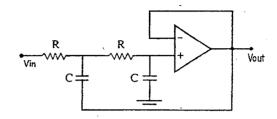


Page:

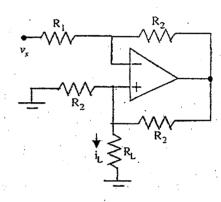

1 of 11

2008

ELECTRONICS & COMMUNICATION ENGINEERING - II

SET - E

- 1. The circuit shown in figure is a
 - (a) Low-pass filter
 - (b) High-pass filter
 - (c) Band-pass filter
 - (d) Band-reject filter

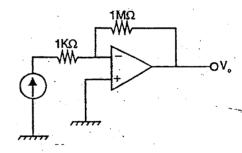


- 2. In the op-amp circuit given in figure, the load current i_L is
 - $(a) \frac{v_s}{R_2}$

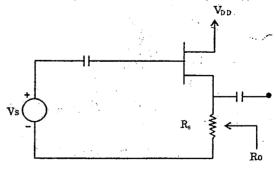
(b) $\frac{v_s}{R_2}$

(c) $-\frac{v_s}{R_L}$

(d) $\frac{v_s}{R_1}$



- 3. An op-amp has an offset voltage of 1 mV and is ideal in all other respects. If this op-amp is used in the circuit shown in figure, the output voltage will be
 - (a) 1mV


(b) 1V

(c) $\pm 1V$

(d) 0V

- 4. For the circuit shown above if $g_m = 3 \times 10^{-3}$ and $R_s = 3000\Omega$, then the approximate value of R_o is
 - (a) 3000Ω
- **(b)** $1000/3 \Omega$
- (c) 300Ω
- (d) $100\,\Omega$

: 11

Electronics - II

Page:

2 of 11

2008

ELECTRONICS & COMMUNICATION ENGINEERING - II

SET - E

- 5. Where does the operating point of a class-B power amplifier lie?
 - (a) At the middle of a.c load line
 - (c) Inside the collector cut-off region on a.c load line
- (b) Approximately at collector cut-off on both the d.c and a.c load lines
- (d) At the middle point of d.c load line
- 6. The Laplace transform of e^{-2t} is
 - (a) $\frac{1}{2s}$
- **(b)** $\frac{2}{s}$
- (c) $\frac{2}{s+1}$
- (d) $\frac{1}{s+2}$
- 7. The system with characteristic equation $s^4 + 3s^3 + 6s^2 + 9s + 12 = 0$
 - (a) Stable
- (b) Unstable
- (c) Marginally stable
- (d) Marginally unstable
- 8. Compared to field effect photo transistors, bipolar photo transistors are
 - (a) More sensitive and faster
- (b) Less sensitive and slower
- (c) More sensitive and slower
- (d) Less sensitive and faster
- 9. The output V-I characteristics of an enhancement type MOSFET has
 - (a) Only an ohmic region
 - (b) Only a saturation region
 - (c) An ohmic region at low voltage value followed by a saturation region at higher voltages
 - (d) An ohmic region at large voltage values preceded by a saturation region at lower voltages
- 10. Which of the following relation is valid?

Where MTBF = Mean Time Between Failures

MTTF = Mean Time To Failures

MTTR = Mean Time To Repair

- (a) MTBF = MTTF + MTTR
- (b) MTTR + MTTF + MTBF = 1
- (c) $\frac{1}{MTTR} + \frac{1}{MTTF} = \frac{1}{MTBF}$
- (d) MTBF.MTTF.MTTR = 1
- 11. Two transistors have the same value of α but different gain bandwidth products. One of them is a germanium transistor and the other is a silicon transistor. Both the transistors have similar geometries and base width. The transistor with lower GB product
 - (a) is the germanium

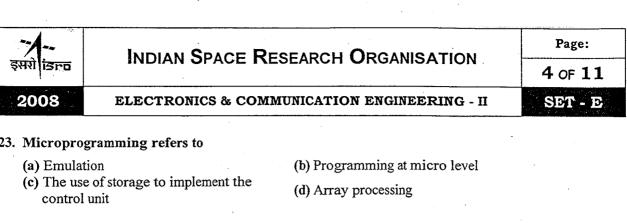
(b) is the silicon

(c) both are same

- (d) Cannot be identified unless more information is available
- 12. The following transistor configuration has the highest input impedance
 - (a) CC
- **(b)** CE
- (c) CB
- (d) All of the above

Electronics - II

9


Page:

