
eBook For
SBI and IBPS Exam

Bankers/ /Choice

Number system

1. When Sum and Diff of two numbers (X and Y) are given then
$\mathrm{X}=($ sum + diff $) / 2$
$Y=($ sum - diff $) / 2$
2. Diff between two digits of two digit number is =
(Diff in original and interchanged number)/9
3. Sum of first n odd nos is n^{2}
4. Sum of first n even nos $n(n+1)$
5. Sum of squares of first n natural no's is $n(n+1)(2 n+1) / 6$

IBPS PO 2015

> Join BankersChoice to Improve your score and Boost your chances.
11. $a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)$
12. $a^{m} \times a^{n}=a^{m+n}$
13. $a^{m} / a^{n}=a^{m-n}$
14. $(a / b)^{(m / n)}=(b / a)^{-(m / n)}$
15. $a^{m} / b^{-n}=a^{m} \times b^{n}$

Ratio and Proportion

1. If four quantities are proportion, then Product of Means = Product of Extremes.
In the proportion a:b::c:d, we have $b c=a d$
2. If $a: b:: c: x, x$ is called the fourth proportional of a, b, c.
$a / b=c / x$ or, $x=b c / a$.
3. If two numbers are in a:b ratio and the sum of these numbers is x, then numbers will be $a x /(a+b)$ and $b x /(a+b)$ respectively
4. If three numbers are in the ratio a:b:c and the sum of these numbers is x, then these numbers will be $a x /(a+b+c)$, $b x /(a+b+c)$ and $c x /(a+b+c)$ respectively
5. The ratio of two numbers is $a: b$. If n is added to each of these numbers, the ratio becomes c : d. The two numbers will be given as $\mathrm{an}(\mathrm{c}-\mathrm{d}) /(\mathrm{ad}-\mathrm{bc})$ and $\mathrm{bn}(\mathrm{c}$ -d)/(ad-bc) respectively
6. The ratio of two numbers is $a: b$. If n is subtracted from each of these numbers, the ratio becomes c: d . The two numbers
are given as an $(\mathrm{d}-\mathrm{c}) /(\mathrm{ad}-\mathrm{bc})$ and bn(d-c)/(ad-bc) respectively
If the ratio of two numbers is $a: b$, then the numbers that should be added to each of the numbers in order to make this ratio $\mathrm{c}: \mathrm{d}$ is given by (ad-bc)/(c-d)
7. If the ratio of two numbers is $a: b$, then the number that should be subtracted from each of the numbers in order to make this ratio c:d is given by (bc-ad)/(c-d)
8. The CP of the item that is cheaper is $\mathrm{CP}_{\text {cheaper }}$ and the CP of the item that is costlier (dearer) is $\mathrm{CP}_{\text {Dearer }}$. The CP of unit quantity of the final mixture is called the Mean Price and is given by
$C P_{\text {mean price }}=$
$\frac{C P_{\text {cheaper }}-C P_{\text {mean price }}}{C P_{\text {mean price }}-C P_{\text {cheaper }}}$
Percentage
9. $a \%$ of $b=a x b / 100$
10. If A is $x \%$ more than B, then B is less than A by

$$
\left[\frac{x}{100+x} \times 100\right] \%
$$

3. If A is $x \%$ less than B, then B is more than A by

$$
\left[\frac{x}{100-x} \times 100\right] \%
$$

4. If A is $x \%$ of C and B is $y \%$ of C, then A $=x / y \times B$
5. If two numbers are respectively $x \%$ and $y \%$ more than a third number, then first number is $\left(\frac{100+x}{100+y} \times 100\right) \%$ of the second number and the second number is $\left(\frac{100+y}{100+x} \times 100\right) \%$ of the first number
6. If two numbers are respectively $x \%$ and $y \%$ less than a third number, then the first number is $\left(\frac{100-x}{100-y} \times 100\right) \%$ of the second number and the second number is $\left(\frac{100-y}{100-x} \times 100\right) \%$ of the first number
7. If the price of a commodity decreases by P, then the increase in consumption so that the expenditure remains same is $\left(\frac{P}{100-P} \times 100\right) \%$
8. If the price of a commodity increases by $\mathrm{P} \%$, then the reduction in consumption so that the expenditure remains same is $\left(\frac{P}{100+P} \times 100\right) \%$
9. If a number is changed (increased/decreased) successively by $x \%$ and $y \%$, then net\% change is given
by $[x+y+(x y / 100)] \%$, which represents increase or decrease in value according as the sign is positive or negative
10. If two parameters A and B are multiplied to get a product and if A is changed by $\mathrm{x} \%$ and another parameter B is changed by $\mathrm{y} \%$, then the net\% change in the product (A \times B) is given [x+y+(xy/100)]\%
11. In an examination, the minimum pass percentage is $x \%$. If a student secures y marks and fails by z marks, then the maximum marks in the examination is $100(y+z) / x$
12. If the present population of a town (or value of an item) be P and the population (or value of item) changes at r\% per annum, then population (or value of item)

