;

out.println ("<body>Written as html from a Servlet<body></html>") ;
}

protected void doGet (HttpServletRequest req, HttpServletResponse resp)
throws ServletException, IOException
doPost (req, resp); //call doPost() for flow control logic.

Q 14: What are the ServletContext and ServletConfig objects? What are Servlet environment objects? @
A 14: The Servlet Engine uses both interfaces. The servlet engine implements the ServletConfig interface in order to
pass configuration details from the deployment descriptor (web.xml) to a servlet via its init() method.

public class CRMServlet extends HttpServlet ({
//initializes the servlet
public void init(ServletConfig config)throws ServletException {
super.init (confiqg);

}

| ServletContext
The ServletContext parameters are specified for the entire Web
application. The parameters are specified in the web.xml (i.e.
deployment descriptor). Servlet context is common to all Servlets. So
all Servlets share information through ServletContext.

ServletConfig

The ServletConfig parameters are for a particular
Servlet. The parameters are specified in the web.xml
(i.e. deployment descriptor). It is created after a servlet
is instantiated and it is used to pass initialization
information to the servlet.

116 Enterprise — Servlet

String strCfgPath = getServletConfig() .getInitParameter ("config");
String strServletName = getServletConfig() .getServletName () ;

String strClassName = getServletContext().getAttribute ("GlobalClassName");

Q. How can you invoke a JSP error page from a controller servlet? The following code demonstrates how an
exception from a servlet can be passed to an error JSP page.

protected void doGet (HttpServletRequest req, HttpServletResponse resp) throws
ServletException, IOException {

try {
//doSomething

}

catch (Exception ex) {
req.setAttribute ("javax.servlet.ex",ex);//store the exception as a request attribute.
ServletConfig sConfig = getServletConfig() ;
ServletContext sContext = sConfig.getServletContext () ;
sContext.getRequestDispatcher ("/jsp/ErrorPage.jsp") . forward(req, resp);// forward the
//request with the exception stored as an attribute to the “ErrorPage.jsp”.
ex.printStackTrace () ;

Q. What are servlet lifecycle events? Servlet lifecycle events work like the Swing events. Any listener interested
in observing the ServietContext lifecycle can implement the ServietContextlListener interface and in the
ServletContext attribute lifecycle can implement the ServletContextAttributesListener interface. The session
listener model is similar to the ServletContext listener model (Refer Servlet spec 2.3 or later). ServletContext’s and
Session’s listener objects are notified when servlet contexts and sessions are initialized and destroyed, as well as
when attributes are added or removed from a context or session. You can declare a listener in the
web.xml deployment descriptor as follows:

<listener>
<listener-class>com.MyJDBCConnectionManager </listener-class>
</listener>

You can create the listener class as shown below:
public class MyJDBCConnectionManager implements ServletContextListener ({

public void contextInitialized (ServletContextEvent event) {
Connection con = // create a connection
event.getServletContext () .setAttribute ("con", con);

}

public void contextDestroyed (ServletContextEvent e) {
Connection con = (Connection) e.getServletContext ().getAttribute ("con");
try { con.close(); } catch (SQLException ignored) { } // close connection

The server creates an instance of the listener class to receive events and uses introspection to determine what
listener interface (or interfaces) the class implements.

Q 15: What is the difference between HttpServlet and GenericServlet? [SF|
A 15: Both these classes are abstract but:

GenericServlet HttpServlet
A GenericServlet has a service() method to handle | The HttpServiet extends GenericServlet and adds support for HTTP
requests. protocol based methods like doGet(), doPost(), doHead() etc. All

client requests are handled through the service() method.
The service method dispatches the request to an appropriate
method like doGet(), doPost() etc to handle that request.
HttpServlet also has methods like doHead(), doPut(), doOptions(),
doDelete(), and doTrace().

Protocol independent. GenericServlet is for servlets | Protocol dependent (i.e. HTTP).
that might not use HTTP (for example FTP service).

Enterprise — Servlet 117

Q 16:

A 16:

How do you make a Servlet thread safe? What do you need to be concerned about with storing data in Servlet
instance fields? [CI|[P] m
As shown in the figure Serviet Life Cycle in Q11 in Enterprise section, a typical (or default) Servlet life cycle
creates a single instance of each servlet and creates multiple threads to handle the service() method. The multi-
threading aids efficiency but the servlet code must be coded in a thread safe manner. The shared resources
(e.g. instance variables, utility or helper objects etc) should be appropriately synchronized or should only use
variables in a read-only manner. There are situations where synchronizing will not give you the expected results
as shown in the diagram below and to achieve the expected results you should store your values in a user session
or store them as a hidden field values. Having large chunks of code in synchronized blocks in your service or
doPost() methods can adversely affect performance and makes the code more complex.

/

How to make a Servlet thread-safe? \

public class CRMServlet extends HttpServlet {
user
private static final int CONSTANT = 5; //immutable, so thread safe

request1 request2 request3
on thread1 on thread2 on thread3

/Imutable instance variable
private int x = 0; // not thread safe

protected void doPost(HttpServletRequest req, HttpServletResponse resp)
throws ServletException, IOException {

ServletOutputStream out = resp.getOutputStream();
/I 'local variable y
inty = new Integer(request.getParameter("suppliedValue")).intValue();

incrementValue(y); // Line A

out.printin("<htmI><h1>Output to Browser</h1>"); // Line B
out.printin("<body>X= " + getX() + "<body></htm|>"); // Line C

CRMServlet instance
private void incrementValue(int value){

private int x; x = x + value + CONSTANT ;

CONSTANT = 5; }
private void getX(){
return x;
}

}

Note: As shown above, the methods doPost(), incrementValue() and getX() are executed in the stack memory and will have its own copy of
local variable “y”. But the member variable “x
shared by all the threads and hence the variable “x” is not thread-safe and variable “CONSTANT" is thread safe because itis immutable (i.e
read only, cannot be modified).

Why the variable “x” is not thread-safe? Say the user-1 submits a request with a “suppliedValue” parameter 1 and expects returned a
value of 6 (i.e. x + value + CONSATNT > 0+1+5). The user-2 submits a request with a “suppliedValue” parameter 2 and expects a
returned value of 7 (i.e. 2 + value + CONSATNT > 0+2+5). If thread-1 from user-1 has executed “Line A” which has incremented the value
of “x” to 6 and moves to “Line B”. While client 1 is in “Line B” the thread-2 from user-2 is executing the “Line A” whereby modifying the value
of x to 13 (i.e. x + value + CONSTANT > 6 + 2 + 5) . Now, when the thread-1 from user-1 executes the “Line C”, it reads the value of “x”
incorrectly as 13 (instead of 6) because the thread-2 from client 2 has modified the value. Even the thread-2 from the client 2 reads the
incorrect value of 13 (instead of 7). Also there are other possibilities such as if thread-2 wins the race by executing the “Line A” first then the
user-2 may get the value of either 7 and the user-1 may get the value of 13.

How to prevent this? In this scenario synchronizing the methods would not also help. You need to store the value “x” for each user
separately. The above thread-safety issue can be prevented by storing the variable “x” in a session or as a hidden field where each user will
have his/her own copy of the value for “x” as opposed to sharing the same value from the heap memory.

If you just need a cumulative value for each user like say user-1 gets the value of 6 (i.e 0+1+5) and the user-2 gets the value of 13 (i.e.
6+2+5) or vice-versa i.e user-2 gets the value of 7 and the user-1 gets the value 13, this can be achieved by slightly modifying the program
by removing getX() method and changing the incrementValue(int value) method and modifying the doPost() methos as shown below:

and immutable constant “CONSTANT” are stored in the heap memory. The heap memory is

}

protected void doPost(HttpServlietRequest req, HttpServietResponse resp)

private synchronized int incrementValue(int value) { //since synchronized, only one thread can access at a time

throws ServletException, IOException {

...lIskipping lines

inty = new Integer(request.getParameter("suppliedValue")).intValue();

intw = incrementValue(y); // Line A > accessed in a thread safe manner and stored in a local variable “w”. Each
Il user will have his own copy of “w”

out.printin("<htmI><h1>Output to Browser</h1>"); // Line B
out.printin("<body>X= "+ w + "<body></htmI>"); // Line C
.../Iskipping lines

X = x + value + IMMUTABLE_CONSTANT ;
return x;

\ }

118

Enterprise — Servlet

Alternatively it is possible to have a single threaded model of a servlet by implementing the marker or null
interface javax.servlet.SingleThreadedModel. The container will use one of the following approaches to ensure
thread safety:

= Instance pooling where container maintains a pool of servlets.
= Sequential processing where new requests will wait while the current request is being processed.

It is best practice to use multi-threading and stay away from the single threaded model of the
servlet unless otherwise there is a compelling reason for it. Shared resources can be synchronized, used in read-
only manner, or shared values can be stored in a session, as hidden fields or in database table. The single
threaded model can adversely affect performance and hence has been deprecated in the servlet specification 2.4.

As shown in the diagram above, threads share the heap and have their own stack space (i.e. each thread has
its own stack). This is how one thread’s invocation of a method (doGet(), doPost()) and its local variables (e.g. int y
) are kept thread safe from other threads. But the heap (e.g. int x) is not thread-safe and must be synchronized for
thread safety or stored in an HTTP session or stored as a hidden field. The variable “CONSTANT” is a read only
immutable field since it is marked as final and hence thread-safe.

How do you make a Servlet thread safe? is a popular interview question.
Q. How do you get your servlet to stop timing out on a really long database query?

There are situations despite how much database tuning effort you put into a project, there might be complex
queries or a batch process initiated via a Servlet, which might take several minutes to execute. The issue is that if
you call a long query from a Servlet or JSP, the browser may time out before the call completes. When this
happens, the user will not see the results of their request. There are proprietary solutions to this problem like
asynchronous servlets in WebLogic, Async Beans in WebSphere etc but you need a solution that is portable. Let
us look at portable solutions to this issue.

Solution 1: Client-pull or client-refresh (aka server polling): You can use the <META> tag for polling the server.
This tag tells the client it must refresh the page after a number of seconds.

<META http-equiv="Refresh” content=”10; url="newPage.html” />

Refer Q9 in Enterprise section for question How would you get the browser to request for an updated page in
10 seconds? Once you can have the browser poll your Servlet on a regular basis to re-fetch a page, then your
servlet can check for a value of a variable say in a HttpSession to determine if the page returned will have the
results expected by the user or resend the <META> tag with a “Please wait ...” message and retry fetching the
page again later.

Solution 2: J2EE Solution: Instead of spawning your own threads within your Servlet, you could use JMS (Java
Messaging Service). This involves following steps:

1. You need to have two servlets, a RequestingServiet and a DisplayingServiet. The initial client request is sent
to the RequestingServlet. Both the RequestingServiet and DisplayingServiet polled by the browser via
<META> tag discussed above or JavaScript. Both these Servlets should send the <META> tag with their
responses until final display of the query results.

2. RequestingServiet places the query on the “request’ queue using JMS.

3. You need to have a MessageDrivenBean (aka MDB) say QueryProcessorMDB, which dequeues the query
from the “request” queue and performs the long-running database operation. On completion of processing
long-running database operation, the QueryProcessorMDB returns the query results to the “reply” queue (use
javax.jms.QueueSender & javax.jms.ObjectMessage). Note: MDBs are invoked asynchronously on arrival
of messages in the queue.

4. DisplayingServiet checks the “reply” queue for the query results using JMS (use javax.jms.QueueReceiver &
javax.jms.ObjectMessage) every few seconds via <META> tag described above or a JavaScript.

Advantages: Firstly implementing your long-running database operation to be invoked from onMessage() method
of your QueryProcessorMDB decouples your application whereby if a database failure occurs, the request query
message will be placed back in the “request’” queue and retried again later. Secondly MDBs can be clustered
(with or without additional JVMs) to listen on the same “request” queue. This means cluster of MDBs will be
balancing the load of processing long running database operations. This can improve the throughput due to
increased processing power.

Enterprise — Servlet 119

Q17:
A17:

What is pre-initialization of a Servlet?

By default the container does not initialize the servlets as soon as it starts up. It initializes a servlet when it
receives a request for the first time for that servlet. This is called lazy loading. The servlet deployment descriptor
(web.xml) defines the <load-on-startup> element, which can be configured to make the servlet container load and
initialize the servlet as soon as it starts up. The process of loading a servlet before any request comes in is called
pre-loading or pre-initializing a serviet. We can also specify the order in which the servlets are initialized.

<load-on-startup>2</load-on-startup>

Q18:
A 18:

What is a RequestDispatcher? What object do you use to forward a request?
A Servlet can obtain its RequestDispatcher object from its ServietContext.

//..inside the doGet () method

ServletContext sc = getServletContext () ;

RequestDispatcher rd = sc.getRequestDispatcher (“/nextServlet”);//relative path of the resource
//forwards the control to another servlet or JSP to generate response. This method allows one
//servlet to do preliminary processing of a request and another resource to generate the
//response.

rd. forward (request, response) ;

// or includes the content of the resource such as Servlet, JSP, HTML, Images etc into the
// calling Servlet’s response.

rd.include (request, response);

What is the difference between the getRequestDispatcher(String path) method of “ServletRequest” interface and
ServletContext interface?

javax.servlet.ServietRequest javax.servlet.ServletContext

getRequestDispatcher(String path) getRequestDispatcher(String path)
Accepts path parameter of the servlet or JSP to be | Does not accept relative paths and all path must start
included or forwarded relative to the request of the | with a “/” and are interpreted as relative to current context

calling servlet. If the path begins with a “/” then itis | root.
interpreted as relative to current context root.

Q19:
A19:

What is the difference between forwarding a request and redirecting a request?
Both methods send you to a new resource like Servlet, JSP etc.

/ forward() or include() vs sendRedirect() \
forward() or include() sendRedirect()
/ WebContainer "\ Web Container
1. .
0t o oD e vz
irect
Client 2 Clent gq —2 sendRed”
(Browser) forward/ (Browser) New py, |
include Wser
3. response CRMResLltServiet
- . . _ Note: path supplied to RequestDispatcher will be
Note: path supplied to RequestDispatcher will be something like “http:/imyserver:8080/myContext/
something like “/CRMResultServiet CRMResultSenet’.

120 Enterprise — Servlet

redirecting - sendRedirect() Forward

Sends a header back to the browser, which contains the name of | Forward action takes place within the server without
the resource to be redirected to. The browser will make a fresh | the knowledge of the browser. Accepts relative path
request from this header information. Need to provide absolute | to the servlet or context root.

URL path.
Has an overhead of extra remote trip but has the advantage of | No extra network trip.
being able to refer to any resource on the same or different domain
and also allows book marking of the page.

Q 20: What are the considerations for servlet clustering? [DC|[SI
A 20: The clustering promotes high availability and scalability. The considerations for servlet clustering are:

= Objects stored in a session should be serializable to support in-memory replication of sessions. Also
consider the overhead of serializing very large objects. Test the performance to make sure it is acceptable.

= Design for idempotence. Failure of a request or impatient users clicking again can result in duplicate
requests being submitted. So the Servlets should be able to tolerate duplicate requests.

= Avoid using instance and static variables in read and write mode because different instances may exist
on different JVMs. Any state should be held in an external resource such as a database.

= Avoid storing values in a ServletContext. A ServletContext is not serializable and also the different
instances may exist in different JVMs.

= Avoid using java.io.* because the files may not exist on all backend machines. Instead use
getResourceAsStream().

Q. How to perform I/O operations in a Servlet/JSP?

Problem: Since web applications are deployed as WAR files on the application server's web container, the full
path and relative paths to these files vary for each server.

Solution -1: You can configure the file paths in web.xml using <init-param> tags and retrieve file paths in your
Servlets/JSPs. But this technique requires changes to the web.xml deployment descriptor file, to point to the
correct path.

Solution -2: You can overcome these configuration issues by using the features of java.lang.ClassLoader and
javax.servlet.ServietContext classes. There are various ways of reading a file using the ServletContext API
methods such as getResource(String resource),getResourceAsStream(String resource), getResourcePaths(String
path) and getRealPath(String path). The getRealPath(String path) method translates virtual URL into real path
refer Q26 in Enterprise section.

//Get the file “products.xml” under the WEB-INF folder of your application as inputstream
InputStream is = config.getServletContext () .getResourceAsStream (“/products.xml”) ;

Alternatively you can use the APIs from ClassLoader as follows. The file “products.xml” should be placed under
WEB-INF/classes directory where all web application classes reside.

//Get the URL for the file and create a stream explicitly
URL url = config.getServletContext () .getResource (“/products.xml”) ;
BufferedReader br = new BufferedReader (new InputStreamReader (url.openStream)) ;

OR
//use the context class loader
URL url = Thread.currentThread() .getContextClassLoader () .getResource (“products-out.xml”);

BufferedWriter bw = new BufferedWriter (new FileWriter (url.getFile());

Q. How do you send a file to a browser from your web application? l.e. how do you download a file from
your web application? Files can be downloaded from a web application by using the right combination of
headers.

//set the header to a non-standard value for attachments to be saved by the browser with the
//Save-As dialog so that it is unrecognized by the browsers because often browsers try to do
//something special when they recognize the content-type.

response.setContentType (“application/x-download”) ;

//use Content-Disposition “attachment” to invoke “Save As” dialog and “inline” for displaying
//the file content on the browser without invoking the “Save As” dialog.

response.setHeader (“Content-disposition”, “attachment;filename="” + fileName);

Enterprise — Servlet 121

Q. How do you send a file from a browser to your web application? i.e. How do you upload a file to your
web application?

There are better and more secured ways to upload your files instead of using using web. FTP,
secure FTP etc. But if you need to do it via your web application then your default encoding and GET methods are
not suitable for file upload and a form containing file input fields must specify the encoding type “multipart/form-
data” and the POST method in the <form ..> tag as shown below:

<form enctype="multipart/form-data” method="POST” action="/MyServlet”>
<input type=”file” name="products” />
<input type=”submit” name="Upload” value="upload” />

</form>

When the user clicks the “Upload” button, the client browser locates the local file and sends it to the server using
HTTP POST. When it reaches your server, your implementing servlet should process the POST data in order to
extract the encoded file. Unfortunately, application servers implementing the Servlet and JSP specifications are
not required to handle the multipart/form-data encoding. Fortunately there are number of libraries available such
as Apache Commons File Upload, which is a small Java package that lets you obtain the content of the uploaded
file from the encoded form data. The API of this package is flexible enough to keep small files in memory while
large files are stored on disk in a “temp” directory. You can specify a size threshold to determine when to keep in
memory and when to write to disk.

Q 21: If an object is stored in a session and subsequently you change the state of the object, will this state change
replicated to all the other distributed sessions in the cluster? ﬁ

A 21: No. Session replication is the term that is used when your current service state is being replicated across multiple
application instances. Session replication occurs when we replicate the information (i.e. session attributes) that
are stored in your HttpSession. The container propagates the changes only when you call the setAttribute(......)
method. So mutating the objects in a session and then by-passing the setAttribute(...........) will not replicate the
state change.

If you have an ArrayList in the session representing shopping cart objects and if you just call
getAttribute(...) to retrieve the ArrayList and then add or change something without calling the setAttribute(...)
then the container may not know that you have added or changed something in the ArrayList. So the session will
not be replicated.

Q 22: What is a filter, and how does it work? FAQ

A 22: A filter dynamically intercepts requests and responses to transform or use the information contained in the
requests or responses but typically do not themselves create responses. Filters can also be used to transform the
response from the Servlet or JSP before sending it back to client. Filters improve reusability by placing recurring

tasks in the filter as a reusable unit.
Filter —\

Web Container
‘ Servlet, JSP, HTML ‘

‘ - Filter 3 [‘
0 [72]

‘ 3 Filter 2 o ‘
(on Q
o A »
(14 - ®
‘ Filter 1 x

Client

A good way to think of Servlet filters is as a chain of steps that a request and response must go through before
reaching a Servlet, JSP, or static resource such as an HTML page in a Web application.

122 Enterprise — Servlet
The filters can be used for caching and compressing content, logging and auditing, image conversions (scaling up
or down etc), authenticating incoming requests, XSL transformation of XML content, localization of the request and
the response, site hit count etc. The filters are configured through the web.xml file as follows:
<web-app>

<filter>
<filter-name>HitCounterFilter</filter-name>
<filter-class>myPkg.HitCounterFilter</filter-class>
</filter>
<filter-mapping>
<filter-name>HitCounterFilter</filter—-name>
<url-pattern>/usersection/*</url-pattern>
</filter-mapping>
</web-app>
The HitCounterFilter will intercept the requests from the URL pattern /usersection followed by any resource name.
Design Pattern:| Servlet filters use the slightly modified version of the chain of responsibility design pattern.
Unlike the classic (only one object in the chain handle the request) chain of responsibility where filters allow
multiple objects (filters) in a chain to handle the request. If you want to modify the request or the response in the
chain you can use the decorator pattern (Refer Q11 in How would you go about... section).