3 of 11

	2008 ELEC	TRONICS	8 & COMN	MUNICATION ENGINEER	ang - II				
13.	If t _c , h and t _m spec	ify the cacl	ne access t	ime, hit ratio and main m	emory access time then the				
	If t_c , h and t_m specify the cache access time, hit ratio and main memory access time then the average access time is (given $t_c = 160$ ns, $t_m = 960$ ns h=0.90)								
	(a) 160 ns	(b) 960		(c) 256 ns	(d) 960×0.9 ns				
14.	The advantage of wr	ite (copy) l	oack data	cache organization over w	rite through organization is				
	(a) Main memory consistency (c) Less memory bandwidth requirement			(b) Write allocate on write miss					
			(d) Hig	gher capacity					
15.	E ² PROM storage ele	ment is		ý					
	(a) Cross – coupled la(c) Capacitor	tch	(b) Iso (d) Flip	lated gate transistor p flop					
16.	The modulus of 1+c	The modulus of $1 + \cos \alpha + i \sin \alpha$ is							
	(a) $2\sin\frac{\alpha}{2}$	(b) 2c	$os \frac{\alpha}{2}$	(c) $\sin^2 \frac{\alpha}{2} - 1$	(d) $\cos^2 \frac{\alpha}{2} - 1$				
17.	The 8 bit DAC produces 1.0 V for a digital input of 00110010. What is the largest output it car produce?								
	(a) 5V	(b) -5\	7	(c) 5.5 V	(d) 5.10 V				
18.	The fastest ADC am	ong the fol	lowing is		-				
	(a) Successive approx (c) Sigma – Delta AD			Oual slope type lash converter	: :				
19.	The mod number of a Johnson counter will be always equal to the number of flip flops used								
	(a) same			(b) twice	X.				
	(c) 2^N where N is the	e number o	f flip flops	(d) None of the these					
20.	Odd parity generato	r uses	logi	c					
	(a) XNOR	(b) XC	R	(c) Sequential	(d) OR				
21.	Which type of memo	ory has fast	erase and	d write times					
	(a) EPROM	(b) EE	PROM	(c) Flash memory	(d) None of these				
22.	The performance ga	in that can	be obtain	ned by improving some por	rtion of a computer can be				
•	(a) Moore's law (c) Amdahl's law			(b) Djikstra's algorithm(d) Murphy's law					

Electronics - II

SET-E

23.	Microprogramming refers to							
٠	(a) Emulation(c) The use of storage to implement the control unit		(b) Programming at micro level(d) Array processing					
24.	An array processor is a machine							
	(a) SIMD	(b) MIMD		(c) SISD	(d) MISD			
25.	machines tend to make use of internal resources of the processor, a rich set of registers and a pipelined organization.							
	(a) CISC	(b) Parallel proce	ssor:	(c) RISC	(d) Array processor			
26.	Difference between a sv	witch and Hub			•			
	(a) Both are same(c) Hub avoids broadcas	t		vitch avoids flooding one of the above				
27.	100 Base T refers to							
	(a) Fibre connectivity	(b) BNC connect	ors	(c) SONET	(d) Twisted pair			
28.	A S-R flip flop with a clock input can be converted to a 'D' flip flop using							
	(a) Two inverters			(b) the flip flop outputs $(Q\&\overline{Q})$ connected to its inputs $(S\&R)$				
	(c) One inverter	<i>.</i>	•	ot possible	•			
29.	An 8 bit ADC has a ful determine the maximum		55 V. II	f other cumulative er	rors are 2.55 mV,			
	(a) 10 mV	(b) 12.55 mV		(c) 7.45 mV	(d) 2.55 mV			
30.	A counter is designed with six stages of flip flops. Determine the output frequency at the last (sixth) stage, when input frequency is 1 MHz.							
	(a) 1 MHz	(b) 166 KHz		(c) 15.625 KHz	(d) zero			
31.	The ethernet protocol i	ises		•	· .			
	(a) CSMA/CA	(b) SCPC		(c) CSMA/CD	(d) Slotted ALOHA			
32.	The value of c which makes the angle 45^0 between $\overline{a} = i + cj$ and $\overline{b} = i + j$ is							
	(a) 1	(b) $\frac{1}{\sqrt{2}}$	·.	(c) $\frac{-1}{\sqrt{2}}$	(d) 0			

Electronics - II

-1-		•	Indian Space Research Organisation					
₹	इसरो डिल्व INDIAN SPACE		E KESEAF	5 of 11				
	2008	ELE	CTRONICS &	COMMUNIC	ATION ENGI	NEERING - II	SET - E	
33.	-	chained coriority is th		e CPU, the p	eripheral who	se interrupt reques	t has the	
		~	ector address st to the CPU		hest speed of o	•	.*	
34.	RS-232 in	iterface						
	(a) Uses only positive voltage(c) Uses only negative voltage			•	(b) Cannot transmit signals over long distance(d) A logic high uses positive voltage			
35.	Assuming ideal conditions, the speed up obtained from a balanced N stage pipeline is							
	(a) 2N		(b) N^2	Þ	(c) N	(d) N!		
36.	The number of comparators required in an 8-bit flash-type A/D converter is							
	(a) 256		(b) 255		(c) 9	(d) 8		
37.	Minimum number of 2-input NAND gates that will be required to implement the function:							
	$\mathbf{Y} = \mathbf{A}\mathbf{B} +$	CD + EF i	s		•		•	
	(a) 4		(b) 5		(c) 6	(d) 7		
38.	In a ripple counter how many changes in state happen when count changes from 7 to 8?							
	(a) 1		(b) 2		(c) 3	(d) 4		
39.	A programmable device (PROM) is							
	(a) programmable OR and fixed AND array		(b) pro	(b) programmable AND and fixed OR array				
	(c) programmable AND and programmable OR array			(d) no	(d) none			
40.	In asynchronous circuits, which of the following best explains a dynamic hazard							
	 (a) Output changes several times for a single change in an input (b) Output changes to a different state for a single change in an input 							