13. If a number A is increased successively by $\mathrm{x} \%$ followed by $\mathrm{y} \%$ and then by $z \%$, then the final value of A will be
$A\left(1+\frac{x}{100}\right)\left(1+\frac{y}{100}\right)\left(1+\frac{z}{100}\right)$

Averages and Mixtures

1. Average $=$ Sum of quantities $/$ Number of quantities
2. Sum of quantities $=$ Average \times Number of quantities
3. The average of first n natural numbers is $(n+1) / 2$
4. The average of the squares of first n natural numbers is $\quad(\mathrm{n}$ $+1)(2 n+1) / 6$
5. The average of cubes of first n natural numbers is $n(n+1)^{2} / 4$
6. The average of first n odd numbers is given by (last odd number +1)/2
7. The average of first n even numbers is given by (last even number + 2)/2
The average of first n consecutive odd numbers is n
8. The average of squares of first n consecutive even numbers is $2(n+1)(2 n+1) / 3$
9. The average of squares of consecutive even numbers till n is $(n+1)(n+2) / 3$
10. The average of squares of squares of consecutive odd numbers till n is $n(n+2) / 3$.
11. If the average of n consecutive numbers is m, then the difference between the smallest and the largest number is $2(m-1)$
12. If the number of quantities in two groups be n_{1} and n_{2} and their
average is x and y respectively, the combined average is $\left(n_{1} x+n_{2} y\right) /($ $n_{1}+n_{2}$)
13. The average of n quantities is equal to x. When a quantity is removed, the average becomes y. The value of the removed quantity is $n(x-y)+y$
14. The average of n quantities is equal to x. When a quantity is added, the average becomes y. The value of the new quantity is $n(y-x)+y$

Profit and Loss

1. Gain $=\mathrm{SP}-\mathrm{CP}$
2. Loss $=C P-S P$
3. Gain on Rs. 100 is Gain per cent
4. Gain\% $=($ Gain $\times 100) / C P$
5. Loss on Rs. 100 is Loss per cent
6. Loss\% $=($ Loss $\times 100) / C P$
7. When the Cost Price and Gain per cent are given:
SP = [(100+Gain \%)/100] x CP
8. When the Cost Price and Loss per cent are given: SP = [(100-Loss \%)/100] x CP
9. When the Selling Price and Gain per cent are given:
$C P=[100 /(100+$ Gain \%) $] \times$ SP
10. When the Selling Price and Loss per cent are given: $C P=[100 /(100-L o s s \%)] \times$ SP
11. When p articles are sold at the cost of q similar articles, the Profit/Loss \% = [(q-p)/p]×100
12. If two articles are sold at the same price with a profit of $x \%$ on one and a loss of $x \%$ on the other, the net loss \% = $\left(x^{2} / 100\right) \%$
13. If two articles bought at the same price are sold with a profit of $x \%$ on one and a loss of $x \%$ on the other, then overall there will be No Profit No Loss

Simple and Compound Interest

1. Simple Interest, $\mathrm{SI}=\mathrm{PTR} / 100$
2. Principal, $P=100 \times S I / R T$
3. Rate, $\mathrm{R}=100 \times \mathrm{SI} / \mathrm{PT}$
4. Time, $T=100 \times S I / R P$
5. Amount, $A=P+S I$