Q 23: Explain declarative security for Web applications? @

A 23: Servlet containers implement declarative security. The administration is done through the deployment descriptor
web.xml file. With declarative security the Servlets and JSP pages will be free from any security aware code.
You can protect your URLs through web.xml as shown below:
web-app>

<security-constraint>
<web-resource-collection>
<web-resource-name>PrivateAndSensitive</web-resource-name>
<url-pattern>/private/*</url-pattern>
</web-resource-collection>
<auth-constraint>
<role-name>executive</role-name>
<role-name>admin</role-name>
</auth-constraint>
</security-constraint>
<!-- form based authorization -->
<login-config>
<auth-method>FORM</auth-method>
<form-login-config>
<form-login-page>/login.jsp</form-login-page>
<form-error-page>/error.jsp</form-error-page>
</form-login-config>
</login-config>
</web-app>
The user will be prompted for the configured login.jsp when restricted resources are accessed. The container also
keeps track of which users have been previously authenticated.
Benefits: Very little coding is required and developers can concentrate on the application they are building and
system administrators can administer the security settings without or with minimal developer intervention. Let's
look at a sample programmatic security in a Web module like a servlet:
User user = new User();
Principal principal = request.getUserPrincipal();
if (request.isUserInRole("boss"))
user.setRole (user.BOSS ROLE) ;
Q 24: Explain the Front Controller design pattern or explain J2EE design patterns? m
A 24: Problem: A J2EE system requires a centralized access point for HTTP request handling to support the integration

of system services like security, data validation etc, content retrieval, view management, and dispatching. When
the user accesses the view directly without going through a centralized mechanism, two problems may occur:

Enterprise — Servlet 123

= Each view is required to provide its own system services often resulting in duplicate code.

= View navigation is left to the views. This may result in shared code for view content and view navigation.

= Distributed control is more difficult to maintain, since changes will often need to be made in numerous
places.

Solution: Generally you write specific servlets for specific request handling. These servlets are responsible for
data validation, error handling, invoking business services and finally forwarding the request to a specific JSP view
to display the results to the user.

/ J2EE Front Controller Pattern \
. Vi
fow
T T T T T T T >
I
1
. 1
client |
Client request FrontController| ApplicationFlowController, !
_________ N ______________> I
J
A | Command
[(eg: Struts Action)
{[invokes |
| IS
<<servlet>> <<JSP>>
FrontControllerServlet FrontControllerJSP

o /

The Front Controller suggests that we only have one Servlet (instead of having specific Servlet for each specific
request) centralizing the handling of all the requests and delegating the functions like validation, invoking business
services etc to a command or a helper component. For example Struts framework uses the command design
pattern to delegate the business services to an action class.

Avoid duplicating the control logic like security check, flow control etc.

Apply the common logic, which is shared by multiple requests in the Front controller.
Separate the system processing logic from the view processing logic.

Provides a controlled and centralized access point for your system.

Q 25:

A 25:

Briefly discuss the following patterns Composite view, View helper, Dispatcher view and Service to worker? Or
explain J2EE design patterns? FAQ)

= Composite View: Creates an aggregate view from atomic sub-views. The Composite view entirely focuses
on the view. The view is typically a JSP page, which has the HTML, JSP Tags etc. The JSP display pages
mostly have a side bar, header, footer and main content area. These are the sub-views of the view. The sub-
views can be either static or dynamic. The best practice is to have these sub-views as separate JSP pages
and include them in the whole view. This will enable reuse of JSP sub-views and improves maintainability
by having to change them at one place only.

/ Composite View \

BasicView

| o o

View CompositeView|

124

Enterprise — Servlet

View Helper: When processing logic is embedded inside the controller or view it causes code duplication in
all the pages. This causes maintenance problems, as any change to piece of logic has to be done in all the
views. In the view helper pattern the view delegates its processing responsibilities to its helper classes. The
helper classes JavaBeans: used to compute and store the presentation data and Custom Tags: used for
computation of logic and displaying them iteratively complement each other.

Avoids embedding programming logic in the views and facilitates division of labor between Java
developers and Web page designers.

/ View Helper Pattern \

Without View Helpers code for Logic-1 and Logic-
2 are duplicated within different serviets/JSPs

With View Helpers like JavaBeans, CustomiTags etc code for Logic-1
and Logic-2 are not duplicated hence more maintainable and reusable.

Serviet 1/JSP 1 et ISP

Logic 1

JavaBeans (Servets,JSPs)
CustommiTags (JSPs only)

Logic 2

JavaBeans (Serviets,JSPs)
CustomTags (JSPs only)

Serviet 2/JSP 2

\ J

Service to Worker and Dispatcher View: These two patterns are a combination of Front Controller and View
Helper patterns with a dispatcher component. One of the responsibilities of a Front Controller is choosing a
view and dispatching the request to an appropriate view. This behavior can be partitioned into a separate
component known as a dispatcher. But these two patterns differ in the way they suggest different division of
responsibility among the components.

Serviet 1/JSP1

Service to Worker

Combines the front controller (Refer Q24 in Enterprise
section) and dispatcher, with views and view helpers (refer
Q25 in Enterprise section) to handle client requests and
dynamically prepares the response.

. Controllers delegate the content retrieval to the view
helpers, which populates the intermediate model
content for the view.

L] Dispatcher is responsible for the view management
and view navigation.

Dispatcher View

This pattern is structurally similar to the service to worker
but the emphasis is on a different usage pattern. This
combines the Front controller and the dispatcher with the
view helpers but

. Controller does not delegate content retrieval to
view helpers because this activity is deferred to
view processing.

L] Dispatcher is responsible for the view management
and view navigation

Promotes more up-front work by the front controller
and dispatcher for the authentication, authorization,
content retrieval, validation, view management and
navigation.

Relatively has a lightweight front controller and
dispatcher with minimum functionality and most of the
work is done by the view.

Enterprise — Servlet 125

Q 26: Explain Servlet URL mapping? @
Q 26: The “URL” denotes a virtual path and “File” denotes a real path of the resource.

/ Servlet URL mapping \

Without Mapping in web.xml

URL N http://<hostname:port>/<webapp name>/serviet /[<pathname>/<resourcename>

URL eg ﬂ http://Iocalhost:8080/myApps/ser‘Iet/myPath/MySe&let

A

File N SERVER_HOME\WebApps\myApps\WEB-INF\Classes\myPath\MyServlet
- ——

Server Root

Document root

With Mapping in web.xml| deployment descriptor file

We can define the servlet mapping in the web.xml deploymnet descriptor file as shown below:

<web-app>
<servlet>
<servlet-name>MyServlet</serviet-name>
<servlet-class>myPath.MyServlet</servlet-class>

</servlet>

<servlet-mapping>
<servlet-name>MyServlet</serviet-name>
<url-pattern>mine/*.do</url-pattern>
</servlet-mapping>
<web-app>

URL after mapping H http://localhost:8080/myApps/mine/test.do

Note: Which means every request which has a pattern of http://localhost:8080/myApps/ mine/*.do will be handled by
the myPath.MyServlet class. (* denotes wild character for any alphanumeric name). Also possible to map MyServlet to
the pattern of /mine/* , the * indicates any resource name followed by /mine.

How do we get the webapp name "myApps"”
The webapp name is defined in the application.xml deployment descriptor file. The <context-root > denotes the web
app nameas shown below

<application>
<module id="WebModule_1">
<web>
<web-uri>myAppsWeb.war</web-uri>
<context-root>myApps</context-root>
</web>
</module>

<module id="EjbModule_1">
<ejb>myEJB.jar</ejb>
</module>

!/application> /

In the Model 2 MVC architecture, servlets process requests and select JSPs (discussed in next section) for views. So
servlets act as controllers. Servlets intercept the incoming HTTP requests from the client (browser) and then dispatch the
request to the business logic model (e.g. EJB, POJO - Plain Old Java Object, JavaBeans etc). Then select the next JSP
view for display and deliver the view as HTML to client as the presentation (response). It is the best practice to use Web
tier Ul frameworks like Struts, Spring MVC, JavaServer Faces (JSF), Tapestry etc, which uses proven and tested design
patterns for medium to large scale applications. Before you learn these frameworks, you should understand the web
fundamentals relating to servlets, JSPs, HTTP request/response paradigm, state management, deployment structure,

web container/application server services etc.

126 Enterprise — JSP

Enterprise - JSP

Desktop applications (e.g. Swing) are presentation-centric, which means when you click a menu item you know which window would
be displayed and how it would look. Web applications are resource-centric as opposed to being presentation-centric. \Web
applications should be thought of as follows: A browser should request from a server a resource (not a page) and depending on the
availability of that resource and the model state, server would generate different presentation like a regular “read-only” web page or a
form with input controls, or a “page-not-found” message for the requested resource. So think in terms of resources, not pages.

Servlets and JSPs are server-side presentation-tier components managed by the web container within an application server. Web
applications make use of http protocol, which is a statel request-response based paradigm. JSP technology extends the servlet
technology, which means anything you can do with a servlet you can do with a JSP as well.

Q 27: What's wrong with Servlets? What is a JSP? What is it used for? What do you know about model 0, model 1 and
model 2 patterns? In “model 2” architecture, if you set a request attribute in your JSP, would you be able to access
it in your subsequent request within your servlet code? How do you prevent multiple submits due to repeated
“refresh button” clicks? What do you understand by the term JSP translation phase or compilation phase?

A 27: As shown in Q9 in Enterprise section, writing out.printin (...) statements using servlet is cumbersome and hard to
maintain, especially if you need to send a long HTML page with litle dynamic code content. Worse still, every
single change requires recompilation of your servlet.

/ JSP (request/response paradigm) \

—
D \ Http request Umﬂ
\/ 0000000
\@ . Http response ‘ Application Server
Client on host “localhost” port:8080

Client Tier
HTML, |CSS,
JavaScript| [mages etc

ﬁ

4 N

Web Container

Web Browser-1 request -1 single instance 0': oo(r;lvened servleft from thle jlsp crm.jsp file you write is
N code you wrote handles requests from multiple .
client-1 ‘ browser instances by assigning a thread from tran3|a_ted |nto. aserviet class
response - 1 the thread-pool for each request. by the jsp engine.
|
Web Browser-2 request - 2 translate m
client-2 | internet
response - 2 %
[=
Web Browser-3 request - 3 = a < § g % %
client-2 : = Z = S
= =] &
response - 3 5 18

_/

-

http://myserver:8080/myWebCtxt/crm. jsp request-Ji <¥épage contentType=" text/html" %>
<!-- simple JSP Page -->
<html>
. <title>Simple JSP Page</title>
<l-- simple JSP Page --> <h1>Output to Browser</hl>
<html> <body>
<title>Simple JSP Page</title> 1 Written as html from a JSP Servlet
<h1>Output to Browser</h1> @response /EQESP
<body> P v
Written as html from a JSP Serviet
</body> Note: The converted servlet crm_jsp.class will contain all the required
</html> out.printin(...) constructs, so that you do not have to write them.

Enterprise — JSP 127

Q. Did JSPs make servilets obsolete? No. JSPs did not make Servlets obsolete. Both Servlets and JSPs are
complementary technologies. You can look at the JSP technology from an HTML designer’s perspective as an
extension to HTML with embedded dynamic content and from a Java developer’'s as an extension of the Java
Servlet technology. JSP is commonly used as the presentation layer for combining HTML and Java code. While
Java Servlet technology is capable of generating HTML with out.printin(“<html>..... </html>") statements, where
“out” is a PrintWriter. This process of embedding HTML code with escape characters is cumbersome and
hard to maintain. The JSP technology solves this by providing a level of abstraction so that the developer can
use custom tags and action elements, which can speed up Web development and are easier to maintain.

Q. What is a model 0 pattern (i.e. model-less pattern) and why is it not recommended? What is a model-2
or MVC architecture?

Problem: The example shown above is based on a “model 0” (i.e. embedding business logic within JSP) pattern.
The model 0 pattern is fine for a very basic JSP page as shown above. But real web applications would have
business logic, data access logic etc, which would make the above code hard to read, difficult to maintain, difficult
to refactor, and untestable. It is also not recommended to embed business logic and data access logic in a JSP
page since it is protocol dependent (i.e. HTTP protocol) and makes it unable to be reused elsewhere like a
wireless application using a WAP protocol, a standalone XML based messaging application etc.

Solution: You can refactor the processing code containing business logic and data access logic into Java
classes, which adhered to certain standards. This approach provides better testability, reuse and reduced the
size of the JSP pages. This is known as the “model 1” pattern where JSPs retain the responsibility of a controller,
and view renderer with display logic but delegates the business processing to java classes known as Java Beans.
The Java Beans are Java classes, which adhere to following items:

= Implement java.io.Serializable or java.io.Externalizable interface.
= Provide a no-arguments constructor.
= Private properties must have corresponding getXXX/setXXX methods.

Mbokl-1 pattemn

\
—
J

The above model provides a great improvement from the model 0 or model-less pattern, but there are still some
problems and limitations.

Problem: In the model 1 architecture the JSP page is alone responsible for processing the incoming request and
replying back to the user. This architecture may be suitable for simple applications, but complex applications will
end up with significant amount of Java code embedded within your JSP page, especially when there is significant
amount of data processing to be performed. This is a problem not only for java developers due to design ugliness
but also a problem for web designers when you have large amount of Java code in your JSP pages. In many
cases, the page receiving the request is not the page, which renders the response as an HTML output because
decisions need to be made based on the submitted data to determine the most appropriate page to be displayed.
This would require your pages to be redirected (i.e. sendRedirect (...)) or forwarded to each other resulting in a
messy flow of control and design ugliness for the application. So, why should you use a JSP page as a
controller, which is mainly designed to be used as a template?

Solution: You can use the Model 2 architecture (MVC — Model, View, Controller architecture), which is a hybrid
approach for serving dynamic content, since it combines the use of both Servlets and JSPs. It takes advantage of
the predominant strengths of both technologies where a Servlet is the target for submitting a request and
performing flow-control tasks and using JSPs to generate the presentation layer. As shown in the diagram below,
the servlet acts as the controller and is responsible for request processing and the creation of any beans or

128

objects used by the JSP as well

Enterprise — JSP

as deciding, which JSP page to forward or redirect the request to (i.e. flow

control) depending on the data submitted by the user. The JSP page is responsible for retrieving any objects or
beans that may have been previously created by the servlet, and as a template for rendering the view as a

response to be sent to the user as

an HTML.

/ Model-2 pattern (Model, View, Controller architecture)

/

Web Container \

Serviet Java Beans w
(Controller) . . (Model) |
e.g. CRMServlet with 2.instantiate e.g. crm.class with 3 Database

control logic processing logi

JSP page
(View)
e.g. crm.jsp with
display logic

)

N

Q. If you set a request attribute in your JSP, would you be able to access it in your subsequent request
within your servlet code? [This question can be asked to determine if you understand the request/response paradigm]

The answer is no because your request goes out of scope, but if you set a request attribute in your servlet then
you would be able to access it in your JSP.

/ Understanding the request/response paradigm \
—
D [Http request
QLS AT
@E@ HTip response] Application Server
Client on host “localhost” port:8080
CRMServlet.class
Client Tligr
Tier

http://localhost:8080/myWebCtxt/crm.do

public class CRMServlet extends HttpServlet {

protected void doPost(HttpServletRequest req, HttpServletResponse resp)
1. request—Pp throws ServletException, IOException {

html sent from JSP to the browser

String name = "ServletText";

String value = "request attribute set by serviet";
req.setAttribute(name, value);

/lforward the request to JSP
req.getRequestDispatcher("/crm.jsp").forward(req, resp);

<IDOCTYPE htm!| PUBLIC "-//W3C//[DTD XHTML
1.0 Transitional//EN" "http://www.w3.0rg/TR/
xhtm|1/DTD/xhtm|1-transitional.dtd">

<l-- simple JSP Page -->

<htm[>

<title>Simple JSP Page</title>
<h1>Output to Browser</h1>

<body>
Written as htm| from a JSP. Attribute set by
servlet:
<!-- retrieve attribute set by Servlet-->
request attribute set by servlet

</body>

</html>

}
internet } ,
2.
crm.jsp forward

<% @page contentType="text/html" %>
<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0
Transitional//EN" "http://www.w3.0org/TR/xhtm|1/DTD/xhtml1-transitional.dtd">
<l-- simple JSP Page -->
<htmI>
<title>Simple JSP Page</title>
<h1>Output to Browser</h1>
<body>
Written as html from a JSP. Attribute set by servlet:
3. response —@) <!--retrieve attribute set by Servlet-->
<%= request.getAttribute("ServletText") %>

<%-- if you set a request attribute, it goes out of scope after response has
been sent and a new request object will be created. --%>

<% request.setAttribute("JSPText", "Attribute set by JSP");%>
</body>
</htmI>

=

Enterprise — JSP 129

Servlets and JSPs are server side technologies and it is essential to understand the HTTP
request/response paradigm. A common misconception is that the Java code embedded in the HTML page is
transmitted to the browser with the HTML and executed in the browser. As shown in the diagram above, this is not
true. A JSP is a server side component where the page is translated into a Java servlet and executed on the
server. The generated servlet (from the JSP) outputs only HTML code to the browser.

As shown above in the diagram, if you set a request attribute in your servlet code, it can be retrieved in your JSP
code, since it is still in scope. Once the response has been sent back to the user (i.e. the browser) the current
request goes out of scope. When the user makes another request, a new request is created and the request
attribute set by the JSP code in your previous request is not available to the new request object. If you set a
session attribute in your JSP, then it will be available in your subsequent request because it is still in scope. You
can access it by calling session.getAttribute(“JSPText”).

Q. How to get a pop-up window when clicking on a button?

By using Java Script in your HTML code. The following Java Script is executed in the client side within your web
browser.

<SCRIPT type="text/javascript">
K==
function displayWarningMessage () {

var answer =
if (!'answer) {
return false;

confirm("This process may take a while, please click 'OK' to continue.");

}
else{
return disableSendBtton () ;
}
}
// --></SCRIPT>

Q. What is client-side vs. server-side validation?
client-side validation (client-tier)
Java Script is used for client-side validation.
Validation takes place in client-side within your
browser. Java Script can be used to submit your
form data after successful validation.

server-side validation (presentation-tier)
Form data is submitted to the server and validation is
carried out in the server.

No extra network trip is required when there are
validation errors because form does not have to
be submitted.

Extra network round trip is required when there are
validation errors because validation errors need to be
reported back to the client and the form data has to be

resubmitted.

Q. How do you prevent multiple submits due to repeated “refresh button” clicks?

Problem: Very often a user is completely unaware that a browser resends information to the server when a
“refresh button” in Microsoft Internet Explorer or a “reload button” in Netscape/Mozilla is clicked. Even if a browser
warns user, a user cannot often understand the technical meaning of the warning. This action can cause form data
to be resubmitted, possibly with unexpected results such as duplicate/multiple purchases of a same item,
attempting to delete the previously deleted item from the database resulting in a SQLException being thrown.
Non-idempotent methods are methods that cause the state to change. But some operations like reading a list of
products or customer details etc are safe because they do not alter the state of the model and the database.
These methods are known as idempotent methods.

Solution-1: You can use a Post/Redirect/Get (aka PRG) pattern. This pattern involves the following steps:

Step-1: First a user filled form is submitted to the server (i.e. a Servlet) using a “POST” (also a “GET” method).
Servlet performs a business operation by updating the state in the database and the business model.

Step-2: Servlet replies with redirect response (i.e. sendRedirect() operation as opposed to the forward() operation)
for a view page.

Step-3: Browser loads a view using a “GET” where no user data is sent. This is usually a separate JSP page,
which is safe from “multiple submits”. For e.g. reading data from a database, a confirmation page etc.

130 Enterprise — JSP

Post/Redirect/Get pattern to prevent multiple submits due to clicking “refresh button”

“D [Http request
= i — .
H Application Server
on host ‘loaal st” port:8080
Client %
T
Address bar: http://localhost:8080/my\WebOt/ RequestForAPurchaseFormServiet.class k¢
requestForAPurchaseForm.do 1. request public class RequestForAPurchaseFormServiet extends HttpServiet {
. : - Feque; ...
Alink is clicked the above URL
INK IS Gloked Lsing ove (GET) protected void doPost(HttpServietRequest req, HttpSenvietResponse resp)
to request for a purchase order form. . .
throws ServietException, IOException {
req.getRequestDispatcher("/requestForAPurchaseFormjsp").forward(req, resp);
}
Address bar: http://localhost:8080/myWWebCtxt/ }
requestForAPurchaseForm.do 1
htmi sent to browser from JSP requestForAPurchaseForm,jsp 2forwerd()
<htmi> o =
<iitle>Simple JSP Page</ile> 3. response :;/to%age contentType="text/html" %> %
<h1>Output to Browser</h1>
<body> <h1>Qutput to Browser</h1>
<form actior="/myWebCtxt/purchase.do" method="POST™>
<input type="text" value=""/> q 0 " " 0
<input type="subrmit" value="submit"/> <form action="/myWWebCtxt/purchase.do” method="POST">
<fform> <input type="text" value="' />
j;ﬁw o <input type="submit" value="submit" />
orm>
.\ 7 </body>
. "eq <html>
Address bar: http:/localhost:8080/ (fq,b‘(%,
myWebChx/display.jsp s PurchaseServiet.class
AbOVieLtijL Ifse(iﬁptli)t,ted 0'01' tggadﬁr‘?sebar- So 9 \A public class PurchaseSenviet extends HttpSenviet {
repeated “refr on” dlicks calls
display.jsp page, which is safe to do so since it protected void doPost(HttpServietRequest req, HttpServietResponse resp)
does not change any state. If you forward to throws ServietException, IOException {
display.jsp instead of redirect then URL “http://
localhost:8080/myWebCtxt/purchase.do” is 2 /lcode to update database and model through a business delegate
displayed on the address bar and repeated : "e‘* Il & data acess logic classes. Not safe to be repeated unintentionally.
“refresh button” clicks can result in duplicate 'eq
purchase of the same item, /Inote that sendRedirect requires an absolute path
\. resp.sendRedirect("http://localhost:8080/myWebCixt/display.jsp");
3 }
“Ney, }
html sent to browser from JSP (GE')req
<~ simple JSP Page > Uest Display.jsp
<html> \
ftle>Thenks for your purchase</titie> <o@page contentType="text/ntml" %>
<h1>Thanks rchase<ht> S elnzlbde g
O your pu 4 <htmi>
<body> </body> ¢4 response——— @ itie>Thanks for your purchase</title>
</html> <h1>Thanks for your purchase</h1>
<body></body>
</html>

Note: If you forward the request from the “PurchaseSenviet” to the “display.jsp” instead of the redirect as shown in this diagram, then

the URL “http:/localhost:8080/myWebCtxt/purchase.do” is displayed on the address bar and repeated “refresh button” clicks
can result in duplicate purchase of the same item.

