| S-: | |---| | n(1-p) n*p | | string of pages were given and no of page faults have to be found in LRU algorithm | | there is a file server which provides locking for mutual exclusion . if any process locks file and abruptly terminated this will result in indefinitely locking . The solution they and is to implement a timer for locking of file i.e. if time outs then server assumes that it is indefinitely locked and terminate the process — | | this solution is perfect for mutual exclausion this will solve indefinite locking this will result in interleaving of file between processes | | a critical section is — | | ns a set of instruction which is shared by many proceeses | | OTHERS | | 5. there was a question on automata ans – the resultant string will have even no of c | | 2.CFG was given 3 -> 1 S 1 | | S-> 1 S 1
S-> 0 S 0 | | $3 \rightarrow 0.0$
Find out the string | | 8 One singly circular ordered list is there if M elements are ti be inserted what will be the | | complexity of time a) O(M*N) b) O(M*(M+N)) c) O ((M+N) * log(M+N)) | | D. find postfix and prefix of $A + B * (C + D) / E + F$ | | 1 from the following when 43 will not be found by binary search | | a series was given with last element 43 in each) 12. from 100 – 999 find the prob. Of getting 3 digit no with no 7 in any of its digit | | a) 18/25
b) 10/25 | | c) 729/1000
d) | | 3. from the set $\{a,b,c,d,e,f\}$ find no of arrangements for 3 alphabet with no data repeated | | 14. To save space which option is better | | 14. To save space which option is better a) write all join operation than select than project b)than projectselect | | c)in b/w select and project | | | | Employee = { e_no , salary, finame, lname} | | Works_On = {e_no, p_no, hrs} Project = {p_no, p_name} | | 5.select e_no from Employee where salary = salary query invalid | | 6. select fname ,lname from Employee where e_no in (select e_no from works_on | | 6. select finame ,hame from Employee where e_no in (select e_no from works_on where p_no =(select * from project))) name of Employee who works on all project | | b) | | H) | | 17. B tree is different from other a) has fixed index file size b) is better for queries like < <= > >= | | e) searching will be easy | | 18.fimc(char *s1,char * s2) { | | char *t;
=s1;
s1=s2; | | :2=t; | | void main() | | char *s1=''jack'', *s2=''jill'';
func(s1,s2); | | orintf("%s %s",s1,s2); | | DUTPUT jack jill | | 9. void main() | | int a[5] = $\{1,2,3,4,5\}$, i.j=2;
for (i=0:i<5:i++) | | for $(i=0;i<5;i++)$
func $(j,a[i]);$ | | for (i=0;i<5;i++) printf("%d",a[i]); | | | | tanc(int j,int *a) | | =j+1;
=a+j; | | | | 0 oid main() | | for (a=1;a<=100;a++)
for(b=a;b<=100;b++) | | 00(); | | po()
} | | | | ow many times foo will be called. | | ow many times foo will be called.) 5050) 1010 | | now many times foo will be called. 1) 5050 2) 1010 | | now many times foo will be called. 1) 5050 2) 1010 2) 1. a hash table has a sie of 11 and data filled in its position like {3,5,7,9,6} now many comparisons have to be made if data is not found in the list in worst case | | ow many times foo will be called.) 5050) 1010 1.a hash table has a sie of 11 and data filled in its position like {3,5,7,9,6} ow many comparisons have to be made if data is not found in the list in worst case) 2) 6) 11 | | now many times foo will be called. a) 5050 b) 1010 c) d) 21.a hash table has a sie of 11 and data filled in its position like {3,5,7,9,6} now many comparisons have to be made if data is not found in the list in worst case a) 2 b) 6 c) 11 d) | | now many times foo will be called. 1) 5050 2) 1010 21.a hash table has a sie of 11 and data filled in its position like {3,5,7,9,6} now many comparisons have to be made if data is not found in the list in worst case 1) 2 2) 6 2) 11 1) 2) 2packet switching is better than circuit switching coz 1) it takes less time 1) it takes less bandwidth | | now many times foo will be called. a) 5050 b) 1010 c) d) 21.a hash table has a sie of 11 and data filled in its position like {3,5,7,9,6} mow many comparisons have to be made if data is not found in the list in worst case a) 2 b) 6 c) 11 d) 22packet switching is better than circuit switching coz a) it takes less time | | now many times foo will be called. a) 5050 b) 1010 c) d) 21.a hash table has a sie of 11 and data filled in its position like {3,5,7,9,6} mow many comparisons have to be made if data is not found in the list in worst case d) 2 d) 6 c) 11 d) 22.packet switching is better than circuit switching coz d) it takes less time d) it takes less time it takes less bandwidth d) | | ow many times foo will be called.) 5050) 1010): 1.1.a hash table has a sie of 11 and data filled in its position like {3,5,7,9,6} ow many comparisons have to be made if data is not found in the list in worst case) 2) 6) 11): 2packet switching is better than circuit switching coz) it takes less time it takes less bandwidth): 3.addition of two sparse matrix in 3 tuple notationtime 30 min | | ow many times foo will be called. 5050 | | ow many times foo will be called.) 5050) 1010 1.a hash table has a sie of 11 and data filled in its position like {3,5,7,9,6} ow many comparisons have to be made if data is not found in the list in worst case) 2) 6) 11 2packet switching is better than circuit switching coz) it takes less time) it takes less bandwidth) 3.addition of two sparse matrix in 3 tuple notationtime 30 min 4a tree has 1000000 nodes than how many search r required to search a node) 25 | | ow many times foo will be called. 5050 |