

QUANT FORMULAE eBook For SBI and IBPS Exam

IBPS PO 2015

Join BankersChoice to

Improve your score and

Boost your chances.

Number system

1. When Sum and Diff of two numbers (X and Y) are given, then

X = (sum + diff)/2

Y = (sum - diff)/2

- 2. Diff between two digits of two digit number is = (Diff in original and interchanged number)/9
- 3. Sum of first n odd nos is n^2
- 4. Sum of first n even nos n(n+1)
- 5. Sum of squares of first n natural no's is n(n+1)(2n+1)/6
- 6. Sum of cubes of first n natural numbers is $[n(n+1)/2]^2$
- 7. If the sum of squares of two numbers is x and the square of their diff is y, then the product of the two numbers is [(x-y)/2]

Algebra

- $(a+b)^2 = a^2 + 2ab +$ 1. $(a-b)^2 = a^2 - 2ab + a^2 - a^2 - 2ab + a^2 - 2ab +$ 2.
- $(a+b)^{2} = (a-b)^{2} + 4ab$ 3.
- $(a-b)^2 = (a+b)^2 4ab$
- $(a+b)^{3} = a^{3}+b^{3}+3ab(a+b)$ $= a^{3} + b^{3} + 3a^{2}b + 3ab^{2}$
- $(a-b)^{3} = a^{3} b^{3} 3ab(a-b)$
- $= a^{3}-b^{3}-3a^{2}b+3ab^{2}$ $a^{3}+b^{3} = (a+b)^{3} - 3ab(a+b)$
- $a^{3}-b^{3} =(a-b)^{3}+3ab(a-b)$
- $a^{2}-b^{2} = (a-b)(a+b)$
- 10. $a^3 + b^3 = (a+b)(a^2-ab+b^2)$

- 11. $a^3 b^3 = (a-b)(a^2+ab+b^2)$
- 12. $a^m x a^n = a^{m+n}$
- 13. $a^m / a^n = a^{m-n}$
- 14. $(a/b)^{(m/n)} = (b/a)^{-(m/n)}$
- 15. $a^{m} / b^{-n} = a^{m} x b^{n}$

Ratio and Proportion

- 1. If four quantities are proportion, then Product of Means = Product of Extremes. In the proportion a:b::c:d, we have bc = ad
- 2. If a:b::c:x, x is called the fourth proportional of a, b, c. a/b = c/x or, x = bc/a.
 - If two numbers are in a:b ratio and the sum of these numbers is x, then numbers will be ax/(a+b)and bx/(a+b) respectively
- If three numbers are in the ratio 4. a:b:c and the sum of these numbers is x, then these numbers will be ax/(a+b+c) , bx/(a+b+c) and cx/(a+b+c)respectively
- 5. The ratio of two numbers is a : b. If n is added to each of these numbers, the ratio becomes c : d. The two numbers will be given as an(c-d)/(ad-bc) and bn(cd)/(ad-bc) respectively
- 6. The ratio of two numbers is a : b. If n is subtracted from each of these numbers, the ratio becomes c : d. The two numbers

are given as an(d-c)/(ad-bc) and bn(d-c)/(ad-bc) respectively If the ratio of two numbers is a: b, then the numbers that should be added to each of the numbers in order to make this ratio c:d is given by (ad-bc)/(c-d)

- 8. If the ratio of two numbers is a:b, then the number that should be subtracted from each of the numbers in order to make this ratio c:d is given by (bc-ad)/(c-d)
- 9. The CP of the item that is cheaper is CP_{cheaper} and the CP of the item that is costlier (dearer) is CP_{Dearer}. The CP of unit quantity of the final mixture is called the Mean Price and is given by

$$\begin{array}{rcl} CP_{mean \ price} & = & \\ & \\ CP_{cheaper} & - & CP_{mean \ price} \\ \hline & \\ \hline & \\ CP_{mean \ price} & - & CP_{cheaper} \end{array}$$