Advantages: Separates the view from model updates and URLs can be bookmarked.
Disadvantage: Extra network round trip.

Solution-2: The solution-1 has to make an extra network round trip. The synchronizer token pattern can be

applied in conjunction with request forward (i.e. instead of redirect) to prevent multiple form submits with
unexpected side effects without the extra round trip.

Enterprise — JSP 131

/ Synchronizer Token Pattern \
inf t
Hitp request
Hitp response |
Applicatio
on host “localhost” port:8080
RequestForAPurchaseFormServiet.class 123
Fx&m/slz'?lmiso&y b Since this request is for a transactional page, which changes the state of your model and the
RX¥E$ - - om database, you should generate a use onae only token
Alink is dicked using the above URL to 1. request Generate a token: 123 (e.g. jsessionid + timestarmp is more secured).
request for a purchase order fom (GET) Save the token: session.setAttribute(TRANSACTION_TOKEN, “123");
Address bar: http://localhost:8080/ 2.
myWebCixt/requestForAPurchaseFormdo <123 requestForAPurchaseFormjsp for;ard
<form action="/my\WebCtxt/purchase.do” methad="POST"> “qoam . ;
<input type="Hicen” el 3. response Inclut:iethefcoken 123" as a hidden field in the requested foormand
<input type="text" value=" /> send it to client.
<input type="stbnit" value="stbnit!>
(gets reset tonul
.\ 1, PurchaseServiet.class increment to 124
Subm'f the If (tokenExistinRequest && tokenExistinSession &
(tokenStoredinRequest = tokenStoredinSession) { //123=123 so ok
Address bar: http:/localhost:8080/ /. reset the token. (i.e. set it to null or increment it to 124)
myWebCixt/purchase.do 11 2. proceed with database & mode! update
/I 3. forward user to the “display.jsp” page.
S . yelse{
:mf_ljr?rf;orw ;L)ru(rhdwaseﬁtle) // 1. duplicate submit, not okay to proceed.
el flerse 1 2. forward user to the “error.jsp” page.
<oody> <hodp> V\ \ jsp’ pege
>
< 2 k 9

2

oy oo

display.jsp or error.jsp v
Display or an error page is sent to the user.

Important: If the “refresh” button s dlicked, then the formis resubmitted(duplicate subrit) with the same form data to the “PurchaseServiet”.
The “if” condition will be evaluated as false since the token in the request is “123” but the token in the session would be null or 124. So the
“else” condition is evaluated and the request is forwarded to the error.jsp page. The URL address will still be “http:/localhost:8080/
myWebChxt/purchase.do” but any number of resubmits will result in “error.jsp” page. If you need to intentionally purchase the same item
again, then you need to enter via the right flow of control i.e “http:/localhost:8080/my/\ebChxt/requestForAPurchaseFormdo” where a new
\ token will be generated and same sequence of processing will occur but this time with a different session token. /

The basic idea of this pattern is to set a use once only token in a “session”, when a form is requested_and the
token is stored in the form as a hidden field. When you submit the form the token in the request (i.e. due to hidden
field) is compared with the token in the session. If tokens match, then reset the token in the session to null or
increment it to a different value and proceed with the model & database update. If you inadvertently resubmit the
form by clicking the refresh button, the request processing servlet (i.e. PurchaseServlet) first tests for the
presence of a valid token in the request parameter by comparing it with the one stored in the session. Since the
token was reset in the first submit, the token in the request (i.e 123) would not match with the token in the session
(i.e. null or 124). Since the tokens do not match, an alternate course of action is taken like forwarding to an
error.jsp page.

Note: Prohibit caching of application pages by inserting the following lines in your pages:
<meta HTTP-EQUIV="pragma” content="no-cache” />
<meta HTTP-EQUIV="Expires” content="-1"7 />

132

Enterprise — JSP

Q. What is a Front Controller pattern with command objects [uses the command design pattern?

The model-2 MVC pattern can be further improved and simplified by using the Front Controller pattern with
command objects. In a complex Web site there are many similar input control operations like security,
internationalization, controlling and logging user’s progress through the site etc you need to perform while handling
a request. If these input control operations are scattered across multiple objects, much of these behaviors can end
up duplicated resulting in maintenance issues. The Front Controller pattern uses a single servlet, which acts as
initial point of contact for handling all the requests, including invoking services such as security (authentication and
authorization), logging, gathering user input data from the request, gathering data required by the view etc by
delegating to the helper classes, and managing the choice of an appropriate view with the dispatcher classes.
These helper and dispatcher classes are generally instances of a command design pattern (Refer Q11 in How
would you about... section) and therefore usually termed as command objects.

The Front Controller pattern centralizes services like security, internationalization, auditing, logging etc to
improve manageability, and improves reusability by moving common behavior among command objects into the
centralized controller or controller managed helper classes.

/ Model-2 Front Controller Pattern

/ Web Container \

@ 1. request—] Front Controller -
= =
3 Java Beans -

3 Database

(Model)
e.g. Crm.class with
processing logic

User
(Browser)

" ~ Y,

As was discussed briefly in Q24 in Enterprise Section, the Front Controller uses a single servlet to process all
requests, which means only one servlet controller will be declared (i.e. servlet declaration and servlet mapping) in
the web.xml and hence eliminates the need to have more than one servlet and consequently the need to have to
declare more than one servlet in the web.xml deployment descriptor.

Without the Front Controller pattern With the Front Controller pattern

Without the “Front Controller” pattern, the web.xml | <serviet>

would have the following set of entries for each <servlet-name>MyControllerServiet</serviet-name>

servlet in your application <servlet-class>com. MyControllerServlet </servlet-class>
' </servlet>

<servlet>
<servlet-name>CRMServlet</serviet-name>
<servlet-class>com.CRMServlet</servlet-class>
</servlet>

<servlet-mapping>
<servlet-name> MyControllerServlet </servlet-name>
<url-pattern>*.do</url-pattern>

</servlet-mapping>

<servlet-mapping> .
<servlet-name>CRMServlet</serviet-name> There will be only one central controller servlet
<url-pattern>crm.do</url-pattern> configured in the web.xml file.

</servlet-mapping>

So, if you say you have 50 servlets in your web
application, then you would have the above
declarations 50 times in your web.xml file. This
would make your web.xml file to be large and hard
to maintain.

[Example of front controller pattern:] The popular request based web framework Struts uses the Front
Controller pattern, where a centralized single servlet is used for channeling all requests and creating instances of
“Action” classes for processing user requests. The Struts “Action” classes are command objects.

Enterprise — JSP 133

Q. What do you understand by the term JSP translation phase or compilation phase?

As shown below in the figure the JSPs have a translation or a compilation process where the JSP engine
translates and compiles a JSP file into a JSP Servlet. The translated and compiled JSP Servlet moves to the
execution phase (run time) where they can handle requests and send responses.

Unless explicitly compiled ahead of time, JSP files are compiled the first time they are accessed. On large
production sites, or in situations involving complicated JSP files, compilation may cause unacceptable delays to

users first accessing the JSP page. The JSPs can be compiled ahead of time (i.e. precompiled) using application
server tools/settings or by writing your own script.

K JSP moving parts \

Application Server

Web Container

® HTTP) ﬁ
request

Servlets

A

auibu3z dsr

JSPs

auibugz jo|nies

JSP Servlets

(1esmoug) INIITO
J9AI9S g9

HTTP P
¢re:sponse ® - i

static docs
(HTML,CSS etc)

NG 1/

Q 28:
A 28:

Explain the life cycle methods of a JSP? @ m

= Pre-translated: Before the JSP file has been translated and compiled into the Servlet.

= Translated: The JSP file has been translated and compiled as a Servlet.

= Initialized: Prior to handling the requests in the service method the container calls the jsplnit() to initialize the
Servlet. Called only once per Servlet instance.

= Servicing: Services the client requests. Container calls the _jspService() method for each request.

= Out of service: The Servlet instance is out of service. The container calls the jspDestroy() method.

Q. Can you have your JSP-generated servlet subclass your own servlet instead of the default HttpServilet?
Your JSP generated servlet can extend your own servlet with the directive:

<%@ page extends="com.CRMServlet”%>

But, you should be very careful when having your JSP pages extend your own servlet class. By doing so you may
lose any advanced optimization that may be provided by your JSP engine. If you do have a compelling reason to
do so then your own superclass servlet has to fulfill the contract with the JSP engine by:

1. Implementing the HttpJspPage interface for HTTP protocol or JspPage interface. If you do not then you will
have to make sure that all your super-class serviet methods are declared as final.

2. Implementing your super-class servlet methods as follows:
. The service() method has to invoke the _jspService() method.
. The init() method has to invoke the jsplnit() method.
. The destroy() method has invoke jspDestroy() method.

If the above conditions are not met, then a translation error may be thrown by your JSP engine.

134

Enterprise — JSP

Q 29: What are the main elements of JSP? What are scriptlets? What are expressions? El
A 29: There are two types of data in a JSP page.

Static part (i.e. HTML, CSS etc), which gets copied directly to the response by the JSP Engine.
Dynamic part, which contains anything that can be translated and compiled by the JSP Engine.

There are three types of dynamic elements. (TIP: remember SAD as an abbreviation for Scripting, Action and
Directive elements).

Scripting Elements: A JSP element that provides embedded Java statements. There are three types of
scripting elements. They are Declaration, Expression and Scriplet elements.

1.

Declaration Element: is the embedded Java declaration statement, which gets inserted at the Servlet
class level.

<%! Calendar c¢ = Calendar.getInstance(); %>

declaring variables via this element is not thread-safe, because this variable ends up in the generated Servlet
as an instance variable, not within the body of the _jspService() method. Ensure their access is either read-only or
synchronized. You can make your JSP generated servlets implement the SingleThreadModel with the directive

<%@ page isThreadSafe="false” %> butnotrecommended as was discussed in Q16 in Enterprise section.

Q. Can you declare a method within your JSP page?

You can declare methods within your JSP pages as declarations, and your methods can be invoked from
within your other methods you declare, expression elements or scriptlets. These declared methods do not
have direct access to the JSP implicit objects (Refer Q32 in Enterprise section) like session, request,
response etc but you can pass them to your methods you declare as parameters.

<%!
//JSP method where implicit session object as method argument
public String myJspMethod (HttpSession session) {
String str = (String)session.getAttribute ("someAttrName") ;
return str.substring(0, 3);
}
%>

Declaring methods within a JSP page is a bad practice because it will make your JSP page hard to
read, reuse and maintain.

Q. If it is not a good practice to implement methods within your JSPs then can a JSP page process
HTML form data?

Yes. Unlike servlets you do not have to implement HTTP specific methods like doGet(), doPost() etc in your
JSPs. In JSPs you can obtain the form data via the “request” implicit object within a scriptlet or expression
as follows:

<%
String firstName = request.getParameter (“paraml”);

int units = new Integer (request.getParameter (“param2”)).intValue();
%>

Expression Element: is the embedded Java expression, which gets evaluated by the service method.

<%= new Date () %>

Scriptlet Element: are the embedded Java statements, which get executed as part of the service method.

<%
String username = null;
username = request.getParameter ("userName"); //”request” is a JSP implicit object
%>
Not recommended to use Scriptlet elements because they don’t provide reusability and

maintainability. Use custom tags like JSTL, JSF tags, etc or beans instead.

Enterprise — JSP 135

Q. How will you perform a browser redirection from a JSP page?
<% response.sendRedirect (“http://www.someAbsoluteAddess.com”); %>
or you can alter the location HTTP header attribute as follows:
<%
response.setStatus(HttpServletResponse.SC_MOVED_PERMANENTLY);

response.setHeader (“Location”, “/someNewPath/index.html”) ;
%>

Q. How do you prevent the HTML output of your JSP page being cached?

<

o

response.setHeader (“Cache-Control”, “no=store”); //HTTP 1.1
response.setDateHeader (“Expires”, 0);

o
Vv

Action Elements: A JSP element that provides information for execution phase.

<jsp:useBean id="object name" class="class name"/>
<jsp:include page="scripts/login.jsp" />

Q. How would you invoke a Servlet from a JSP? Or invoke a JSP form another JSP?

You can invoke a Servlet from a JSP through the jsp:include and jsp:forward action tags.

<jsp:include page="/servlet/MyServlet” flush="true” />

Refer Q31 in Enterprise section for the difference between static include (using directive element <% @ include
%>) and dynamic include (using action element <jsp:include ...>).

Q. Generally you would be invoking a JSP page from a Serviet. Why would you want to invoke a Servlet
from a JSP?

JSP technology is intended to simplify the programming of dynamic textual content. If you want to output any
binary data (e.g. pdfs, gifs etc) then JSP pages are poor choice for the following reasons and should use Servlets
instead:

e There are no methods for writing raw bytes in the JspWriter object.

e During execution, the JSP engine preserves whitespace. Whitespace is sometimes unwanted (a .gif file, for
example), making JSP pages a poor choice for generating binary data. In the following example, the browser
receives unnecessary newline characters in the middle or at the end of the binary data depending on the
buffering of your output. “out” is a JspWriter implicit object.

<% out.getOutputStream() .write(...some binary data...) %>

<% out.getOutputStream() .write(...some more binary data...) %>
Q. How do you forward a request to another resource (e.g. another Servlet) from within your JSP?
//Without passing any parameters

<jsp:forward page="/anotherPage.jsp” />

Q. How does an include/forward from a JSP differ from forward/include from a serviet? How would you
pass parameters between resources?

forward / include from a JSP to another forward / include from a Servlet to another

JSP or a Servlet Servlet or a JSP
Refer Q18 in Enterprise section.
<%-- forward with parameters passed --%>
<jsp:forward page="/servlet/crm.do”> Get a ServletContext object and then the RequestDispatcher
<jsp:param name="userName” value="Peter” /> object. You can append a query string using “?” syntax with
</jsp:forward> name=value pairs separated by “&” as shown in bold.

136

Enterprise — JSP

<%-- include with parameters passed --%>
<jsp:include page="/servliet/MyServlet” flush="true” >

<jsp:param name="userName” value="Peter” />
</jsp:include>

Alternatively you can send an appropriately scoped
(request, session or application) JavaBean or
instead of using <jsp:param > you could set
attributes via the HTTP request/session objects.

<% request.setAttribute(‘userName”, "Peter”); %>
<% session.setAttribute (‘userName”, “Peter”); %>

You can retrieve the data passed as parameters
with <jsp:param ...> in a servlet as follows:

request.getParameter(“userName”);

You can retrieve the data passed as HTTP request
/session attribute as follows:

request.getAttribute(“userName”);
session.getAttribute(“userName”);

ServletContext sc = this.getServletContext()
RequestDispatcher rd =
sc.getRequestDispatcher(“/myPage?userName=Smith”);

Invoke the include() or forward() method of the request
dispatcher.

rd.include(request, response);
or
rd.forward(request,response);
In the target Servlet or JSP, you can use the

request.getParameter(“userName”) method to retrieve the
parameter sent vai appended query string.

You can also use the setAttribute() method of the HTTP request

object.

request.setAttribute(“‘userName”, “Peter”);

RequestDispatcher rd =
sc.getRequestDispatcher(“/myPage?userName=Smith”);

In the target JSP page you can use:

<% request.getAttribute(‘userName”); %>

It differs from forwarding it from a Servlet in its syntax. Servlets make use of a RequestDispatcher object. Refer

Q18 in Enterprise section.

Directive Elements: A JSP element that provides global information for the translation phase. There are
three types of directive elements. They are page, include and taglib.

<%-- page directives examples: --%>
<%@ page import=”java.util.Date” %>
<%@ page contentType="text/html” %>

<%-- include directive example: --%>
<%@ include file="myJSP” %>

<%-- taglib directive example: --%>
<%@ taglib uri="tagliburi” prefix="myTag”%>

Q. How does JSP handle run-time exceptions?

//to import
//set content type

// to include another file

You can use the attribute “errorPage” of the “paie” directive to have your uncaught RuntimeExceptions

automatically forwarded to an error processing page.

<%Q@ page errorPage="error.jsp” %>

You must always use a relative URL as the “errorPage” attribute value.

The above code redirects the browser client to the error.jsp page. Within your error.jsp page, you need to indicate
that it is an error processing page with the “isErrorPage” attribute of the “page” directive as shown below.
“exception” is an implicit object accessible only within error pages (i.e. pages with directive <%@ page
isErrorPage="true” %>

<%Q@ page isErrorPage="true” %>

<body>
<%= exception.gerMessage () %>
</body>
Q. How will you specify a global error page as opposed to using “errorPage” and “isErrorPage”

attributes?

You could specify your error page in the web.xml deployment descriptor as shown below:

Enterprise — JSP 137

/] by exception type

<error-page>
<exception-type>java.lang.Throwable</exception-type>
<location>/error.jsp</location>

</error-page>

/lor by HTTP error codes

<error-page>
<error-code>404</error-code>
<location>/error404.html</location>

</error-page>

You could retrieve the java.lang.Throwable object within your error.jsp page as follows:
5>

<%= request.getAttribute ("javax.servlet.error.exception")

You cannot use the “exception” implicit object for the global error pages. This is because of mismatch in the way servlet
(uses javax.servlet.error.exception) and JSP (uses javax.serviet.jsp.jspException) let you get the java.lang.Throwable.

Q. How can you prevent the automatic creation of a session in a JSP page?
Sessions consume resources and if it is not necessary, it should not be created. By default, a JSP page will
automatically create a session for the request if one does not exist. You can prevent the creation of useless

sessions with the attribute “session” of the page directive.

<%@ page session="false” %>

Q 30:
A 30:

What are the different scope values or what are the different scope values for <jsp:usebean> ? @ m

Scope
Page

Object
PageContext

Comment
Available to the handling JSP page only.

Request

Request

Available to the handling JSP page or Servlet and forwarded JSP page or Servlet.

Session

Session

Available to any JSP Page or Servlet within the same session.

Application

Application

Available to all the JSP pages and Servlets within the same Web Application.

Q 31:
A 31:

What are the differences between static and a dynamic include? @ m

Static include <%@ include %>
During the ftranslation or compilation phase all the
included JSP pages are compiled into a single Servlet.

Dynamic include <jsp:include>

The dynamically included JSP is compiled into a separate Servlet.
It is a separate resource, which gets to process the request, and
the content generated by this resource is included in the JSP
response.

No run time performance overhead. Has run time performance overhead.

Which one to use: Use “static includes” when a JSP page does not change very often. For the pages, which change frequently,
use dynamic includes. JVM has a 64kb limit on the size of the method and the entire JSP page is rendered as a single method
(i.e. _jspService (..)). If a JSP page is greater than 64kb, this probably indicates poor implementation. When this method
reaches its JVM limit of 64kb, the JVM throws an error. This error can be overcome by splitting the JSP files and including
them dynamically (i.e. using <jsp:include....... >) because the dynamic includes generate a separate JSP Servlet for each
included file.

Note: The “dynamic include” (jsp:include) has a flush attribute. This attribute indicates whether the buffer should be flushed
before including the new content. In JSP 1.1 you will get an error if you omit this attribute. In JSP 1.2 you can omit this attribute
because the flush attribute defaults to false.

Q32:
A 32:

What are implicit objects and list them? @ FAQ)
Implicit objects are the objects that are available for the use in JSP documents without being declared first. These
objects are parsed by the JSP engine and inserted into the generated Servlet. The implicit objects are:

Implicit object | [Scope comment

request Request Refers to the current request from the client.
response Page Refers to the current response to the client.
pageContext Page Refers to the page’s environment.