$$
=P+(P T R) / 100
$$

6. If a certain sum of money becomes n times itself at R\% p.a. simple interest in T years, then $T=[(n-1) / R] \times 100$ years
7. If a certain sum of money becomes n times itself in T years at a simple interest, then the time T^{\prime} in which it will become m times itself is given by $T^{\prime}=(m-1 / n-1) \times T$ years
8. If a certain sum of money P lent out at Sl amounts to A_{1} in T_{1} years and to A_{2} in T_{2} years, then
$P=\left(A_{1} T_{2}-A_{2} T_{1}\right) /\left(T_{2}-T_{1}\right)$
$R=\left(A_{1}-A_{2}\right) /\left(A_{1} T_{2}-A_{2} T_{1}\right) \times 100 \%$
9. If a certain sum of money P lent out for a certain time T amounts to A_{1} at $R_{1} \%$ per annum and to A_{2} at $R_{2} \%$ per annum, then
$P=\left(A_{2} R_{1}-A_{1} R_{2}\right) /\left(R_{1}-R_{2}\right)$
$T=\left(A_{1}-A_{2}\right) /\left(A_{2} R_{1}-A_{1} R_{2}\right) \times 100$ years
10. Compound Interest,
$\begin{aligned} \mathrm{Cl} & =P\left[1+\frac{R}{100}^{n}-P\right. \\ & =P\left[\left[1+\frac{R}{100}^{n}-1\right]\right.\end{aligned}$
$=P\left[\left[1+\frac{R}{100}^{n}-1\right]\right.$
11. Amount, $\mathrm{A}=P\left[1+\frac{R}{100}^{n}\right.$, if interest is payable annually
12. Amount, $\mathrm{A}=P\left[1+\frac{R^{\prime}}{100}\right.$
$R^{\prime}=R / 2, n^{\prime}=2 n$; if interest is payable half-yearly
13. Amount, $\mathrm{A}=P\left[1+\frac{R^{\prime \prime}}{100}\right]^{n}$
$R^{\prime \prime}=R / 4, n^{\prime \prime}=4 n$; if interest is payable quarterly
14. W
wonen time is fraction of a year,
say $4 \frac{3}{4}$ years, then Amount,
$\mathrm{A}=P\left[1+\frac{R}{100}\right]^{4} \times\left[1+\frac{\frac{3}{4} R}{100}\right.$
15. When Rates are different for different years, say, R_{1}, R_{2}, R_{3} for
/Choice
$1^{\text {st }}, 2^{\text {nd }} \& 3^{\text {rd }}$ years respectively, then, Amount =
$P\left[1+\frac{R_{1}}{100}\left[1+\frac{R_{2}}{100}\left[1+\frac{R_{3}}{100}\right.\right.\right.$
16. In general, interest is considered to be Simple unless otherwise stated.

Time and Work

1. If $1 / n$ of a work is done by A in one day, then A will take n days to complete the full work.
2. If A can do a piece do a piece of work in X days and B can do the same work in Y days, then both of them working together will do the same work in $\mathrm{XY} /(\mathrm{X}+\mathrm{Y})$ days
If A, B and C, while working alone, can complete a work in X, Y and Z days respectively, then they will together complete the work in $\mathrm{XYZ} /(\mathrm{XY}+\mathrm{YZ}+\mathrm{ZX})$ days
3. If A does $1 / \mathrm{n}^{\text {th }}$ of a work in m hours, then to complete the full work A will take n / m hours.
4. If A and B can together finish a piece of work in X days, B and C in Y days and C and A in Z days, then
a) A, B and C working together will finish the job in ($2 X Y Z / X Y+Y Z+Z X$) days.
b) A alone will finish the job in ($2 X Y Z / X Y+Y Z-Z X$) days.
c) B alone will finish the job in ($2 X Y Z / Z X+X Y-Y Z$) days.
d) C alone will finish the job in ($2 \mathrm{XYZ} / \mathrm{ZX}+\mathrm{YZ}-\mathrm{XY}$) days.
5. If A can finish a work in X days and B is k times efficient than A, then the time taken by both A and B working together to complete the work is $\mathrm{X} /(1+\mathrm{k})$.
6. If A and B working together can finish a work in X days and B is k times efficient than A, then the time taken by A working alone to complete the work is $(k+1) X$ and B working alone to complete the work is $(k+1 / k) X$.