Percentage

1. a % of b = a x b/100

2. If A is x% more than B, then B is less than A by

$$\left[\frac{x}{100+x} \times 100\right]\%$$

3. If A is x% less than B, then B is more than A by

$$\left[\frac{x}{100-x} \times 100\right]\%$$

Bankers

- 4. If A is x% of C and B is y% of C, then A = $x/y \times B$
- 5. If two numbers are respectively x% and y% more than a third number, then first number is $\left(\frac{100+x}{100+y} \times 100\right)$ % of the second number and the second

number is $\left(\frac{100+y}{100+x} \times 100\right)\%$ of the

first number

6. If two numbers are respectively x% and y% less than a third number, then the first number is $\left(\frac{100-x}{100-y} \times 100\right)\%$

of the second number and the second

number is
$$\left(\frac{100-y}{100-x} \times 100\right)\%$$
 of the

first number

- 7. If the price of a commodity decreases by P %, then the increase in consumption so that the expenditure remains same is $\left(\frac{P}{100-P} \times 100\right)\%$
- 8. If the price of a commodity increases by P%, then the reduction in consumption so that the expenditure remains same is $\left(\frac{P}{100+P} \times 100\right)\%$
- If a number is changed (increased/decreased) successively by x% and y%, then net% change is given

by [x+y+(xy/100)]%, which represents increase or decrease in value according as the sign is positive or negative

- 10. If two parameters A and B are multiplied to get a product and if A is changed by x% and another parameter B is changed by y%, then the net% change in the product (A × B) is given [x+y+(xy/100)]%
- 11. In an examination, the minimum pass percentage is x%. If a student secures y marks and fails by z marks, then the maximum marks in the examination is 100(y+z)/x
- 12. If the present population of a town (or value of an item) be P and the population (or value of item) changes at r% per annum, then population (or value of item)

after n years = $P\left(1+\frac{r}{100}\right)^n$ and

the Population (or value of item) n years ago = P

 If a number A is increased successively by x% followed by y% and then by z%, then the final value of A will be

 $A\left(1+\frac{x}{100}\right)\left(1+\frac{y}{100}\right)\left(1+\frac{z}{100}\right)$

Averages and Mixtures

- Average = Sum of quantities/
 Number of quantities
- 2. Sum of quantities = Average × Number of quantities
- 3. The average of first n natural numbers is (n +1)/2
- The average of the squares of first n natural numbers is (n +1)(2n+1)/6
- 5. The average of cubes of first n natural numbers is $n(n + 1)^2/4$
- The average of first n odd numbers is given by (last odd number +1)/2
 - The average of first n even numbers is given by (last even number + 2)/2
 - The average of first n consecutive odd numbers is n
- The average of squares of first n consecutive even numbers is 2(n+1)(2n+1)/3
- The average of squares of consecutive even numbers till n is (n+1)(n+2)/3
- 11. The average of squares of squares of consecutive odd numbers till n is n(n+2)/3.
- 12. If the average of n consecutive numbers is m, then the difference between the smallest and the largest number is 2(m-1)
- 13. If the number of quantities in two groups be n_1 and n_2 and their

average is x and y respectively, the combined average is $(n_1x + n_2y)/(n_1 + n_2)$

Bankers/

- 14. The average of n quantities is equal to x. When a quantity is removed, the average becomes y. The value of the removed quantity is n(x-y) + y
- 15. The average of n quantities is equal to x. When a quantity is added, the average becomes y. The value of the new quantity is n(y-x) + y

Profit and Loss

- 1. Gain = SP- CP
- 2. Loss = CP- SP
- 3. Gain on Rs. 100 is Gain per cent
- 4. Gain% = (Gain \times 100)/CP
- 5. Loss on Rs. 100 is Loss per cent
- 6. Loss% = (Loss \times 100)/CP
- 7. When the Cost Price and Gain per cent are given:SP = [(100+Gain %)/100] x CP
- 8. When the Cost Price and Loss per cent are given:
 - SP = [(100-Loss %)/100] x CP
- 9. When the Selling Price and Gain per cent are given:
 - CP = [100/(100+Gain %)] x SP
- 10. When the Selling Price and Loss per cent are given:CP = [100/(100-Loss %)] x SP

- 11. When p articles are sold at the cost of q similar articles, the Profit/Loss % = [(q-p)/p]x100
- 12. If two articles are sold at the same price with a profit of x % on one and a loss of x % on the other, the net loss % = $(x^2/100)$ %
- 13. If two articles bought at the same price are sold with a profit of x % on one and a loss of x % on the other, then overall there will be No Profit No Loss