138 Enterprise — JSP

session Session Refers to the user’s session.

application Application Same as ServletContext. Refers to the web application’s environment.

out Page Refers to the outputstream.

config Page same as ServletConfig. Refers to the servlet’s configuration.

page Page Refers to the page’s Servlet instance.

exception Page exception created on this page. Used for error handling. Only available if it is an
errorPage with the following directive:
<%Q@ page isErrorPage="true" %>
The “exception” implicit object is not available for global error pages declared through
web.xml. You can retrieve the java.lang.Throwable object as follows:
<%= request.getAttribute ("javax.servlet.error.exception") %>

<%
String username = null;

username =

request.getParameter ("userName") ;

out.print (username) ;

o°

>

//”request” is an implicit object

//”out” is an implicit object

Note: Care should be taken not to name your objects the same name as the implicit objects. If you have your own object with
the same name, then the implicit objects take precedence over your own object.

Q. What is JSP EL (Expression Language)?

One major component of JSP 2.0 is the new expression language named EL. EL is used extensively in JSTL
(Java Standard Tag Library). However EL is a feature of JSP and not of JSTL. The EL is a language for
accessing runtime data from various sources. JSP EL variables come from one of 2 ways:

1. Implicit variables as shown below:

Parameter values,
headers and cookies

for the current request.

Implicit variable
param

Description

A collection of all
request parameters as a
single string value for
each parameter.

paramValues

A collection of all
request parameters as a
string array value for
each parameter.

Example

<c:if test="${param.name=="peter’} “ >
Welcome Peter !!
</c:if>

header

A collection of all
request headers as a
single string value for
each header.

headerValues

A collection of all
request headers as a
string array value for
each header.

${header['User-Agent'l}

you must use the array syntax for the header, because the
name includes a dash. otherwise it would be interpreted as
the value of the variable expression “header.User” minus
the value of the variable named “Agent”.

cookie A collection of all <c:if test="${ | empty cookie.userName}">
request cookies as a Welcome back
single <c:out value="${cookie.userName.value}">
javax.servlet.http.Cookie | </c:if>
instance value for each
cookie.
Defined in web.xml initParam A collection of all
application init ${initParam.dataSource}
parameters as a single
string value for each
parameter.
Access to the JSP pageContext An instance of the PageContext.getRequest () > ${pageContext.request}

objects that represent
request, response,
session, application
etc.

javax.servlet.jspPageCo
ntext class.

PageContext.getResponse () > ${pageContext.response}

PageContext.getSession() > ${pageContext.session}

PageContext.getServletContext() >
${pageContext.servietContext}

<c:if test="${pageContext.request.method="POST’}">

<lciif>

Enterprise — JSP

139

collections containing | pageScope A collection of all page

all objects in each scope objects. <c:out value="${requestScope.city}” />
specific scope. You | requestScope A collection of all

can use these to limit request scope objects. <c:out value="${sessionScope.city}" />
the search for an [sessionScope A collection of all

object to just one

session scope objects.

scope instead of
searching all scopes,
which is the default if

applicationScope

A collection of all
application scope
objects.

no scope is specified

2. Find the first of using: pageContext.findAttribute (varname) which is like getting the first of:
page.getAttribute(varname);
request.getAttribute(varname);
session.getAttribute(varname);
application.getAttribute(varname);
<c:out value="${city}” />
Q. What is the difference between a JspWriter denoted by the “out” implicit object and the PrintWriter
object obtained from response.getWriter() method?
JSPs should use the JspWriter denoted by the “out” implicit object for sending output back to the client. A
JspWriter is a buffered version of the PrintWriter. Refer JspWriter API for details. JspWriter also differs from a
PrintWriter by throwing java.io.lOException, which a PrintWriter does not. The advantage of throwing an exception
is that if your HTTP connection is broken for some reason, your JSP won't sit there trying to send characters to a
broken connection.
Q 33: Explain hidden and output comments? [SF|
A 33: An output comment is a comment that is sent to the client where it is viewable in the browser’s source.
<!-- This is a comment which is sent to the client -->
A hidden comment documents a JSP page but does not get sent to the client. The JSP engine ignores a hidden
comment, and does not process any code within hidden comment tags.
<%-- This comment will not be visible to the client --%>
Q 34: Is JSP variable declaration thread safe?
A 34: No. The declaration of variables in JSP is not thread-safe, because the declared variables end up in the generated
Servlet as an instance variable, not within the body of the _jspService() method.
The following declaration is not thread safe: because these declarations end up in the generated servlet as
instance variables.
<%! int a = 5 %>
The following declaration is thread safe: because the variables declared inside the scriplets end up in the
generated servlet within the body of the _jspService() method as local variables.
<% int a = 5 %>
Q 35: Explain JSP URL mapping? What is URL hiding or protecting the JSP page? @ @ m
A 35: As shown in the figure, the JSP resources usually reside directly or under subdirectories (e.g. myPath) of the

document root, which are directly accessible to the user through the URL. If you want to protect your Web
resources then hiding the JSP files behind the WEB-INF directory can protect the JSP files, css (cascading style
sheets) files, Java Script files, pdf files, image files, html files etc from direct access. The request should be made
to a servlet who is responsible for authenticating and authorizing the user before returning the protected JSP page
or its resources.

140 Enterprise — JSP

e JSP URL Mapping I

URL ﬁ http://<hostname:port>/<webapp name><pathname>/<resourcename>

URL eg * http://localtust:8080/my5?ps/myPath/myPage.jsp

4
File * QERVER_HOME\WebApB§\myApp;\myPath\myPage.jsp

Server Root

Document root

Unhidden URL Hidden URL

myPage.jsp is directly accessible through URL myPage.jsp is hidden or protected. cannot be
directly accessed through URL

myPath }—C myPage.jsp)

WEB-INF

WEB-INF

ib 4{ myPath }—C myPage.jsp>
i

classes -“
\ L | classes /

Q 36: What is JSTL? What are custom tags? Explain how to build custom tags? m

A 36: JSTL stands for Java Standard Tag Library and is nothing more than a set of simple and standard tag libraries that
encapsulates the core functionality commonly needed when writing dynamic JSP pages. JSTL was introduced to
allow JSP programmers to code with tags rather than embedding Java code as scriptlets.

Using scriptlets Using JSTL tags

<html> <%@ taglib prefix="ec”
<head> uri="http//java.sun.com/jstl/core”>
<title>simple example<title>
</head> <html>
<body> <head><title>simple example<title></head>
<3 <body>
for (int i=0; i<5; i++) { <c:forEach var="i” begin="1" end="5" step="1">
%> <c:out value="${i}”>

<%= i %>
 </c:forEach>
</body>
<%} %> </html>
</body>
</html> The above JSP code consists entirely of HTML & JSTL tags (in bold).
The above JSP code is hard to read and maintain.

JSTL consists of 4 tag libraries:

Description Tag Prefix Example
(recommended)
Core Tag Library — looping, | ¢ <c:out value="${hello}” />
condition evaluation, basic input, <c:if test="${param.name=’'Peter’}”> ..
output etc. <c:forEach items="${addresses}” var="address”> ..

Formatting/Internationalization | fmt <fmt:formatNumber value="${now.time}” />
Tag Library — parse data such
as number, date, currency etc

XML Tag Library — tags to | x <x:forEach select="$doc/books/book" var="n">

access XML elements. <x:out select="$n/title" />
</x:forEach>

Database Tag Library-—tagsto sql <sql:query var="emps” sqgl="”SELECT * FROM Employee”>

Enterprise — JSP 141

access SQL databases and
should be used only to create
prototype programs.

Q. What are JSP custom tags?

Custom JSP tag is a tag you define. You define how a tag, its attributes and its body are interpreted, and then
group your tags into collections called tag libraries that can be used in any number of JSP files. So basically it is a
reusable and extensible JSP only solution. The pre-built tags also can speed up Web development.

STEP: 1
Construct the Tag handler class that defines the behavior.

/ Tag Evaluation Process \

@ Sample code using only doStartTag()

package myTagPkg;

‘ Call setXXX() methods on the Tag ‘

public class MyTag extends TagSupport

{
| doStartTag() | int attr = null;
public int setAttr(int attr){this.attr = attr}
\ evaluate body of the Tag F—‘ public int getAttr(){return attr;}
loop
| doAfterBody() public int doStartTag() throws JspException {
return SKIP_BODY;
‘ doEndTag() ‘ }
public void release(){.....}
release() }

STEP: 2
The Tag library descriptor file (*.tld) maps the XML element names to the tag implementations. The code sample
MyTagDesc.tld is shown below:

<taglib>
<tag>
<name>tagl</name>
<tagclass>myTagPkg.MyTag</tagclass>
<bodycontent>empty</bodycontent>
<attribute>
<name>attr</name>
<required>false</required>
<rtexprvalue>false</rtexprvalue>
</attribute>
</tag>
</taglib>

STEP: 3
The web.xml deployment descriptor maps the URI to the location of the *.tld (Tag Library Descriptor) file. The code
sample web.xml file is shown below:

<web-app>
<taglib>
<taglib-uri>/WEB-INF/MyTagURI</taglib-uri>
<taglib-location>/WEB-INF/tags/MyTagDesc.tld</taglib-location>

142 Enterprise — JSP

</taglib>
</web-app>

STEP: 4
The JSP file declares and then uses the tag library as shown below:

<%@ taglib uri="/WEB-INF/MyTagURI" prefix="myTag" %>

<myTag:tagl attr="abc”></myTag:tagl> or < myTag:tagl attr="abc” />

Q 37: What is a TagExtralnfo class? [SF|
A 37: A TagExtralnfo class provides extra information about tag attributes to the JSP container at translation time.

= Returns information about the scripting variables that the tag makes available to the rest of the JSP page
to use. The method used is:

VariableInfo[] getVariableInfo (TagData td)

<html>
<myTag:addObjectsToArray name="myArray” />
<myTag:displayArray name="myArray” />
</html>

Without the use of TagExtralnfo, if you want to manipulate the attribute “myArray” in the above code in a
scriptlet, it will not be possible. This is because it does not place the “myArray” object on the page. You can
still use pageContext.getAttribute() but that may not be a cleaner approach because it relies on the page
designer to correctly cast to object type. The TagExtralnfo can be used to make items stored in the
pageContext via setAttribute() method available to the scriptlet as shown below.

<html>
<myTag:addObjectsToArray name="myArray”’ />
<%-- scriptlet code %>
<%
for (int 1=0; i<myArray.length;i++) {
html += + myArray[i] + ;
}
%>
</html>

= Validates the attributes passed to the Tag at translation time.

It can validate the array “myArray” to have not more than 100 objects. The method used is:

boolean isValid(TagData data)

Q 38: What is the difference between custom JSP tags and JavaBeans? @
A 38: In the context of a JSP page, both accomplish similar goals but the differences are:

Custom Tags NEVELSTEL

Can manipulate JSP content. Can’t manipulate JSP content.
Custom tags can simplify the complex operations much | Easier to set up.

better than the bean can. But require a bit more work to
set up.

Used only in JSPs in a relatively self-contained manner. Can be used in both Servlets and JSPs. You can define a bean in
one Servlet and use them in another Servlet or a JSP page.

JavaBeans declaration and usage example:

<jsp:useBean id="identifier" class="packageName.className"/>
<jsp:setProperty name="identifier" property="classField" value="someValue" />
<jsp:getProperty name="identifier" property="classField" /> <%$=identifier.getclassField() %>

Enterprise — JSP 143

Q 39:
A 39:

Tell me about JSP best practices? m

Separate HTML code from the Java code: Combining HTML and Java code in the same source code can
make the code less readable. Mixing HTML and scriptlet will make the code extremely difficult to read and
maintain. The display or behavior logic can be implemented as a custom tags by the Java developers and
Web designers can use these tags as the ordinary XHTML tags. Refer Q36 in Enterprise section.

Place data access logic in JavaBeans: The code within the JavaBean is readily accessible to other JSPs
and Servlets.

Factor shared behavior out of Custom Tags into common JavaBeans classes: The custom tags are not
used outside JSPs. To avoid duplication of behavior or business logic, move the logic into JavaBeans and get
the custom tags to utilize the beans.

Choose the right “include” mechanism: What are the differences between static and a dynamic include?
Using includes will improve code reuse and maintenance through modular design. Which one to use? Refer
Q31 in Enterprise section.

Use style sheets (e.g. css), template mechanism (e.g. struts tiles etc) and appropriate comments (both
hidden and output comments).

Q. Why use style sheets? The traditional HTML approach was to "hardcode" all of the appearance
information about a page. Say you want all your headings in Arial, and you have hard coded that in more
than 50 pages? That is a lot of editing, and a lot of re-editing if you decide to modify the headings to courier.
With all of that editing there are plenty of possibility for introducing errors. With CSS, you can decide how
headings should appear, and enter that information once. Every heading in every page that is linked to this
style sheet now has that appearance.

h1

font-family : arial;
font-weight : normal;

}

Use pagination for large resultsets: If you display long lists (i.e. resultsets) in the browser, it is difficult for
the user to find what he or she wants and also can prove impractical due to memory limitation, response-time
limitation, page design limitation (i.e long scrollable pages are not desirable) etc. Pagination is the most
common way to break up large amount of data into manageable chunks.

Q. How do you paginate your results?
1. Results can be read at once from the database and cached in middle-tier (e.g. HTTP session or home

grown cache) for fast access in subsequent pages. This approach is memory intensive and suitable only
for small-to-medium sized recurring queries.

2. Results are fetched from the database on demand as the user pages. This divide and conquer approach
is suitable for medium-to-large resultsets where it delivers pages on demand, direct from the database.
Limiting the size of the resultsets is SQL specific. in MySQL/Oracle you could limit your
resultsets as follows:

/lcan be user selected values or constant values
String strPageNum = request.getParameter (“pageNum”) ;
int pageNum = O;

if (strPageNum != null) {
pageNum = new Integer (strPageNum) .intValue() ;
}
int maxRowsPerPage = new Integer (request.getParameter (“rowsPerPage”)) .intValue();
/Icalculate

int rowEnd = pageNum * maxRowsPerPage;
int rowStart = (rowEnd- maxRowsPerPage) + 1;

In MySQL:

144

Enterprise — JSP

“SELECT * FROM Products p where p.category=’Consumables’ LIMIT ” + rowStart +
rowEnd

In Oracle:

”

“SELECT p.*, rownum as rowcount FROM Products p where p.category='Consumables’ order

“

by p.productNo where rowcount >=*“ + rowStart + “ and rowcount <” + rowEnd ” ;

+

Q 40: How will you avoid scriptlet code in JSP? [BP| X8
A 40: Use JavaBeans or custom tags instead.

Q. If you have to develop a web site, which has say more than 200 static & dynamic pages, how would you make

sure that in future if there is any requirement for a layout change, you have to change the layout in one page not
200 or more pages?

You could use the JSP include directives for page reuse but better approach to reduce redundant code is to use
frameworks like Tiles for page composition using template mechanism or SiteMesh for page decoration. SiteMesh can
be used by any Java Web framework since it is a Servlet filter. SiteMesh uses the decorator design pattern.

Q. How do you connect to the database from JSP/Servilet?

A. A connection can be established to a database as shown below via scriptlet. It is not the best practice to embed data
access logic in your JSP/Servlet and is shown only for illustration purpose and to create a lead up to the next section.

The best practice should make use of a separate “Data Access Object (using DAO pattern)” , which gets invoked by JSP,
Servlet, plain Java class, EJBs etc. The next section discusses basics and best practices relating to data access.

<%Q@ page language="java" contentTpe="text/html"
import="java.sql.*"%$>

<html>

<title>Simple JSP Page</title>
<hl>Output to Browser</hl>

<body>
<

o°

%>
</body>
</html>

//1. load the driver from specific vendor
Class.forName ("oracle.jdbc.driver.OracleDriver") ;

//2. open connection to the databse by passing the URL to the database
Connection con = DriverManager.getConnection ("jdbc:oracle:thin:@hostname:1526:myDB") ;

//3. create a statement object
Statement stmt = con.createStatement () ;

//4. Create a ResultSet
ResultSet rs = stmt.executeQuery ("SELECT * FROM Employees") ;

//5. you can use the ResultSet Object to read data
while (rs.next()) {
rs.getString ("firstname") ;

}

General Tip #4:

Every body is nervous for interviews and being a little nervous is natural. But if you are too nervous then you can
overcome this by preparing for your interviews and by treating each interview as a free technical/behavioral training
course. Have an attitude that even if you are not going to get the job, you are going to learn something good out of it. If
you go with this attitude you will put yourself in a win/win situation and you might really get the offer. If you take this
attitude you can learn a lot from your interviews. Also never think that you have to answer all the questions correctly. Do
not get put off by a tricky or a difficult question. What really earns you a job is the combination of your knowledge +
experience + attitude.

Enterprise — JDBC & JTA 145

Enterprise — JDBC & JTA

Q41:

A41:

What is JDBC? How do you connect to a database? Have you used a Data Access Object (i.e. DAO) pattern?

[DFi[BP| X

JDBC stands for Java Database Connectivity. It is an API which provides easy connection to a wide range of
databases. To connect to a database we need to load the appropriate driver and then request for a connection
object. The Class.forName(....) will load the driver and register it with the DriverManager (Refer Q5 in Java section
for dynamic class loading).

Class.forName (“oracle.jdbc.driver.OracleDriver”); //dynamic class loading
String url = jdbc:oracle:thin:Q@hostname:1526:myDB;
Connection myConnection = DriverManager.getConnection (url, “username”, “password”);

The DataSource interface provides an alternative to the DriverManager for making a connection. DataSource
makes the code more portable than DriverManager because it works with JNDI and it is created, deployed and
managed separately from the application that uses it. If the DataSource location changes, then there is no need to
change the code but change the configuration properties in the server. This makes your application code easier to
maintain. DataSource allows the use of connection pooling and support for distributed transactions. A DataSource
is not only a database but also can be a file or a spreadsheet. A DataSource object can be bound to JNDI and an
application can retrieve and use it to make a connection to the database. J2EE application servers provide tools to
define your DataSource with a JNDI name. When the server starts it loads all the DataSources into the application
server’'s JNDI service.

DataSource configuration properties are shown below:

JNDI Name - jdbc/myDataSource

URL - jdbc:oracle:thin:@hostname:1526:myDB

UserName, Password

Implementation classname - oracle.jdbc.pool.OracleConnectionPoolDataSource

Classpath > ora_jdbc.jar

Connection pooling settings like > minimum pool size, maximum pool size, connection timeout, statement cache size etc.

Once the DataSource has been set up, then you can get the connection object as follows:
Context ctx = new InitialContext();

DataSource ds = (DataSource)ctx.lookup ("jdbc/myDataSource") ;

Connection myConnection = ds.getConnection (“username”, “password”) ;

Q. Why should you prefer using DataSource?

In a basic implementation a Connection obtained from a DataSource and a DriverManager are
identical. But the J2EE best practice is to use DataSource because of its portability, better performance due to
pooling of valuable resources and the J2EE standard requires that applications use the container’s resource
management facilities to obtain connections to resources. Every major web application container provides pooled
database connection management as part of its resource management framework.

JDBC architecture decouples an abstraction from its implementation so that the implementation
can vary independent of the abstraction. This is an example of the bridge design pattern. The JDBC API
provides the abstraction and the JDBC drivers provide the implementation. New drivers can be plugged-in to the
JDBC API without changing the client code.

Q. Have you used a Data Access Object (DAO) pattern? Why is it a best practice to use a DAO pattern

Design Pattern|?

e A DAO class provides access to a particular data resource in the data tier (e.g. relational database, XML ,
mainframe etc) without coupling the resource’s API to the business logic in the business tier.
you may have a EmployeeBO business object class access all of its employees in the database using a DAO
interface EmployeeDAO. If your data resource change from a database to a Mainframe system, then
reimplementing EmployeeDAO for a different data access mechanism (to use a mainframe Connector) would
have little or no impact on any classes like EmployeeBO that uses EmployeeDAO because only the
implementation (e.g. EmployeeDAOImpl) would change but the interface remains the same. All the classes
that use the DAO should code to interface not implementation. If you happen to use the popular Spring
framework, then you can inject your DAO classes into your Business Object classes. Spring framework
promotes the design principle of “code to interface not to implementation”.

146

Browser (web
client)

ents

CLIENT
TIER

—

Enterprise — JDBC & JTA

Data Access Objects (DAO)

Application Server

IR
Web container

EJB container

g Web
q)‘ Application
€
N

‘ essage ~
Driven Beans

Session

beans

8
&

(for dependency injection / Aspect
Oriented Programming AOP)

‘ Business .

Objects

Objects
(DAOs)

|~
DataSource
(pools
connections)

Legacy
systems

Database
(RDBMS etc)

EJB layer provides
remote access

—»<4¢——Business Logic layer————p—

Data access logic

layer

Data

Transfer Objects (DTO) or Domain Objects (e.g Hibernate)

(transfer information between layers

4

Presentation
Tier

Busines

s Tier

Note: Spring framework is optional. If you use it, you could take advantage of its dependency
injection (aka loC) and AOP features. Your DAO classes may use O-R-M frameworks like

Hibernate etc and/or JDBC API.

S
\ Jo1 uoneiRsu|

Resource
Tier

Business Objects represent the data client. They are the objects that require access to the datasource to obtain and
store data. Data Access Objects abstract the underlying data access implementation for the business objects to enable
transparent access to the datasource. The business objects also delegate data load and store operations to the Data
Access Objects. A DataSource represents a database such as a relational database, XML repository, flat file, mainframe
system etc. Data Transfer Objects or Domain Objects transfer data between client and data access objects.