Time and Distance

1. $1 \mathrm{Kmph}=(5 / 18) \mathrm{m} / \mathrm{s}$
$1 \mathrm{~m} / \mathrm{s}=(18 / 5) \mathrm{Kmph}$
2. $\operatorname{Speed}(\mathrm{S})=$ Distance $(\mathrm{d}) /$ Time (t)
3. Average Speed $=$ Total distance/Total Time = $\left(\mathrm{d}_{1}+\mathrm{d}_{2}\right) /\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right)$
4. When $d_{1}=d_{2}$, Average speed $=2 S_{1} S_{2} /\left(S_{1}+S_{2}\right)$, where S_{1} and S_{2} are the speeds for covering d1 and d 2 respectively
5. When $t_{1}=t_{2}$ Average speed $=\left(S_{1}+S_{2}\right) / 2$, where S_{1} and S_{2} are the speeds during t_{1} and t_{2} respectively
6. Relative speed when moving in opposite direction is $\mathrm{S}_{1}+\mathrm{S}_{2}$
Relative speed when moving in same direction is $\mathrm{S}_{1}-\mathrm{S}_{2}$
7. A person goes certain distance (A to B) at a speed of $S_{1} \mathrm{kmph}$ and returns back (B to A) at a speed of S_{2} kmph. If he takes T hours in all, the distance between A and B is $\mathrm{T}\left(\mathrm{S}_{1} \mathrm{~S}_{2} / \mathrm{S}_{1}+\mathrm{S}_{2}\right)$
8. When two trains of lengths I_{1} and I_{2} respectively travelling at the speeds of s_{1} and s_{2} respectively cross each other in time t, then the equation is given as $\quad s_{1}+s_{2}=\left(l_{1}+l_{2}\right) / t$
9. When a train of lengths I_{1} travelling at a speed s_{1} overtakes another train of length I_{2} travelling at speed s_{2} in time t, then the equation is given as $s_{1}-s_{2}=\left(I_{1}+l_{2}\right) / t$
10. When a train of lengths I_{1} travelling at a speed s_{1} crosses a platform/bridge/tunnel of length I_{2} in time t, then the equation is given as $S_{1}=\left(l_{1}+l_{2}\right) / t$
11. When a train of lengths I travelling at a speed s crosses a pole/pillar/flag post in time t, then the equation is given as $\quad s=1 / t$
12. If two persons A and B start at the same time from two points P and Q towards each other and after crossing they take T_{1} and T_{2} hours in reaching Q and P respectively, then (A's speed)/(B's speed) $=\sqrt{ } T_{2} / \sqrt{ } T_{1}$

Mensuration

Circle:

1. Diameter, $D=2 R$
2. Area $=\pi R^{2}$ sq. units
3. Circumference $=2 \pi R$ units

Square:

4. Area $=a^{2}$ sq. units
5. Perimeter $=4 \mathrm{a}$ units
6. Diagonal, $d=\sqrt{2}$ a units

Rectangle:

7. Area $=L x B$ sq. units
8. Perimeter $=2(L+B)$ units
9. Diagonal, $\mathrm{d}=\sqrt{L^{2}+B^{2}}$ units

Scalene Triangle:

10. Area

units
11. Perimeter $=(a+b+c)$ units

Isosceles Triangle:

12. Area $=\frac{b}{4} \sqrt{4 a^{2}-b^{2}}$ sq units
13. Perimeter $=2 a+b$ units
$b=$ base length; $a=$ equal side
length

Equilateral Triangle:

14. Area $=\frac{\sqrt{3}}{4} a^{2}$ sq. units
15. Perimeter $=3$ a units
$a=$ side of the triangle

Right-angled triangle:

16. Area $=(1 / 2)$ bxh sq. . units
17. Perimeter
h +
hypotenuse
18. Hypotenuse $=\sqrt{b^{2}+h^{2}}$ units

Cuboid:
19. Volume $=($ Cross section area \times
height) $=L \times B \times H$ cubic units
20. Lateral Surface Area (LSA) $=$ $2[(L+B) H]$ sq. units
21. Total surface area (TSA) = $2(\mathrm{LB}+\mathrm{BH}+\mathrm{HL})$ sq. units
22. Length of the diagonals $=$

$$
\sqrt{L^{2}+B^{2}+H^{2}} \text { units }
$$

Cube:

23. Volume $=a^{3}$ cubic units
24. $\mathrm{LSA}=4 \mathrm{a}^{2}$ sq. units
25. TSA $=6 a^{2}$ sq. units
26. Length of diagonal $=a \sqrt{ } 3$ units

Sphere:

27. Volume $=(4 / 3) \pi R^{3}$ cubic units
28. Surface Area $=4 \pi R^{2}$ sq. units
29. If R and r are the external and internal radii of a spherical shell, then its Volume $=4 / 3\left[R^{3}-r^{3}\right]$ cubic units

Hemisphere:

30. Volume $=(2 / 3) \pi R^{3}$ cubic units
31. $T S A=3 \pi R^{2}$ sq. units

Cylinder:

32. Volume $=\pi R^{2} h$ cubic units
33. Curved surface Area (CSA) (excludes the areas of the top and bottom circular regions) $=2 \pi \mathrm{Rh}$ sq. units
34. TSA = Curved Surface Area + Areas of the top and bottom circular regions =
$2 \pi R H+2 \pi R^{2}=2 \pi R[R+h]$ sq. units

Cone:

35. Volume $=(1 / 3) \pi R^{2} h$ cubic Units)
36. Slant Height of cone

$$
\mathrm{L}=\sqrt{R^{2}+H^{2}} \text { units }
$$

37. $C S A=\pi R L$ sq. units
38. $T S A=\pi R(R+L)$ sq. units