Simple and Compound Interest

- 1. Simple Interest, SI = PTR/100
- 2. Principal, $P = 100 \times SI/RT$
- 3. Rate, R = $100 \times SI/PT$
- 4. Time, T = $100 \times SI/RP$
- 5. Amount, A = P + SI
 - = P + (PTR)/100
- 6. If a certain sum of money becomes n times itself at R% p.a. simple interest in T years, then $T = [(n-1)/R] \times 100$ years
- 7. If a certain sum of money becomes n times itself in T years at a simple interest, then the time T' in which it will become m times itself is given by T' = (m-1/n-1) × T years

- If a certain sum of money P lent out at SI amounts to A₁ in T₁ years and to A₂ in T₂ years, then
 - $P = (A_1 T_2 A_2 T_1) / (T_2 T_1)$
 - $R = (A_1 A_2) / (A_1 T_2 A_2 T_1) \times 100\%$
- If a certain sum of money P lent out for a certain time T amounts to A₁ at R₁% per annum and to A₂ at R₂% per annum, then
 - $P = (A_2R_1 A_1R_2)/(R_1 R_2)$
 - $T = (A_1 A_2)/(A_2R_1 A_1R_2) \times 100$ years
- 10. Compound Interest,
 - $\mathsf{CI} = P \left[1 + \frac{R}{100} \, ^n P \right]$ $= P \left[\left[1 + \frac{R}{100} \, ^n 1 \right] \right]$
- 11. Amount, A = $P\left[1 + \frac{R}{100}\right]^n$
 - if interest is payable annually
- 12. Amount, A = $P\left[1 + \frac{R'}{100}^n\right]$, R'= R/2, n' = 2n; if interest is payable half-yearly
- 13. Amount, $A = P \left[1 + \frac{R''}{100} \right]^n$, R'' = R/4, n'' = 4n; if interest is payable guarterly
- 14. When time is fraction of a year, say 4^{-3} years, then Amount,
- $A = P \left[1 + \frac{R}{100} \right]^4 \times \left[1 + \frac{\frac{3}{4}R}{100} \right]^4$
- 15. When Rates are different for different years, say, R₁, R₂, R₃ for

- 1st, 2nd & 3rd years respectively, then, Amount =
- $P\left[1 + \frac{R_1}{100} \left[1 + \frac{R_2}{100} \left[1 + \frac{R_3}{100}\right]\right]\right]$
- In general, interest is considered to be Simple unless otherwise stated.

Time and Work

- If 1/n of a work is done by A in one day, then A will take n days to complete the full work.
- If A can do a piece do a piece of work in X days and B can do the same work in Y days, then both of them working together will do the same work in XY/(X+Y) days
 - If A, B and C, while working alone, can complete a work in X, Y and Z days respectively, then they will together complete the work in XYZ/(XY+YZ+ZX) days
- If A does 1/nth of a work in m hours, then to complete the full work A will take n/m hours.
- If A and B can together finish a piece of work in X days, B and C in Y days and C and A in Z days, then
 - a) A, B and C working together will finish the job in (2XYZ/XY+YZ+ZX) days.
 - b) A alone will finish the job in (2XYZ/XY+YZ- ZX) days.
 - c) B alone will finish the job in (2XYZ/ZX+XY-YZ) days.

 d) C alone will finish the job in (2XYZ/ZX+YZ- XY) days.

Bankers

- If A can finish a work in X days and B is k times efficient than A, then the time taken by both A and B working together to complete the work is X/(1+k).
- 7. If A and B working together can finish a work in X days and B is k times efficient than A, then the time taken by A working alone to complete the work is (k+1)X and B working alone to complete the work is (k+1/k)X.