/

DAO design pattern

\

Class diagram of DAO pattern relationships

BusinessObject

[—uses—

DataAccessObject

—encapsulates —

obtains/modifies

creates/uses

l€-=--=---

DataTransferObject / DomainObject

DAO pattern made more flexible with Abstract factory &

factory method d

esign patterns.

DAOFactory
DataSource

+getAccountDAO()

+getCustomerDAO(),

+getXmlLoanDAO()

RdbmsDAOFactory XmIDAOFactory
,———-creates———i————creates - creétes

A 4

AccountsDAOImpl

CustomerDAOImpl

XmlILoanDAOImpl

-

-

«interface»
AccountsDAO

«interface»
CustomerDAO

<

«interface»
XmlLoanDAO

A typical DAO implementation has the following components:

¢ A DAO factory class (e.g. EmployeeDAOFactory) or Spring framework to inject a DAO class.
A DAO interface (e.g. EmployeeDAO)

Enterprise — JDBC & JTA 147

A concrete class (e.g. EmployeeDAOImpl) that implements the DAO interface. Your concrete class will make
use of JDBC API or open source framework API like Hibernate, IBatis etc.

Data transfer objects (e.g. EmployeeDTO) transfer data between business objects and data access objects or
Domain Objects if you are using any Object-to-Relational Mapping (aka ORM) tools like Hibernate.

Q. What are the best practices relating to exception handling to make your DAOs more robust and maintainable?

If you catch an exception in your DAO code, never ignore it or swallow it because ignored exceptions are hard to
troubleshoot. DAO class methods should throw checked exceptions only if the caller can reasonably recover from
the exception or reasonably handle it (e.g. retry operations in optimistic concurrency control - Refer Q 78 in
Enterprise section etc). If the caller cannot handle the exception in a meaningful way, consider throwing a runtime
(i.e. unchecked) exception. Hibernate 3 exceptions are all runtime exceptions.

DAO methods should not throw low level JDBC exceptions like java.sql. SQLException. A DAO should
encapsulate JDBC rather than expose it to rest of the application. Use chained exceptions to translate low-level
exceptions into high-level checked exceptions or runtime exceptions. DAO methods should not throw
java.lang.Exception because it is too generic and does not convey any underlying problem.

Log your exceptions, configuration information, query parameters etc.

Q42:
A 42:

What are JDBC Statements? What are different types of statements? How can you create them? @ m
A statement object is responsible for sending the SQL statements to the Database. Statement objects are created
from the connection object and then executed.

Statement stmt = myConnection.createStatement ();
ResultSet rs = stmt.executeQuery (“SELECT id, name FROM myTable where id =1245"); //to read
or
stmt.executeUpdate ("INSERT INTO (fieldl,field2) values (1,3)”);//to insert/update/delete/create

The types of statements are:
= Statement (regular statement as shown above)
= PreparedStatement (more efficient than statement due to pre-compilation of SQL)

= CallableStatement (to call stored procedures on the database)

To use prepared statement:
PreparedStatement prepStmt =

myConnection.prepareStatement ("SELECT id, name FROM myTable where id = ? ");
prepStmt.setInt (1, 1245);

Callable statements are used for calling stored procedures.

CallableStatement calStmt = myConnection.prepareCall("{call PROC SHOWMYBOOKS}") ;
ResultSet rs = cs.executeQuery() ;

Q 43:
A 43:

What is a Transaction? What does setAutoCommit do? Iﬂ m

A transaction is a set of operations that should be completed as a unit. If one operation fails then all the other
operations fail as well. For example if you transfer funds between two accounts there will be two operations in the
set

1. Withdraw money from one account.
2. Deposit money into other account.

These two operations should be completed as a single unit. Otherwise your money will get lost if the withdrawal is
successful and the deposit fails. There are four characteristics (ACID properties) for a Transaction.

Atomicity Consistency Isolation Durability

All the individual The design of the Prevents data being corrupted by concurrent | Ensures that the database
operations should transaction should access by two different sources. It keeps is definitely updated once
either complete or fail. | update the database transactions isolated or separated from each | the Transaction is

correctly. other until they are finished. completed.

148

Enterprise — JDBC & JTA

Transactions maintain data integrity. A transaction has a beginning and an end like everything else in life. The
setAutocommit(....), commit() and rollback() are used for marking the transactions (known as transaction
demarcation). When a connection is created, it is in auto-commit mode. This means that each individual SQL
statement is treated as a transaction and will be automatically committed immediately after it is executed. The way
to allow two or more statements to be grouped into a transaction is to disable auto-commit mode:

tryd
Connection myConnection =

// set autoCommit to false
myConnection.setAutoCommit (false) ;

withdrawMoneyFromFirstAccount (.) 2
depositMoneyIntoSecondAccount (. ...ovevenn..) ;

myConnection .commit() ;
}
catch (Exception sqgle) {
try{
myConnection .rollback() ;
}catch(Exception e){}
}
finally{
try{if(conn != null)
}

dataSource.getConnection () ;

//operation 1
//operation 2

{conn.close();}} catch(Exception e) {}

The above code ensures that both operation 1 and operation 2 succeed or fail as an atomic unit and consequently
leaves the database in a consistent state. Also turning auto-commit off will provide better performance.

Q. What is transaction demarcation? What are the different ways of defining transactional boundaries?

Data Access Objects (DAO) are transactional objects. Each operation associated with CRUD operations like
Create, Update and/or Delete operations should be associated with transactions. Transaction demarcation is the
manner in which transaction boundaries are defined. There are two approaches for transaction demarcation.

Declarative transaction demarcation

The programmer declaratively specifies the transaction
boundaries using transaction attributes for an EJB via ejb-
jar.xml deployment descriptor.

Spring framework has support for declarative
transaction demarcation by specifying transaction attributes via
Spring config files. If you choose Spring framework to mark the
transaction boundaries then you need to turn off transaction
demarcation in your EJB by:

<trans-attribute>NotSupported</trans-attribute>

Q. How are these declarative transactions know when to
rollback?

When the EJB container manages the transaction, it is
automatically rolled back when a System Exception occurs.
This is possible because the container can intercept
“SystemException”. However when an Application Exception
occurs, the container does not intercept it and therefore leaves
it to the code to roll back using ctx.setRollbackOnly().

Refer Q76, Q77 in Enterprise section to learn more about EJB
exceptions and when an EJB managed transaction is rolled
back.

[Spring Framework:| Transaction declaration format is:

PROPAGATION NAME, ISOLATION NAME, readOnly,timeout NNN
N, +CheckedExceptionl, -CheckedException2

Programmatic transaction demarcation
The programmer is responsible for coding

transaction logic as shown above. The
application controls the transaction via an API
like JDBC API, JTA API, Hibernate API etc.
JDBC transactions are controlled using the
java.sql.Connection object. There are two
modes: auto-commit and manual commit.
Following methods are provided in the JDBC
API via non-XA java.sql.Connection class for

programmatically controlling transactions:
public void setAutoCommit (boolean
mode) ;
public
public
public

boolean getAutoCommit () ;
void commit () ;
void rollback () ;

For XA-Connections use the following methods
on javax.transaction.UserTransaction.

public
public
public
public
public
public

void begin() ;

void commit () ;

void rollback();

int getStatus();

void setRollbackOnly () ;

void setTransactionTimeOut (int)

Enterprise — JDBC & JTA

149

By default transactions are rolled-back on
java.lang.RuntimeException. You can control when
transactions are committed and rolled back with the “+” or “-“
prefixes in the exception declaration. “+” means commit on
exception (You can even force it on RuntimeException) and “~”
means rollback on exception. You can specify multiple rules

“n

for rollback as “,” separated.

Following declaration will rollback transactions
on RunTime exceptions and MyCheckedException, which is a
checked exception.

PROPAGATION REQUIRED, -MyCheckedException

Q. What is a distributed (aka JTA/XA) transaction? How does it differ from a local transaction? There are
two types of transactions:

Local transaction: Transaction is within the same database. As we have seen above, with JDBC transaction
demarcation, you can combine multiple SQL statements into a single transaction, but the transactional scope
is limited to a single database connection. A JDBC transaction cannot span multiple databases.

Distributed Transaction (aka Global Transaction, JTA/XA transaction): The transactions that constitute
a distributed transaction might be in the same database, but more typically are in different databases and
often in different locations. A distributed transaction might consist of money being transferred
from an account in one bank to an account in another bank. You would not want either transaction committed
without assurance that both will complete successfully. The Java Transaction API (JTA) and its sibling Java
Transaction Service (JTS), provide distributed transaction services for the J2EE platform. A distributed
transaction (aka JTA/XA transaction) involves a transaction manager and one or more resource managers. A
resource manager represents any kind of data store. The transaction manager is responsible for coordinating
communication between your application and all the resource managers. A transaction manager decides
whether to commit or rollback at the end of the transaction in a distributed system. A resource manager is
responsible for controlling of accessing the common resources in the distributed system.

Q. What is two-phase commit?

A two-phase commit is an approach for committing a distributed transaction in 2 phases. Refer Q73 in
Enterprise section for two-phase commit.

Q. What do you understand by JTA and JTS?

JTA is a high level transaction interface which allows transaction demarcation in a manner that is
independent of the transaction manager implementation. JTS specifies the implementation of a Transaction
Manager which supports the JTA. The code developed by developers does not call the JTS methods directly,
but only invokes the JTA methods. The JTA internally invokes the JTS routines.

Q. What is a XA resource?

The XA specification defines how an application program uses a transaction manager to coordinate
distributed transactions across multiple resource managers. Any resource manager that adheres to XA
specification can participate in a transaction coordinated by an XA-compliant transaction manager.

JTA transaction demarcation requires a JDBC driver that implements XA interfaces like javax.sql.-
XADatasource, javax.sql.XAConnection and javax.sql.XAResource. A driver that implements these
interfaces will be able to participate in JTA transactions. You will also require to set up the XADatasource
using your application server specific configuration files, but once you get a handle on the DataSource via
JNDI lookup, you can get a XA connection via javax.sgl.DataSource.getConnection() in a similar manner
you get a non-XA connections. XA connections are different from non-XA connections and do not support
JDBC’s auto-commit feature. You cannot also use the commit(), rollback() methods on the
java.sgl.Connection class for the XA connections. A J2EE component can begin a transaction
programmatically using javax.transaction.UserTransaction interface or it can also be started declaratively
by the EJB container if an EJB bean uses container managed transaction. For explicit (i.e. programmatic)
JTA/XA transaction you should use the UserTransaction.begin(), UserTransaction.commit() and

UserTransaction.rollback() methods.

[l programmatic JTA transaction

150

Enterprise — JDBC & JTA

InitialContext ctx = new InitialContext();
UserTransaction utx = (UserTransaction)ctx.lookup (“java:comp/UserTransaction”);

try {
e
utx.begin() ;
[/
DataSource ds = getXADatasource () ;
Connection con = ds.getConnection(); // get a XAconnection.
PreparedStatement pstmt = con.prepareStatement (“UPDATE Employee emp where emp.id =?");
pstmt.setInt (1, 12456);
pstmt.executeUpdate () ;

utx.commit() ;//transaction manager uses two-phase commit protocol to end transaction

}

catch (SQLException sqgle) {
utx.rollback() ;
throw new RuntimeException (sqle) ;

}

/Il for bean-managed EJB transaction demarcation
UserTransaction ut = ejbContext.getUserTransaction();

Q. Why JTA transactions are more powerful than JDBC transactions?

JTA transactions are more powerful than JDBC transaction because a JDBC transaction is limited to a single
database whereas a JTA transaction can have multiple participants like:

JDBC connections.

JMS queues/topics.

Enterprise JavaBeans (EJBs).

Resource adapters that comply with J2EE Connector Architecture (JCA) specification.

e JTA/XA (distributed) transactions ™\

Application Server Container

J2EE
component

Transaction
Manager

Resource

Manager

S

Mainframe
System

Resource
Manager

Resource
Manager

C

\——/

RDBMS
(database)

/

Q. What is J2EE Connector architecture (JCA)? How does it differ from JDBC?

JCA is a Java based technology solution for connecting application servers and Enterprise Information Systems
(EIS) like Enterprise Resource Planning (ERP) systems, Customer Relationship Management) (CRM) systems etc
as part of Enterprise Application Integration (EAI). The JCA API is used by J2EE tool developers and system
integrators to create resource adapters

While JDBC is specifically used to connect J2EE applications to databases, JCA is a more generic architecture for
connecting to legacy systems (including databases).

Q. How would you send a JMS message to a JMS queue/topic and update a database table within the
same transaction?

Enterprise — JDBC & JTA 151

Using JTA/XA transaction. A J2EE application using EJB containers can send or receive messages from one or
more JMS destinations and update data in one or more databases in a single transaction. The J2EE architecture
allows updates of data at multiple sites (i.e. more than one application servers) to be performed in a single
transaction.

/ JMS messages and database updates in a single JTA/XA transaction \

Same Application server: Aweb client invokes a method on EJB-1, which in turn sends a message to JMS Queue-1 and
updates data in database-1. After that EJB-1 calls EJB-2, which updates data in database-2. The application server with its EJB
container and built-in transaction manager ensures that operations A, B and C are either all committed or rolled back. If operation-B
fails to update database-1 due to some error condition then operations A & B are rolled back, which means the JMS message would
not be delivered to JMS Queue-1 and database-2 would not be updated.

Application Server

Web client ﬁ

message

Queue-1 Database-1 Database-2

Multiple Application servers: Both application servers with its EJB containers and built-in transaction manager ensure that
opeations A, B and C are either all committed or rolled back.

Application Server 1 Application Server 2

Web client EJB-1) ’

message

K Queue-1 Database-1 Database-2 /

Q. What are the considerations for a programmatic transaction control within a Servlet/JSP? Can a transaction
span across multiple web requests?

Web components like Servlets/JSPs may only start a transaction in its service() method and a transaction started in its
service method must be completed before the service() method completes. A transaction cannot span across multiple
web requests. Some of the considerations are as follows:

e JTA transactions should start and complete within the thread in which service() method is called and any additional
threads created in the servlet should not try to start any JTA transaction.

¢ JDBC connection objects should not be stored in static fields or instance fields (for multi-threaded model). JDBC
connection objects should be acquired and released within the same invocation of the service() method.

152 Enterprise — JDBC & JTA

Q. How will you control two concurrent transactions accessing a database?

You can use isolation levels. An isolation level defines how concurrent transactions accessing a relational database are
isolated from each other for read purpose. Refer Q72 in Enterprise section. These isolation levels can prevent one or
more of the phenomena that happen during concurrent transactions:

Dirty reads: A transaction reads uncommitted changes from another transaction.

Nonrepeatable reads: A transaction reads a row in a database table, a second transaction changes the same row
and the first transaction re-reads the row and gets a different value.

¢ Phantom reads: A transaction executes a query, returning a set of rows that satisfies a search condition and a
second transaction inserts another row and the first re-executes the same query and get an additional record
returned.

Isolation Level (in ascending order of ‘ Dirty read Nonrepeatable read Phantom read
data integrity)

TRANSACTION_READ_UNCOMMITED Possible Possible Possible
TRANSACTION_READ _COMMITED Not possible Possible Possible
TRANSACTION_REPEATABLE_READ Not possible Not possible Possible
TRANSACTION_ SERIALIZABLE Not possible Not possible Not possible

You should use a highest possible isolation level that gives acceptable performance. It is basically a tradeoff between
data integrity and performance. For example the isolation level “TRANSACTION_SERIALIZABLE” attribute guarantees
the highest level of data integrity but adversely affects performance because even simple reads must wait in line.

Q 44: What is the difference between JDBC-1.0 and JDBC-2.0? What are Scrollable ResultSets, Updateable ResultSets,
RowSets, and Batch updates? [SF|
A 44: JDBC2.0 has the following additional features or functionality:

JDBC 1.0 JDBC 2.0
With JDBC-1.0 the | With JDBC 2.0 ResultSets are updateable and also you can move forward and backward.
ResultSet functionality

was limited. There was no This example creates an updateable and scroll-sensitive ResultSet
support for updates of any
kind and scrolling through | Statement stmt = myConnection.createStatement(ResultSet. TYPE_SCROLL_SENSITIVE,

the ResultSets was ResultSet. CONCUR_UPDATEABLE)
forward only (no going
back)

With JDBC-1.0 the | With JDBC-2.0 statement objects can be grouped into a batch and executed at once. You call
statement objects submits | addBatch() multiple times to create your batch and then you call executeBatch() to send the SQL
updates to the database | statements off to database to be executed as a batch (this minimizes the network overhead).

individually within same or
separate transactions.
This is very inefficient
when large amounts of | Statement stmt = myConnection.createStatement () ;

data need to be updated. stmt.addBatch ("INSERT INTO myTablel VALUES (1,”ABC”)”);
stmt.addBatch (YINSERT INTO myTablel VALUES (2,”DEF”)”);
stmt.addBatch (VINSERT INTO myTablel VALUES (3,”XYZ”)");
int[] countInserts = stmt.executeBatch();

- The JDBC-2.0 optional package provides a RowSet interface, which extends the ResultSet. One
of the implementations of the RowSet is the CachedRowSet, which can be considered as a
disconnected ResultSet.

Q 45: How to avoid the “running out of cursors” problem? Ml

A 45: A database can run out of cursors if the connection is not closed properly or the DBA has not allocated enough
cursors. In a Java code it is essential that we close all the valuable resources in a try{} and finally{} block. The
finally{} block is always executed even if there is an exception thrown from the catch {} block. So the resources like
connections and statements should be closed in a finally {} block.

Enterprise — JDBC & JTA 153

/ Try{} Finally {} blocks to close Exceptions \
Wrong Approach - Right Approach -
Connections and statements will not be closed if there public void executeSQL() throws SQLException{
is an exception: try{

.

Connection con = DriverManager.getConnection(........);

public void executeSQL() throws SQLException{ || = -
Statement stmt = con.createStatementy();

Connection con = DriverManager.getConnection(........); INine 20 where exception is thrown
----- ResultSet rs = stmt.executeQuery("SELECT * from myTable");
Statement stmt = con.createStatement();

/Nline 20 where exception is thrown finally{
ResultSet rs = stmt.executeQuery("SELECT * from myTable"); try {
..... if(rs != null) rs.close();
rs.close(); if(stmt != null) stmt.close();
stmt.close(); if(con != null) con.close();
con.close();
} catch(Exception e){}
}
Note: if an exception is thrown at line 20 then the }

close() statements are never reached.

Note: if an exception is thrown at line 20 then the
finally clause is called before the exception is thrown
from the method.

=/

Q 46: What is the difference between statements and prepared statements? [SF| [Pl [SE| BP| X8

A 46:

Prepared statements offer better performance, as they are pre-compiled. Prepared statements reuse the
same execution plan for different arguments rather than creating a new execution plan every time. Prepared
statements use bind arguments, which are sent to the database engine. This allows mapping different
requests with same prepared statement but different arguments to execute the same execution plan.

Prepared statements are more secure because they use bind variables, which can prevent SQL injection
attack.

The most common type of SQL injection attack is SQL manipulation. The attacker attempts to modify the
SQL statement by adding elements to the WHERE clause or extending the SQL with the set operators like
UNION, INTERSECT etc.

Let us look at the following SQL:

SELECT * FROM users where username=’bob’ AND password='xyfdsw’;

The attacker can manipulate the SQL as follows

SELECT * FROM users where username=’bob’ AND password=’xyfdsw’ OR ‘a’ = ‘a’ ;

The above “WHERE” clause is always true because of the operator precedence. The PreparedStatement
can prevent this by using bind variables:

String strSQL = SELECT * FROM users where username=? AND password=?);
PreparedStatement pstmt = myConnection.prepareStatement (strSQL) ;
pstmt.setString (1, ”bob”) ;

pstmt.setString (2, “xyfdsw”);

pstmt.execute () ;

Q 47: Explain differences among java.util.Date, java.sql.Date, java.sql.Time, and java.sql.Timestamp? @
A 47: As shown below all the sgl Date classes extend the util Date class.

154 Enterprise — JDBC & JTA

K Java Date classes \

java.util.Date

java.sql.Date| [java.sql.Time| |java.sql.TimeStamp

- /

java.util.Date - class supports both the Date (i.e. year/month/date etc) and the Time (hour, minute, second, and
millisecond) components.

java.sql.Date - class supports only the Date (i.e. year/month/date etc) component. The hours, minutes, seconds
and milliseconds of the Time component will be set to zero in the particular time zone with which the instance is
associated.

java.sql.Time - class supports only Time (i.e. hour, minute, second, and millisecond) component. The date
components should be set to the "zero epoch" value of January 1, 1970 and should not be accessed.

java.sql.TimeStamp — class supports both Date (i.e. year/month/date etc) and the Time (hour, minute, second,
millisecond and nanosecond) components.

the subtle difference between java.util.Date and java.sql.Date. The java.sql.Date does not have a time
component. If you need both date and time, then should use either java.util.Date or java.sql.TimeStamp.

To keep track of time Java counts the number of milliseconds from January 1, 1970 and stores it as a long value in
java.util.Date class. The GregorianCalendar class provides us a way to represent an arbitrary date. The
GregorianCalendar class also provides methods for manipulating dates (date arithmetic, date comparisons etc).

General Tip #5:

Software developers should have and demonstrate following qualities to succeed in interviews and after
interviews :

Q. Tell me about yourself or about some of the recent projects you have worked with? What do you consider your most significant
achievement? Why do you think you are qualified for this position? These interview questions are very common and the interviewer will
be mainly looking for following qualities:

1. Passion: How passionate you are about your past experience and how much pride you take in your past achievements.

2. Ability to understand potential failures: How well you understand the key areas like concurrency issues, transactional issues,
performance issues etc relating to software development and tend to avoid or know where to look for the root cause and how to go
about solving it when an issue arises.

3. Ability to see things at a high level as well as drill down when required: Also is imperative that during your briefing, you
demonstrate on a high level (as if you would be explaining it to a business user), how you applied your skills and knowledge. Also be
prepared to drill down into detail if asked.

4. Ability to think dynamically to deliver solutions to complex problems and ability to analyze “what if ” scenarios: What if |
need to support another type of product in the future, will the current design allow me to extend? What if concurrent users access my
object, will it be thread-safe? What if an exception is thrown, will my transaction get rolled back to leave the database in a consistent
state? Etc.

Q. What was the last Java related technical book or article you read? Which Java related website(s) or resource(s) do you use to keep
your knowledge up to date beyond Google? What do you think of some of the emerging technologies/frameworks like AOP, 1oC, Spring,
Tapestry etc? What recent technology trends are important to enterprise development? Hint: Service Oriented Architecture, component
based Web frameworks, loC, AOP (refer Emerging Technologies/Frameworks section) etc. The interviewer will be looking for your
curiosity and eagerness to learn.

5. Curiosity to learn: How eager you are to learn new things and keep up to date with the technology.

Enterprise — JNDI & LDAP 155

Enterprise — JNDI & LDAP

Q 48: What is JNDI? And what are the typical uses within a J2EE application? m

A 48: JNDI stands for Java Naming and Directory Interface. It provides a generic interface to LDAP (Lightweight
Directory Access Protocol) and other directory services like NDS, DNS (Domain Name System) etc. It provides a
means for an application to locate components that exist in a name space according to certain attributes. A J2EE
application component uses JNDI interfaces to look up and reference system-provided and user-defined objects in
a component environment. JNDI is not specific to a particular naming or directory service. It can be used to access
many different kinds of systems including file systems.

The JNDI API enables applications to look up objects such as DataSources, EJBs, MailSessions, JMS connection
factories and destinations (Topics/Queues) by name. The Objects can be loaded into the JNDI tree using a J2EE
application server's administration console. To load an object in a JNDI tree, choose a name under which you
want the object to appear in a JNDI tree. J2EE deployment descriptors indicate the placement of J2EE
components in a JNDI tree.

y JNDI Tree N

()

Objects and/or Service

)

InitialContext

named object/service
reference

named object/service
reference

| Note: JNDI tree lives in the server as a collection of named object or service references. |

o /

The parameters you have to define for JNDI service are as follows:

= The name service provider class name (WsnlinitialContext for WebSphere application server).

Hashtable env = new Hashtable () ;
env.put (Context.INITIAL CONTEXT FACTORY, "com.ibm.websphere.naming.WsnInitialContextFactory");

= The provider URL :

= The name service hostname.
= The name service port number.

env.put (Context.PROVIDER URL, " iiop://localhost:1050");
Context ctx = new InitialContext (env) ;

JNDI is like a file system or a Database.

File System JNDI Database

File system starts with a JNDI starts with an InitialContext. Database instance
mounted drive like c:\ i.e. new InitialContext().

Uses a subdirectory. Navigate to a sub-context. e.g. Subcontext1 Tablespace
C:\subdir1

Access a subdirectory Drill down through other sub-contexts. e.g. Table
c:\subdir1\subdir2 subcontext1/subcontext2

Access a file. Access an object or a service. Data

156 Enterprise — JNDI & LDAP

C:\subdir1\subdir2\myFile new InitialContext().lookup(“objectName”);
Example: Example: Example:
c:\subdir1\subdir2\myFile iiop://myserver:2578/subcontext1.subcontext2.objectName [Select * from demo.myTable

Q 49: Explain the difference between the look up of “java:comp/env/ejb/MyBean” and “ejb/MyBean”? @ m
A 49:

java:compl/env/ejb/MyBean ejb/MyBean
This is a logical reference, which will be used in your code. | This is a physical reference where an object will be mapped to in
a JNDI tree.

The logical reference (or alias) java:comp/env/ejb/MyBean is the recommended approach because you cannot
guarantee that the physical JNDI location ejb/MyBean you specify in your code will be available. Your code will
break if the physical location is changed. The deployer will not be able to modify your code. Logical references
solve this problem by binding the logical name to the physical name in the application server. The logical names
will be declared in the deployment descriptors (web.xml and/or ejb-jar.xml) as follows and these will be mapped to
physical JNDI locations in the application server specific deployment descriptors.

To look up a JDBC resource from either Web (web.xml) or EJB (ejb-jar.xml) tier, the deployment descriptor should
have the following entry:

<resource-ref>
<description>The DataSource</description>

<res-ref-name>jdbc/MyDataSource</res-ref-name> K))
<res-type>javax. Sql.DataSOurémmypp\ This will make full logical path to the bean
<res-auth>Container</res-auth> as.

</resource-ref> java:comp/env/jdbc/MyDataSource

To use it:

Context ctx = new InitialContext():;
Object ref = ctx.lookup (java:comp/env/jdbc/MyDataSource) ;

To look up EJBs from another EJB or a Web module, the deployment descriptor should have the following entry:

<ejb-ref>
<description>myBean</description>

<ejb-ref-name>ejb/MyBean</ejb-ref-name>
<ejb-ref-type>Entity</ejb-re e> - -
<ejb-link>Region</ejb-1link> This will make full logical path to the bean

<home>com.MyBeanHome</home> as
<remote>com.MyBean</remote> java:compl/env/ejb/MyBean
</ejb-ref>
To use it:

Context ctx = new InitialContext();
Object ref = ctx.lookup(java:comp/env/ejb/MyBean);

Q 50: What is a JNDI InitialContext? [SF [FX&
A 50: All naming operations are relative to a context. The InitalContext implements the Context interface and provides
an entry point for the resolution of names.

Q 51: What is an LDAP server? And what is it used for in an enterprise environment? @ @

A 51: LDAP stands for Lightweight Directory Access Protocol. This is an extensible open network protocol standard that
provides access to distributed directory services. LDAP is an Internet standard for directory services that run on
TCP/IP. Under OpenLDAP and related servers, there are two servers — slapd, the LDAP daemon where the
queries are sent to and slurpd, the replication daemon where data from one server is pushed to one or more
slave servers. By having multiple servers hosting the same data, you can increase reliability, scalability, and
availability.

= |t defines the operations one may perform like search, add, delete, modify, change name
= |t defines how operations and data are conveyed.

Enterprise — JNDI & LDAP 157

LDAP has the potential to consolidate all the existing application specific information like user, company phone
and e-mail lists. This means that the change made on an LDAP server will take effect on every directory service
based application that uses this piece of user information. The variety of information about a new user can be
added through a single interface which will be made available to Unix account, NT account, e-mail server, Web
Server, Job specific news groups etc. When the user leaves his account can be disabled to all the services in a
single operation.

So LDAP is most useful to provide “white pages” (e.g. names, phone numbers, roles etc) and “yellow pages” (e.g.
location of printers, application servers etc) like services. Typically in a J2EE application environment it will be
used to authenticate and authorize users.

Q. Why use LDAP when you can do the same with relational database (RDBMS)?

In general LDAP servers and RDBMS are designed to provide different types of services. LDAP is an open
standard access mechanism, so an RDBMS can talk LDAP. However the servers, which are built on LDAP, are
optimized for read access so likely to be much faster than RDBMS in providing read access. So in a nutshell,
LDAP is more useful when the information is often searched but rarely modified. (Another difference is that
RDBMS systems store information in rows of tables whereas LDAP uses object oriented hierarchies of entries.) .

Key LDAP Terms:
DIT: Directory Information Tree. Hierarchical structure of entries, those make up a directory.
DN: Distinguished Name. This uniquely identifies an entry in the directory. A DN is made up of relative DNs of

the entry and each of entry’s parent entries up to the root of the tree. DN is read from right to left and commas
separate these names. For example ‘cn=Peter Smith, 0=ACME, c=AUS’.

objectClass: An objectClass is a formal definition of a specific kind of objects that can be stored in the directory.
An ObjectClass is a distinct, named set of attributes that represent something concrete such as a user, a
computer, or an application.

LDAP URL: This is a string that specifies the location of an LDAP resource. An LDAP URL consists of a server
host and a port, search scope, baseDN, filter, attributes and extensions. Refer to diagram below:

/ LDAP Directory structure \

objectClassFactory=country
@ c=UK

objectClassFactory=organization
o=XYZRetail o=QuickCorp

objectClassFactory=user

cn=Peter Smith

mail=PSmith@NAB.com
phone=88888888

o L/

So the complete distinguished name for bottom left entry (i.e. Peter Smith) is cn=Peter Smith, 0=ACME, ¢c=AUS.
Each entry must have at least one attribute that is used to name the entry. To manage the part of the LDAP
directory you should specify the highest level parent’s distinguished names in the server configuration. These
distinguished names are called suffixes. The server can access all the objects that are below the specified suffix

158 Enterprise — JNDI & LDAP

in the hierarchy. For example in the above diagram, to answer queries about ‘Peter Smith’ the server should have
the suffix of ‘'0=ACME, c=AUS’. So we can look for “Peter Smith” by using the following distinguished name:

cn=Peter Smith, o=ACME, c=AUS // where o=ACME, c=AUS is the suffix

LDAP schema: defines rules that specify the types of objects that a directory may contain and the required
optional attributes that entries of different types should have.

Filters: In LDAP the basic way to retrieve data is done with filters. There is a wide variety of operators that can be

used as follows: & (and), | (or), ! (not), ~= (approx equal), >= (greater than or equal), <= (less than or equal), *
(any) etc.
(& (uid=a*) (uid=*1))

Q. So where does JNDI fit into this LDAP? JNDI provides a standard API for interacting with naming and
directory services using a service provider interface (SPI), which is analogous to JDBC driver. To connect to an
LDAP server, you must obtain a reference to an object that implements the DirContext. In most applications, this
is done by using an InitialDirContext object that takes a Hashtable as an argument:

Hashtable env = new Hashtable();

env.put (Context.INITIAL CONTEXT FACTORY, “com.sun.jndi.ldap.LdapCtxFactory”):;
env.put (Context.PROVIDER URL, “ldap://localhost:387");

env.put (Context.SECURITY AUTHENTICATION, “simple”);

env.put (Context.SECURITY PRINCIPAL, “cn=Directory Manager”);

env.put (Context.SECURITY CREDENTIALS, “myPassword”);

DirContext ctx = new InitialDirContext (env) ;

General Tip #6:

Experience, knowledge and attitude are necessary for your career advancement. Developers with the ability to master
more knowledge in a short period of time are better skilled people too. If you solely rely on your work experience to
acquire your knowledge, it may take you quite some time. | took the approach of acquiring the knowledge by pro-actively
reading (mainly articles and sometimes books), having a technical chat with my senior colleagues or mentors, and
networking with the fellow professionals via Java forums and keeping in touch with some skilled and experienced
developers | had worked with. Once | have acquired the knowledge then | pro-actively look for an opportunity to put my
knowledge to practice to gain experience and acquire skills. This is important because not only the experiences and skills
| have gained is going to stay with me for a longer period of time than just having the knowledge alone but also it is going
to help me acquire more knowledge quicker. As | repeat this cycle, | enhance my skill to acquire more knowledge in a
short period. This strategy helped me to fast track my career progress. You may have a different strategy, but no matter
what strategy you have, you have to eventually know and master the core concepts (aka fundamentals) and the key
areas.

Enterprise — RMI

159

Enterprise - RMI

Q 52: Explain the RMI architecture? [SF] [ZX8

A 52: Java Remote Method Invocation (RMI) provides a way for a Java program on one machine to communicate with
objects residing in different JVMs (i.e. different processes or address spaces). The important parts of the RMI
architecture are the stub class, object serialization and the skeleton class. RMI uses a layered architecture where
each of the layers can be enhanced without affecting the other layers. The layers can be summarized as follows:

Application Layer: The client and server program
Stub & Skeleton Layer: Intercepts method calls made by the client. Redirects these calls to a remote RMI

service.

Remote Reference Layer: Sets up connections to remote address spaces, manages connections, and
understands how to interpret and manage references made from clients to the remote service objects.

Transport layer: Based on TCP/IP connections between machines in a network. It provides basic connectivity,
as well as some firewall penetration strategies.

RMI stub classes provide a reference to a skeleton object located in a different address space on
the same or different machine. This is a typical example of a proxy design pattern (i.e. remote proxy), which
makes an object executing in another JVM appear like a local object. In JDK 5.0 and later, the RMI facility uses
dynamic proxies instead of generated stubs, which makes RMI easier to use. Refer Q11 in “How would you
about...” section for a more detailed discussion on proxy design pattern and dynamic proxies.

RMI Architecture

\

-

Remote Reference
Manager

/Server Process\

2.look up Stub

3. Return Stub

RMI Registry

o
(or JNDI Server) ‘\(P,.

A

Remote Reference
Manager

/W rans?

ort \’a\‘e‘

_/

Note: Steps 4 & 5 are logical explanation only. Neither the Stubs nor Skeletons
use sockets directly. The actual calls are made through the Remote Reference
Manager. The Remote Reference Manager handles the actual details of
communicating with the remote process. This extra layer manages network
communication and conserves scarce resources like sockets.

Example

Program 1

skeleton

160

Enterprise — RMI

RMI runtime steps (as shown in the diagram above) involved are:

Step 1: Start RMI registry and then the RMI server. Bind the remote objects to the RMI registry.

Step 2: The client process will look up the remote object from the RMI registry.

Step 3: The lookup will return the stub to the client process from the server process.

Step 4: The client process will invoke method calls on the stub. The stub calls the skeleton on the server process
through the RMI reference manager.

Step 5: The skeleton will execute the actual method call on the remote object and return the result or an exception
to the client process via the RMI reference manager and the stub.

Q53:
A 53:

What is a remote object? Why should we extend UnicastRemoteObject? @ m

A remote object is one whose methods can be invoked from another JVM (i.e. another process). A remote object
class must implement the Remote interface. A RMI Server is an application that creates a number of remote
objects.

An RMI Server is responsible for

= Creating an instance of the remote object (e.g. Carlmpl instance = new Carlmpl()).
= Exporting the remote object.
= Binding the instance of the remote object to the RMI registry.

By exporting a remote object you make it available to accept incoming calls from the client. You can export the
remote object by either extending the java.rmi.server.UnicastRemoteObject or if your class is already extending
another class then you can use the static method

UnicastRemoteObject.exportObject (this);

If the UnicastRemoteObject is not extended (i.e. if you use UnicastRemoteObject.exportObject(...) then the
implementation class is responsible for the correct implementations of the hashCode(), equals() and toString()
methods. A remote object is registered in the RMI registry using:

Naming.rebind (String serviceName,

2

java.rmi.Remote

Remote remoteObj) ;

~

Remote Objects

Remote interface |java.rmi.server. RemoteServer,
eg: public interface Car extends Remote{} |

I; java.mi.server.UnicastRemoteObject]

Implementation of Remote interface
eg: public class Carlmpl extends UnjcastRemoteObject implements Car{}

Compile Car &
Carlmpl

use rmic to generate stubs & skeletons
rmic -d /classes Carlmpl

p 5L ge,,e,ated instantiated
A% A
stub class skeleton class

instantiated \

Enterprise — RMI 161

Q 54:
A 54:

What is the difference between RMI and CORBA? [SF|

RMI CORBA

Java only solution. The interfaces, CORBA was made specifically for interoperability among various
implementations and the clients are all written languages. For example the server could be written in C++ and the
in Java. business logic can be in Java and the client can be written in COBOL.

RMI allows dynamic loading of classes at In a CORBA environment with multi-language support it is not possible to
runtime. have dynamic loading.

Q 55:
A 55:

What are the services provided by the RMI Object? @

In addition to its remote object architecture, RMI provides some basic object services, which can be used in a
distributed application. These services are

= Object naming/registry service: RMI servers can provide services to clients by registering one or more
remote objects with its local RMI registry.

= Object activation service: It provides a way for server (i.e. remote) objects to be started on an as-needed
basis. Without the remote activation service, a server object has to be registered with the RMI registry service.

= Distributed garbage collection: It is an automatic process where an object, which has no further remote
references, becomes a candidate for garbage collection.

Q 56:
A 56:

What are the differences between RMI and a socket? @

A socket is a transport mechanism. Sockets are like | RMI uses sockets. RMI is object oriented. Methods can be
applying procedural networking to object oriented | invoked on the remote objects running on a separate JVM.
environment.
Sockets-based network programming can be laborious. RMI provides a convenient abstraction over raw sockets. Can
send and receive any valid Java object utilizing underlying
object serialization without having to worry about using data

streams.

Q57:
A 57:

How will you pass parameters in RMI?
= Primitive types are passed by value (e.g. int, char, boolean etc).

= References to remote objects (i.e. objects which implement the Remote interface) are passed as remote
references that allow the client process to invoke methods on the remote objects.

= Non-remote objects are passed by value using object serialization. These objects should allow them to be
serialized by implementing the java.io.Serializable interface.

The client process initiates the invocation of the remote method by calling the method on the stub. The stub
(client side proxy of the remote object) has a reference to the remote object and forwards the call to the skeleton
(server side proxy of the remote object) through the reference manager by marshaling the method arguments.
During Marshaling each object is checked to determine whether it implements java.rmi.Remote interface. If it does
then the remote reference is used as the Marshaled data otherwise the object is serialized into byte streams and
sent to the remote process where it is deserialized into a copy of the local object. The skeleton converts this
request from the stub into the appropriate method call on the actual remote object by unmarshaling the method
arguments into local stubs on the server (if they are remote reference) or into local copy (if they are sent as
serialized objects).

Q 58:
A 58:

What is HTTP tunneling or how do you make RMI calls across firewalls? @

RMI transport layer generally opens direct sockets to the server. Many Intranets have firewalls that do not allow
this. To get through the firewall an RMI call can be embedded within the firewall-trusted HTTP protocol. To get
across firewalls, RMI makes use of HTTP tunneling by encapsulating RMI calls within an HTTP POST request.

162

Enterprise — RMI

/ HTTP tunnelling \

Web Server
on port 80

Proxy Server

HTTP

«—encapsulated »
RMI call
call
«forwarded by »
CGl script

RMI Server

RMI Client

Firewall Firewall
When a firewall proxy server can forward HTTP requests only to a well-known HTTP port: The firewall proxy

server will forward the request to a HTTP server listening on port 80, and a CGl script will be executed to forward
the call to the target RMI server port on the same machine.

/ HTTP tunneling \

C"‘I*':t \ ey Servlet Container
appiets Firewall

servlets Server Servlet
JMS client

~® 30 e+ —=_ |

Business Service
RMI

company CEJE
orba

K network /

The disadvantages of HTTP tunneling are performance degradation, prevents RMI applications from using call-
backs, CGl script will redirect any incoming request to any port, which is a security loophole, RMI calls cannot be
multiplexed through a single connection since HTTP tunneling follows a request/response protocol etc.

Q 59:
A 59:

Why use RMI when we can achieve the same benefits from EJB? @

EJBs are distributed components, which use the RMI framework for object distribution. An EJB application server
provides more services like transaction management, object pooling, database connection-pooling etc, which RMI
does not provide. These extra services that are provided by the EJB server simplify the programming effort at the
cost of performance overhead compared to plain RMI. So if performance is important then pure RMI may be a
better solution (or under extreme situations Sockets can offer better performance than RMI).

Note: The decision to go for RMI or EJB or Sockets should be based on requirements such as maintainability, ease of coding,
extensibility, performance, scalability, availability of application servers, business requirements etc.

Tech Tip #5:

Q. How do you pass a parameter to your JVM?

As JVM arguments:
$> java MyProgram -DallowCache=true

alternatively in your code:
System.setProperty(“allowCache”, Boolean.TRUE); // to set the value
System.getProperty(“allowCache”); / to get the value

Enterprise — EJB 2.x 163

Enterprise — EJB 2.x

There are various persistence mechanisms available like EJB 2.x, Object-to-Relational (O/R) mapping tools like Hibernate, JDBC and
EJB 3.0 (new kid on the block) etc. You will have to evaluate the products based on the application you are building because each
product has its strengths and weaknesses. You will find yourself trading ease of use for scalability, standards with support for special
features like stored procedures, etc. Some factors will be more important to you than for others. There is no one size fits all solution.
Let's compare some of the persistence products:

EJB 2.x EJB 3.0 Hibernate JDBC

PROS: PROS: PROS: PROS:

= Security is provided for free |= A lot less artifacts than EJB = Simple to write CRUD = You have complete control
for accessing the EJB. 2.x. Makes use of annotations (create, retrieve, update, over the persistence

or attributes based
programming.

delete) operations. because this is the building
blocks of nearly all other
persistence technologies in

Java.