Time and Distance

- 1. 1 Kmph = (5/18) m/s
- 2. 1 m/s = (18/5) Kmph
- 3. Speed(S) = Distance(d)/Time(t)
- 4. Average Speed = Total distance/Total Time = $(d_1+d_2)/(t_1+t_2)$
- 5. When $d_1 = d_2$, Average speed = $2S_1S_2/(S_1+S_2)$, where S_1 and S_2 are the speeds for covering d1 and d2 respectively
- 6. When $t_1 = t_2$, Average speed = $(S_1+S_2)/2$, where S_1 and S_2 are the speeds during t_1 and t_2 respectively
- 7. Relative speed when moving in opposite direction is $S_1 + S_2$

Relative speed when moving in same direction is $S_1 - S_2$

- 9. A person goes certain distance (A to B) at a speed of S_1 kmph and returns back (B to A) at a speed of S_2 kmph. If he takes T hours in all, the distance between A and B is $T(S_1S_2/S_1+S_2)$
- 10. When two trains of lengths l_1 and l_2 respectively travelling at the speeds of s_1 and s_2 respectively cross each other in time t, then the equation is given as $S_1+S_2 = (l_1+l_2)/t$
- 11. When a train of lengths l_1 travelling at a speed s_1 overtakes another train of length l_2 travelling at speed s_2 in time t, then the equation is given as $s_1 - s_2 = (l_1+l_2)/t$
- 12. When a train of lengths l_1 travelling at a speed s_1 crosses a platform/bridge/tunnel of length l_2 in time t, then the equation is given as $s_1 = (l_1+l_2)/t$
- 13. When a train of lengths I travelling at a speed s crosses a pole/pillar/flag post in time t, then the equation is given as S = I/t
- 14. If two persons A and B start at the same time from two points P and Q towards each other and after crossing they take T_1 and T_2 hours in reaching Q and P respectively, then (A's speed)/(B's speed) = $\sqrt{T_2}/\sqrt{T_1}$

Mensuration

Circle:

- 1. Diameter, D = 2R
- 2. Area = πR^2 sq. units
- 3. Circumference = $2\pi R$ units

Square:

- 4. Area = a^2 sq. units
- 5. Perimeter = 4a units
- 6. Diagonal, d = $\sqrt{2}$ a units

Rectangle:

- 7. Area = LxB sq. units
- 8. Perimeter = 2(L+B) units
- 9. Diagonal, d = $\sqrt{L^2 + B^2}$ units

Scalene Triangle:

10. Area $\overline{s(s-a)(s-b)(s-c)}$ sq units 11. Perimeter = (a+b+c) units

Isosceles Triangle:

12. Area = $\frac{b}{4}\sqrt{4a^2 - b^2}$ sq units 13. Perimeter = 2a + b units b = base length; a = equal side length

Equilateral Triangle:

14. Area = $\frac{\sqrt{3}}{4}a^2$ sq. units 15. Perimeter = 3a units a = side of the triangle

Right-angled triangle: 16. Area = $(\frac{1}{2})$ bxh sq. units 17. Perimeter = b + h hypotenuse 18. Hypotenuse = $\sqrt{b^2 + h^2}$ units

Cuboid:

19. Volume = (Cross section area × height) = L × B × H cubic units
20. Lateral Surface Area (LSA) = 2[(L+B)H] sq. units

- 21. Total surface area (TSA) = 2(LB+BH+HL) sq. units
- 22. Length of the diagonals =

$$\sqrt{L^2+B^2+H^2}$$
 units

Cube:

23. Volume = a^3 cubic units 24. LSA = $4 a^2$ sq. units 25. TSA = $6a^2$ sq. units 26. Length of diagonal = $a\sqrt{3}$ units

Sphere:

27. Volume = (4/3) πR^3 cubic units 28. Surface Area = $4\pi R^2$ sq. units 29. If R and r are the external and internal radii of a spherical shell, then its Volume = $4/3[R^3-r^3]$ cubic units

Bankers

Hemisphere:

30. Volume = $(2/3)\pi R^3$ cubic units 31. TSA = $3\pi R^2$ sq. units

Cylinder:

32. Volume = $\pi R^2 h$ cubic units

- 33. Curved surface Area (CSA) (excludes the areas of the top and bottom circular regions) = $2\pi Rh$ sq. units
- 34. TSA = Curved Surface Area + Areas of the top and bottom circular regions =

 $2\pi RH + 2\pi R^2 = 2\pi R[R+h]$ sq. units

Cone:

35. Volume = $(1/3)\pi R^2 h$ cubic Units) 36. Slant Height of cone $L = \sqrt{R^2 + H^2}$ units 37. CSA = πRL sq. units

38. TSA = $\pi R(R + L)$ sq. units