= Provides declarative
transactions. = No container or application
server is required and can be
plugged into an existing

container.

= Narrows the gap between EJB
= EJBs are pooled and 2.x and O/R mapping.
cached. EJB life cycles are

managed by the container.

= Can call Stored Procedures.
» Do support OO concepts like

inheritance. = Tools are available to simplify [= Can manipulate relatively
= Has remote access mapping relational data to large data sets.
capabilities and can be objects and quick to develop.
clustered for scalability.
Cons: Cons: Cons: Cons:

= Need to understand the = Little or no capabilities for = You will have to write a lot

intricacies like rolling back
a transaction, granularity
etc, infrastructures like
session facades, business
delegates, value objects etc
and strategies like lazy
loading, dirty marker etc.

= EJBs use lots of resources
and have lots of artifacts.

= Does not support OO
concepts like inheritance.

= As of writing, It is still evolving.

remote access and
distributability.

Mapping schemas can be
tedious and O/R mapping
has its tricks like using lazy
initialization, eager loading
etc. What works for one may
not work for another.

Limited clustering
capabilities.

Large data sets can still
cause memory issues.

Support for security at a
database level only and no
support for role based
security without any add on

of code to perform a little.
Easy to make mistakes in
properly managing
connections and can cause
out of cursors issues.

Harder to maintain because
changes in schemas can
cause lot of changes to your
code.

Records need to be locked
manually (e.g. select for
update).

As a rule of thumb, suitable
for distributed and clustered
applications, which is heavily
transaction based. Records
in use say between 1 and 50.

As a rule of thumb, suitable for
distributed and clustered
applications, which is heavily
transaction based. Records in
use say between 1 and 100.

APIs like Aspect Oriented
Programming etc.
Suitable for records in use

between 100 and 5000. Watch
out for memory issues, when
using large data sets.

Where possible stay away
from using JDBC unless you
have compelling reason to
use it for batch jobs where
large amount of data need to
be transferred, records in use
greater than 5000, required
to use Stored Procedures
etc.

The stateless session beans and message driven beans have wider acceptance in EJB 2.x compared to stateful session
beans and entity beans. Refer Emerging Technologies/Frameworks section for Hibernate and EJB 3.0.

Q 60: What is the role of EJB 2.x in J2EE? [SF|
A 60: EJB 2.x (Enterprise JavaBeans) is widely adopted server side component architecture for J2EE.

= EJBis aremote, distributed multi-tier system and supports protocols like JRMP, [IOP, and HTTP etc.
= It enables rapid development of reusable, versatile, and portable business components (i.e. across
middleware), which are transactional and scalable.

164

Enterprise — EJB 2.x

= EJB is a specification for J2EE servers. EJB components contain only business logic and system level
programming and services like transactions, security, instance pooling, multi-threading, persistence etc are
managed by the EJB Container and hence simplify the programming effort.
= Message driven EJBs have support for asynchronous communication.

Having said that EJB 2.x is a widely adopted server side component, EJB 3.0 is taking ease of
development very seriously and has adjusted its model to offer the POJO (Plain Old Java Object) persistence and
the new O/R mapping model based on Hibernate. In EJB 3.0, all kinds of enterprise beans are just POJOs.
EJB 3.0 extensively uses Java annotations, which replaces excessive XML based configuration files and
eliminates the need for the rigid component model used in EJB 1.x, 2.x. Annotations can be used to define the
bean’s business interface, O/R mapping information, resource references etc. Refer Q18 in Emerging
Technologies/Frameworks section. So, for future developments look out for EJB 3.0 and/or Hibernate framework.
Refer Q14 — Q16 in Emerging Technologies/Frameworks section for discussion on Hibernate framework.

EJB - Big Picture

\

Sl C++ application Messaging Java Applet, HTTP Client
Systems Client Java stand-alone application (eg: Browser, Wireless etc)
\ﬁ _ HTTP4
Web Services
(SOAP, UDDI, WSDL, ebXML)
Firewall
v
J2EE Server JSP
use JavaBeans
Servlets messaging ()
(use JavaBeans) 1IOP RMI/IIOP \—v
Business Delegate Ll Serviets
(use JavaBeans) (use JavaBeans)
EJB CoTtainer (Enterprise Java Beans are deployed)

(EJB Session Bean ﬂ CEJB Message Driven Beagi

|

A -

EJB Session Bean)

Business Logic provided by
the developer through EJB

—
C
(

System Level Services like

transaction, Security etc

are provided by the

A v !g
< EJB Entity Bean > 4>< EJB Session Bean) EJB Session Bean) g
\ I I
| |
SQL
SQL (fast Lane Reader) Web Services
\ Connectors (JCA) \ (SOAP, UDDI, WSDL, ebXML)
T
proprietary protocol
4 S * l
Legacy System, Message Oriented Other J2EE
\ Database ERP System etc | Middleware Topic Systems /
Q 61: What is the difference between EJB and JavaBeans? [SF| [ZX&
A 61: Both EJBs and JavaBeans have very similar names but this is where the similarities end.
JavaBeans Enterprise JavaBeans (EJB)
The components built based on JavaBeans live in a single | The Enterprise JavaBeans are non-visual distributable

local JVM (i.e. address space) and can be either visual
(e.g. GUI components like Button, List etc) or non-visual at
runtime.

components, which can live across multiple JVMs (i.e. address
spaces).

No explicit support exists for services like transactions etc.

EJBs can be transactional and the EJB servers provide
transactional support.

JavaBeans are fine-grained components, which can be
used to assemble coarse-grained components or an
application.

EJBs are coarse-grained components that can be deployed as
is or assembled with other components into larger
applications. EJBs must be deployed in a container that
provides services like instance pooling, multi-threading,
security, life-cycle management, transactions etc

Must conform to JavaBeans specification.

Must conform to EJB specification.

Enterprise — EJB 2.x

165

Q 62: Explain EJB architecture? [SF|

A 62:
o~

EJB Architecture

ksynchronous—b‘j

ome/LocalHome

EJB Server

EJB Container -
Enterprise Java Beans

Interface

EJB Client

Home Object /
Local Home Object

Session Beans
l‘ stateful / stateless

application, Applet etc)

ksynchronous—»{

Remote/Local
Interface

Entity Beans
EJBObject/ CMP/BMP
EJBLocalObject ‘

(eg Senvilet, JSP, Stand alone

JMS

Enterprise Java Beans

Message
Producer
(e.g.
publish to
a Topic or
send to a
Queue)

tAsynchronous#{ L

istener Interface L’-

JMSMessage

Message-Driven
l‘ Beans

}

‘ ‘ Transactions

Enterprise Services and API

‘ JNDI H JMS ‘ Security ‘

Persistence

Database Server

EJB Container

JNDI Deployment descriptor
\ W| - Bean definition
\ ’a?‘)\! , - Transaction
Q - it t
00‘&9,‘\)% ‘\“\exca"] \5(’4 Security etc
et [S
7.9 \avoke & s
3. ea\ek\ Home Interface Home Object S - bean life-cycle M eth
C‘(\“dk‘ k‘ @ ejbcreate()or ods
e ejbFj
Client (e‘““": Lwb : & JoFind()
on® £
9. & ds
ente,,. "Mvo 5 ‘% -§ . metho
,n{e'pfise ke w 2 © o busin sS w0 ete
Sthog.s beap 10.0ea" P00 owe
gefHo,.SegS likg getror™

wery)

Remote Interface EJBOBject

7.
Refer EJBContext

enterprise
bean_ instance

Sample Code:

CarHome homeObject =
Car

Context initialCtx= new InitialContext(); //Initialize the JNDI context. i.e. entry point.

(CarHome) initialCtx.lookup(ejb/MyEjb); // Steps 1 & 2 in the above diagram
carObject = homeObject.create(); // Steps 3 -8

carObject .getHorsePower();

/| Steps 9 - 10

the enterprise bean instance.

Note: An EJB client should never access an enterprise bean instance directly. Any access is done through the
container generated classes, which in turn invoke enterprise bean instance’s methods. The container generated
classes intercept the request and apply services like transaction, security etc prior to invoking the actual method on

N

_/

EJB Container: EJBs are software components, which run in an environment called an EJB container. An EJB
cannot function outside an EJB Container. The EJB container hosts and manages an Enterprise JavaBean in a
similar manner that a Web container hosts a servlet or a Web browser hosts a Java Applet. The EJB container
manages the following services so that the developer can concentrate on writing the business logic:

= Transactions (refer Q71 — Q75 in Enterprise section)

= Persistence

= EJB instance pooling
= Security (refer Q81 in Enterprise section)
= Concurrent access (or multi-threading)

= Remote access

Design pattern: EJBs use the proxy design pattern to make remote invocation (i.e. remote proxy) and to add
container managed services like security and transaction demarcation. Refer Q11 in “How would you about...”

section for a more detailed discussion on proxy design pattern and dynamic proxies.

EJBContext: Every bean obtains an EJBContext object, which is a reference directly to the container. The EJB
can request information about its environment like the status of a transaction, a remote reference to itself (an EJB
cannot use 'this’ to reference itself) etc.

166

Enterprise — EJB 2.x

Deployment Descriptor: The container handles all the above mentioned services declaratively for an EJB based
on the XML deployment descriptor (ejb-jar.xml). When an EJB is deployed into a container the deployment
descriptor is read to find out how these services are handled. Refer to the J2EE deployment structure diagram in
Q6 in Enterprise section.

EJB: The EJB architecture defines 3 distinct types of Enterprise JavaBeans.

= Session beans.

= Entity beans.

= Message-driven beans.

The session and entity beans are invoked synchronously by the client and message driven beans are invoked
asynchronously by a message container such as a Queue or a Topic. Let’s look at some of the EJB container
services in a bit more detail:

Instance pooling

/ EJB instance pooling \

Client Application EJB Server

EJB
1. create()— Home @2
bean instance pool
<»4. return EJB Object reference EJB 3. assign an instance @
to client Object to EJB Object

Note:
1 The client looks up the stub from the jndi and invokes the create() method on the EJBHome object.
CarHome homeObject = (CarHome) initialCtx.lookup(ejb/MyEjb);
Car carObject = homeObject.create()
2-3 The EJBHome creates an EJBObject by invoking newInstance() and assigns a bean instance from the pool to the
EJBODbject. Now the assigned bean instance becomes in ready state from the pooled state.
4 Now the EJBODbject can service client requests and reference is returned to the client.

carObject .getHorsePower();
k Finally once the client is finshed with EJBObject reference the bean instance is returned back to the pool to serve other clients /

The above diagram shows how the EJB instances are pooled and assigned to EJB Object and then returned to
the pool. Let’s look at in detail for different types of EJBs.

stateless session & entity bean pooling \
EJB Server Notes:
Client stub 1 The diagram on the left shows that since the
EJB stateless session beans and entity beans
Object do not maintain any client state the bean

instance A was firstly allocated to client stub
bean instance pool 1 and later on allocated to client stub 2. So if

there are 1000 concurrent clients then 30
)/. @ @ instances of bean can serve them by taking

turns.

This behavior is not possible with regards to
stateful session beans which maintain the

EJB
Client stub 2 Object 4/
client state. So there will be a dedicated

EJB Server instance of the bean for each client stub. So

Client stub 1 if there are 1000 clients then there will be
EJB 1000 instances of beans. So how do we
Object L L
conserve memory. This is done by activation

and passivation. Passivation is the process

ean instance pool where the bean instance is serialized into a
persistent store when not used to conserve
| @ memory and Activation is the process where
Object °

Client stub 2 the serialized bean instance is de-serialized

back into memory to serve client request.
This process affects performance.

/llll\

/

Enterprise — EJB 2.x 167

From the diagrams it is clear that bean instances can be reused for all the bean types except for the stateful
session bean where the client state is maintained. So we need a dedicated stateful session bean for each client.

Message Driven Bean (MDB) pooling \

EJB Server

MDB-1 bean instance pool

msg X for Q1 _| OEb~_JB t for queue Q1
jec ®
@

JMS Client 1

lll\

JMS Client 2 msg Z for Q2 _| EJB
Object MDB-2 bean instance pool
JMS Client 3 msg y for Q2 — Oi}jeBct °

Note: MDBs are like stateless session beans,

The instance pools are created for each MDB and within each pool multiple instances are created. In terms of
number of instances created in each pool are very similar to stateless session beans or entity beans (i.e. 3
Kinstances of MDB-1 for queue Q1 instance pool can serve 10 JMS clients for queue Q1). /

Concurrent access

The session beans do not support concurrent access. The stateful session beans are exclusively for a client so
there is no concurrent access. The stateless session beans do not maintain any state. It does not make any sense
to have concurrent access. The entity beans represent data that is in the database table, which is shared between
the clients. So to make concurrent access possible the EJB container need to protect the data while allowing many
clients simultaneous access. When you try to share distributed objects you may have the following problem:

If 2 clients are using the same EJBObject, how do you keep one client from writing over the changes of the other?
Say for example

Client-1 reads a value x= 5
Client-2 modifies the value to x=7

Now the client-1’s value is invalid.

The entity bean addresses this by prohibiting concurrent access to bean instances. Which means several clients
can be connected to one EJBObject but only one client can access the EJB instance at a time.

Persistence

Entity beans basically represent the data in a relational database. An Entity Bean is responsible for keeping its
state in sync with the database.

f Entity beans representing data in the database \

instance for id = 1001
AccountBean

id = 1001 (primary-key)
bsb = 1234
account_number = 98765432

Account Table

id bsb account_num

instance for id = 1002 \,1001 1234 98765432
AccountBean 1234 12345678

id = 1002 (primary-key)
bsb = 1234

database
\ account_number = 12345678 /

\

168

Enterprise — EJB 2.x

= Container-managed persistence (CMP) - The container is responsible for saving the bean’s state with the help
of object-relational mapping tools.
= Bean-managed persistence (BMP) — The entity bean is responsible for saving its own state.

If entity beans performance is of concern then there are other persistence technologies and frameworks like
JDBC, JDO, Hibernate, OJB and Oracle TopLink (commercial product).

Q 63:
A 63:

What are the different kinds of enterprise beans? @ m

Session Bean: is a non-persistent object that implements some business logic running on the server. Session
beans do not survive system shut down. There are two types of session beans

= Stateless session beans (i.e. each session bean can be reused by multiple EJB clients).
= Stateful session beans (i.e. each session bean is associated with one EJB client).

Entity Bean: is a persistent object that represents object views of the data, usually a row in a database. They
have the primary key as a unique identifier. Multiple EJB clients can share each entity bean. Entity beans can
survive system shutdowns. Entity beans can have two types of persistence

= Container-Managed Persistence (CMP) - The container is responsible for saving the bean’s state.
= Bean-Managed Persistence (BMP) — The entity bean is responsible for saving its own state.

Message-driven Bean: is integrated with the Java Message Service (JMS) to provide the ability to act as a
message consumer and perform asynchronous processing between the server and the message producer.

Q 64:
A 64:

What is the difference between session and entity beans? @

Session Beans Entity Beans

Use session beans for application logic. Use entity beans to develop persistent object model.

Expect little reuse of session beans. Insist on reuse of entity beans.

Session beans control the workflow and transactions of a | Domain objects with a unique identity (i.e.-primary key) shared
group of entity beans. by multiple clients.

Life is limited to the life of a particular client. Handle | Persist across multiple invocations. Handles database access
database access for a particular client. for multiple clients.

Do not survive system shut downs or server crashes. Do survive system shut downs or server crashes.

Q 65:
A 65:

What is the difference between stateful and stateless session beans? @

Stateless Session Beans Stateful Session Bean

Do not have an internal state. Can be reused by different | Do have an internal state. Reused by the same client.
clients.
Need not be activated or passivated since the beans are [Need to handle activation and passivation to conserve system
pooled and reused. memory since one session bean object per client.

Q 66:

A 66:

What is the difference between Container Managed Persistence (CMP) and Bean Managed Persistence (BMP)
entity beans? [SF| X8

Container Managed Persistence (CMP) Bean Managed Persistence (BMP)

The container is responsible for persisting state of the bean. The bean is responsible for persisting its own state.

Container needs to generate database (SQL) calls. The bean needs to code its own database (SQL) calls.

The bean persistence is independent of its database (e.g. | The bean persistence is hard coded and hence may not be
DB2, Oracle, Sybase etc). So it is portable from one data | portable between different databases (e.g. DB2, Oracle etc).
source to another.

Q67:
A 67:

Can an EJB client invoke a method on a bean directly?
An EJB client should never access an EJB directly. Any access is done through the container. The container will
intercept the client call and apply services like transaction, security etc prior to invoking the actual EJB.

Enterprise — EJB 2.x 169

Q 68: How does an EJB interact with its container and what are the call-back methods in entity beans?
A 68: EJB interacts with its container through the following mechanisms

Call-back Methods: Every EJB implements an interface (extends EnterpriseBean) which defines several
methods which alert the bean to various events in its lifecycle. A container is responsible for invoking these
methods. These methods notify the bean when it is about to be activated, to be persisted to the database, to
end a transaction, to remove the bean from the memory, etc. For example the entity bean has the following
call-back methods:

public interface javax.ejb.EntityBean {

public void setEntityContext(javax.ejb.EntityContext c);
public void unsetEntityContext();

public void ejbLoad() ;

public void ejbStore();

public void ejbActivate();

public void ejbPassivate();

public void ejbRemove () ;

}

EJBContext: provides methods for interacting with the container so that the bean can request information
about its environment like the identity of the caller, security, status of a transaction, obtains remote reference
to itself etc. e.g. isUserInRole(), getUserPrincipal(), isRollbackOnly(), etc

JNDI (Java Naming and Directory Interface): allows EJB to access resources like JDBC connections, JMS
topics and queues, other EJBs etc.

Q 69: What is the difference between EJB 1.1 and EJB 2.0? What is the difference between EJB 2.x and EJB 3.0?

A 69: EJB 2.0 has the following additional advantages over the EJB 1.1

Local interfaces: These are beans that can be used locally, that means by the same Java Virtual Machine,
so they do not required to be wrapped like remote beans, and arguments between those interfaces are
passed directly by reference instead of by value. This improves performance.

ejbHome methods: Entity beans can declare ejpHomeXXX(...) methods that perform operations related to
the EJB component but that are not specific to a bean instance. The ejpHomeXXX(...) method declared in the
bean class must have a matching home method XXXX(...) in the home interface.

Message Driven Beans (MDB): is a completely new enterprise bean type, which is designed specifically to
handle incoming JMS messages.

New CMP Model. It is based on a new contract called the abstract persistence schema, which will allow the
container to handle the persistence automatically at runtime.

EJB Query Language (EJB QL): It is a SQL-based language that will allow the new persistence schema to
implement and execute finder methods. EJB QL also used in new query methods ejbSelectXXX(...), which is
similar to ejbFindXXXX(...) methods except that it is only for the bean class to use and not exposed to the
client (i.e. it is not declared in the home interface)

Let’s look at some of the new features on EJB 2.1

Container-managed timer service: The timer service provides coarse-grained, transactional, time-based
event notifications to enable enterprise beans to model and manage higher-level business processes.

Web Service support: EJB 2.1 adds the ability of stateless session beans to implement a Web Service
endpoint via a Web Service endpoint interface.

EJB-QL: Enhanced EJB-QL includes support for aggregate functions and ordering of results.

Current EJB 2.x model is complex for a variety of reasons:

You need to create several component interfaces and implement several unnecessary call-back methods.

EJB deployment descriptors are complex and error prone.

170

Enterprise — EJB 2.x

= EJB components are not truly object oriented, as they have restrictions for using inheritance and
polymorphism.

= EJB modules cannot be tested outside an EJB container and debugging an EJB inside a container is very
difficult.

Note: EJB 3.0 is taking ease of development very seriously and has adjusted its model to offer the POJO (Plain Old Java
Object) persistence and the new O/R mapping model based on Hibernate. In EJB 3.0, all kinds of enterprise beans are just
POJOs. EJB 3.0 extensively uses Java annotations, which replaces excessive XML based configuration files and eliminate
the need for rigid component model used in EJB 1.x, 2.x. Annotations can be used to define the bean’s business interface, O/R
mapping information, resource references etc. Refer Q18 in Emerging Technologies/Frameworks section.

Q70:
AT0:

What are the implicit services provided by an EJB container? m

= Lifecycle Management: Individual enterprise beans do not need to explicitly manage process allocation,
thread management, object activation, or object destruction. The EJB container automatically manages the
object lifecycle on behalf of the enterprise bean.

= State Management: Individual enterprise beans do not need to explicitly save or restore conversational
object state between method calls. The EJB container automatically manages object state on behalf of the
enterprise bean.

= Security: Individual enterprise beans do not need to explicitly authenticate users or check authorization
levels. The EJB container automatically performs all security checking on behalf of the enterprise bean.

= Transactions: Individual enterprise beans do not need to explicitly specify transaction demarcation code to
participate in distributed transactions. The EJB container can automatically manage the start, enrolment,
commitment, and rollback of transactions on behalf of the enterprise bean.

= Persistence: Individual enterprise beans do not need to explicitly retrieve or store persistent object data from
a database. The EJB container can automatically manage persistent data on behalf of the enterprise bean.

Q71:
AT1:

What are transactional attributes? @ Iﬂ m
EJB transactions are a set of mechanisms and concepts, which insures the integrity and consistency of the
database when multiple clients try to read/update the database simultaneously.

Transaction attributes are defined at different levels like EJB class, a method within a class or segment of a
code within a method. The attributes specified for a particular method take precedence over the attributes
specified for a particular EJB class. Transaction attributes are specified declaratively through EJB deployment
descriptors. Unless there is any compelling reason, the declarative approach is recommended over programmatic
approach where all the transactions are handled programmatically. With the declarative approach, the EJB
container will handle the transactions.

Transaction Description

Attributes

Required Methods executed within a transaction. If client provides a transaction, it is used. If not, a new transaction is
generated. Commit at end of method that started the transaction. Which means a method that has Required
attribute set, but was called when the transaction has already started will not commit at the method
completion. Well suited for EJB session beans.

Mandatory Client of this EJB must create a transaction in which this method operates, otherwise an error will be
reported. Well-suited for entity beans.

RequiresNew Methods executed within a transaction. If client provides a transaction, it is suspended. If not a new
transaction is generated, regardless. Commit at end of method.

Supports Transactions are optional.

NotSupported Transactions are not supported. If provided, ignored.

Never Code in the EJB is responsible for explicit transaction control.

Q72:
AT2:

What are isolation levels? @ m

Isolation levels provide a degree of control of the effects one transaction can have on another concurrent
transaction. Since concurrent effects are determined by the precise ways in which, a particular relational database

Enterprise — EJB 2.x 171

handles locks and its drivers may handle these locks differently. The semantics of isolation mechanisms based on
these are not well defined. Nevertheless, certain defined or approximate properties can be specified as follows:

Isolation level Description

TRANSACTION_SERIALIZABLE Strongest level of isolation. Places a range lock on the data set, preventing other
users from updating or inserting rows into the data set until the transaction is
complete. Can produce deadlocks.

TRANSACTION_REPEATABLE_READ Locks are placed on all data that is used in a query, preventing other users from
updating the data, but new phantom records can be inserted into the data set
by another user and are included in later reads in the current transaction.

TRANSACTION_READ_COMMITTED Can't read uncommitted data by another transaction. Shared locks are held while
the data is being read to avoid dirty reads, but the data can be changed before
the end of the transaction resulting in non-repeatable reads and phantom
records.

TRANSACTION_READ_UNCOMMITTED Can read uncommitted data (dirty read) by another transaction, and non-
repeatable reads and phantom records are possible. Least restrictive of all
isolation levels. No shared locks are issued and no exclusive locks are honored.

Isolation levels are not part of the EJB specification. They can only be set on the resource manager either
explicitly on the Connection (for bean managed persistence) or via the application server specific configuration.
The EJB specification indicates that isolation level is part of the Resource Manager.

As the transaction isolation level increases, likely performance degradation follows, as additional locks are
required to protect data integrity. If the underlying data does not require such a high degree of integrity, the
isolation level can be lowered to improve performance.

Q73:
AT3:

What is a distributed transaction? What is a 2-phase commit? @ ﬂ m

A Transaction (Refer Q43 in Enterprise section) is a series of actions performed as a single unit of work in which
either all of the actions performed as a logical unit of work in which, either all of the actions are performed or none
of the actions. A transaction is often described by ACID properties (Atomic, Consistent, Isolated and Durable). A
distributed transaction is an ACID transaction between two or more independent transactional resources like
two separate databases. For the transaction to commit successfully, all of the individual resources must commit
successfully. If any of them are unsuccessful, the transaction must rollback in all of the resources. A 2-phase
commit is an approach for committing a distributed transaction in 2 phases.

Phase 1 is prepare: Each of the resources votes on whether it's ready to commit — usually by going ahead and
persisting the new data but not yet deleting the old data.

Phase 2 is committing: If all the resources are ready, they all commit — after which old data is deleted and
transaction can no longer roll back. 2-phase commit ensures that a distributed transaction can always be
committed or always rolled back if one of the databases crashes. The XA specification defines how an application
program uses a transaction manager to coordinate distributed transactions across multiple resource managers.
Any resource manager that adheres to XA specification can participate in a transaction coordinated by an XA-
compliant transaction manager.

Q74:
AT74:

What is dooming a transaction? Iﬂ
A transaction can be doomed by the following method call

ejbContext.setRollbackOnly () ;

The above call will force transaction to rollback. The doomed transactions decrease scalability and if a transaction
is doomed why perform compute intensive operations? So you can detect a doomed transaction as shown below:

public void doComputelIntensiveOperation() throws Exception {

if (ejbContext.getRollbackOnly ()) {
return; // transaction is doomed so return (why unnecessarily perform compute intensive
// operation)
}
else {
performComplexOperation () ;

}

172

Enterprise — EJB 2.x

Q75:
AT75:

How to design transactional conversations with session beans? @
A stateful session bean is a resource which has an in memory state which can be rolled back in case of any
failure. It can participate in transactions by implementing SessionSynchronization.

/ SessionSynchronization \
public class MyBean implements SessionBean, SessionSynchronization{ public interface javax.ejb.SessionSynchronization {
publicint oldVal ; publicint val ; public void afterBegin();
public void beforeCompletion();
public void ejbCreate(int val) throws CreateException { public void afterCompletion(boolean b);
this.val=val; }
this.oldVal=val;
}

public void afterBegin() { this.oldVal = this.val ;}
public void - beforeCompletion(){};
public void afterCompletion(boolean b) { if (b == false) this.val = this.oldVal ; }

The uses of SessionSynchronization are:

= Enables the bean to act as a transactional resource and undo state changes on failure.
= Enables you to cache database data to improve performance.

Q76:
A T76:

Explain exception handling in EJB? @ @ m

Java has two types of exceptions:

= Checked exception: derived from java.lang.Exception but not java.lang.RuntimeException.
* Unchecked exception: derived from java.lang.RuntimeException thrown by JVM.

System vs Application Exception

public void depositAmount() throws InsufficientFundException {
if(this.amount <= 0) {

throw new InsufficientFundException ("Balance is <= 0")]
}

Tryéeposi Amount() \5| Application Exception |
} catch (SQLException e) {

throw new EJBException(e);
} catch (Exception €) {

throw new EJBException(e); .\
) } » | System Exception |

EJB has two types of exceptions:

= System Exception: is an unchecked exception derived from java.lang.RuntimeException. An
EJBException is an unchecked exception, which is derived from java.lang.RuntimeException.

= Application Exception: is specific to an application and thrown because of violation of business rules (e.g.
InsufficierntFundException etc). An Application Exception is a checked exception that is either defined by the
bean developer and does not extend java.rmi.RemoteException, or is predefined in the javax.ejb package
(i.e. CreateException, RemoveException, ObjectNotFoundException etc).

A System Exception is thrown by the system and is not recoverable. For example EJB container losing
connection to the database server, failed remote method objects call etc. Because the System Exceptions are
unpredictable, the EJB container is the only one responsible for trapping the System Exceptions. The container

Enterprise — EJB 2.x 173

automatically wraps any RuntimeException in RemoteException, which subsequently gets thrown to the caller (i.e.
client). In addition to intercepting System Exception the container may log the errors.

An Application Exception is specific to an application and is thrown because of violation of business rules. The
client should be able to determine how to handle an Application Exception. If the account balance is zero then an
Application Exception like InsufficientFundException can be thrown. If an Application Exception should be
treated as a System Exception then it needs to be wrapped in an EJBException, which extends java.lang.
RuntimeException so that it can be managed properly (e.g. rolling back transactions) and propagated to the client.

Q 77: How do you rollback a container managed transaction in EJB? [SF| [Tl [EH &

ATT:

The way the exceptions are handled affects the way the transactions are managed.

~

public void depositAmount() throws InsufficientFundExceptiion {
try {
depositAmount();
Jcatch (InsufficientFundException e) °
ctx.setRollbackOnly();
throw new InsufficientFundExceptiion(e.getMessage());

} catch (SQLException e) {

throw new EJBException(e);
throw new EJBException(e); ®
}
}

} catch (Exception e) {
When the container manages the transaction, it is automatically rolled back when a System Exception occurs.
This is possible because the container can intercept System Exception. However when an Application Exception

occurs, the container does not intercept it and therefore leaves it to the code to roll back using
ctx.setRollbackOnly().

Rolling back Container Managed Transactions

~

Application Exception is thrown so
the transaction should be rolled back

>

EJBException is a System
Exception so the container will
automatically roll back the
transaction.

=2

Be aware that handling exceptions in EJB is different from handling exceptions in Java. The Exception handling
best practice tips are:

= |f you cannot recover from System Exception let the container handle it.

= If a business rule is violated then throw an application exception.

= If you want to rollback a transaction on an application exception then catch the application exception and
throw an EJBEXxception or use ctx.setRollbackOnly ();

Q 78: What is the difference between optimistic and pessimistic concurrency control?

AT8:

Pessimistic Concurrency

| Optimistic Concurrency

A pessimistic design assumes conflicts will occur in the
database tables and avoids them through exclusive
locks etc.

An optimistic approach assumes conflicts won’t occur, and deal with
them when they do occur.

EJB (also non-EJB) locks the source data until it
completes its transaction.

. Provides reliable access to data.

. Suitable for short transactions.

. Suitable for systems where concurrent access is
rare.

EJB (also non-EJB) implements a strategy to detect whether a
change has occurred. Locks are placed on the database only for a
small portion of the time.

] Suitable for long transactions.
] Suitable for systems requiring frequent concurrent accesses.

The pessimistic locking imposes high locking
overheads on the server and lower concurrency.

The optimistic locking is used in the context of cursors. The
optimistic locking works as follows:

= No locks are acquired as rows are read.

= No locks are acquired while values in the current row are
changed.

= When changes are saved, a copy of the row in the database is
read in the locked mode.

= If the data was changed after it was read into the cursor, an error

174 Enterprise — EJB 2.x
is raised so that the transaction can be rolled back and retried.
Note: The testing for changes can be done by comparing the
values, timestamp or version numbers.

Q 79: How can we determine if the data is stale (for example when using optimistic locking)?

AT9:

We can use the following strategy to determine if the data is stale:
= Adding version numbers

Add a version number (Integer) to the underlying table.

Carry the version number along with any data read into memory (through value object, entity bean etc).
Before performing any update compare the current version number with the database version number.
If the version numbers are equal update the data and increment the version number.

If the value object or entity bean is carrying an older version number, reject the update and throw an
exception.

arON -~

Note: You can also do the version number check as part of the update by including the version column in the
where clause of the update without doing a prior select.

= Adding a timestamp to the underlying database table.
= Comparing the data values.

These techniques are also quite useful when implementing data caching to improve performance. Data caches
should regularly keep track of stale data to refresh the cache. These strategies are valid whether you use EJB or
other persistence mechanisms like JDBC, Hibernate etc.

Q 80:
A 80:

What are not allowed within the EJB container? @

In order to develop reliable and portable EJB components, the following restrictions apply to EJB code
implementation:

= Avoid using static non-final fields. Declaring all static fields in EJB component as final is recommended. This
enables the EJB container to distribute instances across multiple JVMs.

= Avoid starting a new thread (conflicts with EJB container) or using thread synchronization (allow the EJB
container to distribute instances across multiple JVMs).

= Avoid using AWT or Swing functionality. EJBs are server side business components.
= Avoid using file access or java.io operations. EJB business components are meant to use resource managers
such as JDBC to store and retrieve application data. But deployment descriptors can be used to store <env-

entry>.

= Avoid accepting or listening to socket connections. EJB components are not meant to provide network socket
functionality. However the specification lets EJB components act as socket clients or RMI clients.

= Avoid using the reflection API. This restriction enforces Java security.

= Can’t use custom class loaders.

Q 81:
A 81:

Discuss EJB container security? @ @
EJB components operate inside a container environment and rely heavily on the container to provide security. The
four key services required for the security are:

= Ildentification: In Java security APIs this identifier is known as a principal.

= Authentication: To prove the identity one must present the credentials in the form of password, swipe card,
digital certificate, finger prints etc.

= Authorization (Access Control): Every secure system should limit access to particular users. The common
way to enforce access control is by maintaining security roles and privileges.

Enterprise — EJB 2.x 175

= Data Confidentiality: This is maintained by encryption of some sort. It is no good to protect your data by
authentication if someone can read the password.

The EJB specification concerns itself exclusively with authorization (access control). An application using EJB
can specify in an abstract (declarative) and portable way that is allowed to access business methods. The EJB
container handles the following actions:

» Find out the Identity of the caller of a business method.

= Check the EJB deployment descriptor to see if the identity is a member of a security role that has been
granted the right to call this business method.

= Throw java.rmi.RemoteException if the access is illegal.

= Make the identity and the security role information available for a fine grained programmatic security check.

public void closeAccount () {
if (ejbContext.getCallerPrincipal () .getName () .equals (“SMITH”)) {
//...

}

if (!ejbContext.isCallerInRole (CORPORATE ACCOUNT MANAGER)) {
throw new SecurityException (“Not authorized to close this account”);

= Optionally log any illegal access.
There are two types of information the EJB developer has to provide through the deployment descriptor.

= Security roles
= Method permissions

Example:

<security-role>
<description>
Allowed to open and close accounts
</description>
<role-name>account manager</role-name>
</security-role>
<security-role>
<description>
Allowed to read only
</description>
<role-name>teller</role-name>
</security-role>

There is a many-to-many relationship between the security roles and the method permissions.

<method-permission>
<role-name>teller</role-name>
<method>
<ejb-name>AccountProcessor</ejb-name>
<method-name>findByPrimaryKey</method-name>
</method>
</method-permission>

Just as we must declare the resources accessed in our code for other EJBs that we reference in our code we
should also declare the security role we access programmatically to have a fine grained control as shown below.

<security-role-ref>
<description>
Allowed to open and close accounts
</description>
<role-name>account manager</role-name>
<role-link>executive</role-link>
</security-role-ref>

176

Enterprise — EJB 2.x

There is also many-to-many relationship between the EJB specific security roles that are in the deployment
descriptor and the application based target security system like LDAP etc. For example there might be more than
one group users and individual users that need to be mapped to a particular EJB security role ‘account_manager’.

Q 82:
A 82:

What are EJB best practices? m

Session Bean
(stateless)
= Tune the pool size to

Use local interfaces that are available in EJB2.0 if you deploy both the EJB client and the EJB in the same
server. Use vendor specific pass-by-reference implementation to make EJB1.1 remote EJBs operate as local.
[Extreme care should be taken not to affect the functionality by switching the application, which was written
and tested in pass-by-reference mode to pass-by-value without analyzing the implications and re-testing the
functionality.

Wrap entity beans with session beans to reduce network calls (refer Q84 in Enterprise section) and promote
declarative transactions. Where possible use local entity beans and session beans can be either local or
remote. Apply the appropriate EJB design patterns as described in Q83 — Q87 in Enterprise section.

Cache ejbHome references to avoid JNDI look-up overhead using service locator pattern.

Handle exceptions appropriately (refer Q76, Q77 in Enterprise section).

Avoid transaction overhead for non-transactional methods of session beans by declaring transactional
attribute as “Supports”.

Choose plain Java object over EJB if you do not want services like RMI/IIIOP, transactions, security,
persistence, thread safety etc. There are alternative frameworks such as Hibernate, Spring etc.

Choose Servlet's HttpSession object rather than stateful session bean to maintain client state if you do not
require component architecture of a stateful bean.

Apply Lazy loading and Dirty marker strategies as described in Q88 in Enterprise section.
Session Bean (stateful) Entity Bean

= Tune the pool size to avoid
overhead of creation and
destruction.

= Tune the pool size to avoid overhead of creation and
avoid overhead of destruction.
creation and destruction.

= Use setEntityContext(..) method to cache any bean

Use setSessionContext(..)
or ejbCreate(..) method to
cache any bean specific
resources.

Set proper time out to avoid
resource congestion.

Remove it explicitly from
client using remove()
Release any acquired method.
resources like Database
connection etc in

ejbRemove() method

Use ‘transient’ variable
where possible to avoid
serialization overhead.

specific resources and unsetEntityContext() method to
release acquired resources.

Use lazy-loading to avoid any unnecessary loading of
dependent data. Use dirty marker to avoid unchanged
data update.

Commit the data after a transaction completes to reduce
any database calls in between.

Where possible perform bulk updates, use CMP rather
than BMP, Use direct JDBC (Fast-lane-reader) instead
of entity beans, use of read-only entity beans etc.

Q 83:
A 83:

What is a business delegate? Why should you use a business delegate? m
Questions Q83 — Q88 are very popular EJB questions.

Problem: When presentation tier components interact directly with the business services components like EJB,
the presentation components are vulnerable to changes in the implementation of business services components.

Solution: Use a Business Delegate to reduce the coupling between the presentation tier components and the
business services tier components. Business Delegate hides the underlying implementation details of the business
service, such as look-up and access details of the EJB architecture.

Business delegate is responsible for:

Invoking session beans in Session Facade.

Enterprise — EJB 2.x 177

= Acting as a service locator and cache home stubs to improve performance.

= Handling exceptions from the server side. (Unchecked exceptions get wrapped into the remote exception,
checked exceptions can be thrown as an application exception or wrapped in the remote exception.
unchecked exceptions do not have to be caught but can be caught and should not be used in the method
signature.)

= Re-trying services for the client (For example when using optimistic locking business delegate will retry the
method call when there is a concurrent access.).

/ Business Delegate \

Client 1.uses BusinessDelegate 4.uses BusinessServiceEJB

2.uses

EJBLookupService

3. lookup/create

- J

Q 84: What is a session facade? m

A 84: Problem: Too many method invocations between the client and the server will lead to network overhead, tight
coupling due to dependencies between the client and the server, misuse of server business methods due to fine
grained access etc.

Solution: Use a session bean as a fagade to encapsulate the complexities between the client and the server

interactions. The Session Facade manages the business objects, and provides a uniform coarse-grained service
access layer to clients.

/ Session Facade \

Without Session Facade With Session Facade
e
o «\ Session Bean g
remote call 2—— P Entitity Bean 2 m romotecall 19y OP1SS) @i ca 2 ity Bean 2
Ve
%y

Sy

3,
"3 Entitity Bean 3

Entitity Bean 3 j

Session fagade is responsible for

= Improving performance by minimizing fine-grained method calls over the network.

= Improving manageability by reducing coupling, exposing uniform interface and exposing fewer methods to
clients.

= Managing transaction and security in a centralized manner.

Q 85: What is a value object pattern? m

A 85: Problem: When a client makes a remote call to the server, there will be a process of network call and serialization
of data involved for the remote invocation. If you make fine grained calls there will be performance degradation.

178

Enterprise — EJB 2.x

Solution: Avoid fine-grained method calls by creating a value object, which will help the client, make a coarse-
grained call.

f Value Object pattern \

Without Value Object With Value Object
SessionBean | |S Session
e @ Bean
Serviet - \:‘\rs\Name(P r @ Value getPersoninfo()»
(client) getSurname()——»| \Y
|
e
t
(
c
|
i
Without value object 4 remote calls are e
made to get all the relevant info n
t With value object 1 remote call and 4 local
) calls are made to get all the relevant info. /

Q 86:
A 86:

What is a fast-lane reader?
Problem: Using Entity beans to represent persistent, read only tabular data incurs performance cost at no benefit
(especially when large amount of data to be read).

Solution: Access the persistent data directly from the database using the DAO (Data Access Object) pattern

instead of using Entity beans. The Fast lane readers commonly use JDBC, Connectors etc to access the read-only
data from the data source. The main benefit of this pattern is the faster data retrieval.

/ Fast Lane Reader I

J2EE Server
EJB Container
Web Container
lane
—

\are

Serviet rd“d

(dclient) Fast ‘La(\e
Leng R&ﬂder\‘ Detes Object e DataSource

JDBC
K Use Fast Lane Reader for read only access and the normal lane for read/write access to the DataSource. /

Q 87:
A 87:

What is a Service Locator?

Problem: J2EE makes use of the JNDI interface to access different resources like JDBC, JMS, EJB etc. The client
looks up for these resources through the JNDI look-up. The JNDI look-up is expensive because the client needs to
get a network connection to the server first. So this look-up process is expensive and redundant.

Solution: To avoid this expensive and redundant process, service objects can be cached when a client performs
the JNDI look-up for the first time and reuse that service object from the cache for the subsequent look-ups. The
service locator pattern implements this technique. Refer to diagram below:

Enterprise — EJB 2.x 179

/ Service Locator \

Without Service Locator With Service Locator
Servlet
Servet (client -1)
(client -1) f,
%y, Service
Serviet Servlet \ook\:\% Locator lookup first time only
ervie i
(client - 2) (client - 2) o
\06(~ JNDI
Servlet
Serviet A
(client - 3) (client - 3)
- - - With service locator look up first time from
Without service locator look up every time the JNDI and second time onwards lookup
\from the JNDI from the cache in the service locator. /

Q 88: Explain lazy loading and dirty marker strategies?

A 88: Lazy Loading: Lazy loading means not creating an object until the first time it is accessed. This technique is
useful when you have large