Output changes momentarily when it is supposed to remain constant for a single change in an (c) input

None of the above (d)

41. Digital signal processors use a computer architecture derived from

(a) Harvard Architecture

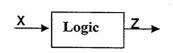
(b) Von-Neumann Architecture

(c) Cray Architecture

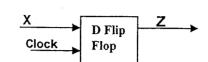
(d) None of the above

Electronics - II

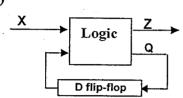
Page:

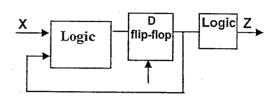

6 of 11

2008

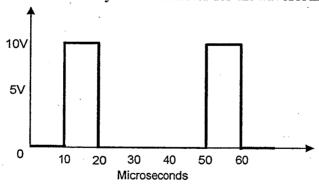

ELECTRONICS & COMMUNICATION ENGINEERING - II

SET - E


- 42. Which of the following represents the Moore model for sequential circuits?
 - (a)


(b)

(c)


(d)

- 43. An anti-aliasing filter is
 - (a) An analog filter
- (b) A digital filter
- (c) Can be analog or digital
- (d) None of the above

- 44. Which of the following filter has the fastest roll-off?
 - (a) R-C
- (b) Bessel
- (c) Butterworth
- (d) Chebyshev

- 45. Find the rms value of the signal $x(t) = 5\cos\left(50t + \frac{\pi}{3}\right)$
 - (a) $\sqrt{5}$
- (b) $\sqrt{5 \times 50t}$
- (c) $\sqrt{50 + \frac{\pi}{3}}$
- (d) $\sqrt{12.5}$
- 46. Determine the value indicated by a DC voltmeter for the waveform given below

- (a) 0 V
- (b) 2.5 V
- (c) 10 V
- (d) 5 V

- 47. Evaluate the function $\int_{0}^{\infty} t^{2} \delta(t-3) dt$
 - (a) e^{-t^2}

- (b) $\frac{t^3}{3}$
- (c) $t^2(t-3)$
- (d) 9 ⁻

Electronics - II

6

Page:

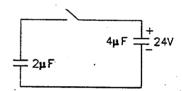
7 of 11

2008

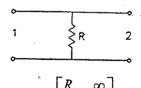
ELECTRONICS & COMMUNICATION ENGINEERING - II

SET - E

- 48. A husband and wife appear in an interview for two vacancies for same post. The probability of husband getting selected is $\frac{1}{5}$ while the probability of wife getting selected is $\frac{1}{7}$. Then the probability that anyone of them getting selected is
 - (a) $\frac{11}{35}$
- (b) $\frac{12}{35}$
- (c) $\frac{1}{35}$
- (d) $\frac{34}{35}$
- 49. The rms value of Complex waveforms are measured using
 - (a) Transistor Voltmeter
- (b) Differential Voltmeter
- (c) High bandwidth Voltmeter
- (d) Voltmeter containing heat sensing elements such as thermocouples
- 50. Find the fundamental period T of the following continuous signal


$$x(t) = 20\cos(10\pi t) + \frac{\pi}{6}$$

- (a) $\frac{\pi}{6}$ sec
- (b) $\frac{20\times10\pi}{T}$ sec
- (c) 5 sec
- (d) $\frac{1}{5}$ sec
- 51 In the circuit shown the switch closes at t=0. The voltage across $4\mu F$ capacitor in ideal condition changes to
 - (a) 0


(b) 16 V

(c) 15 V

(d) 24 V

52. The 2- part network of Fig A has open circuit impedance parameters given by matrix

- (a) $\begin{bmatrix} R & R \\ R & R \end{bmatrix}$
- **(b)** $\begin{bmatrix} R & 0 \\ 0 & R \end{bmatrix}$
- (c) $\begin{bmatrix} \infty & R \\ R & \infty \end{bmatrix}$
- I OO L
- 53 The network shown in the figure draw a current I. If the ends a and b are shorted, the current drawn would be
 - (a) 6 I

(b) 4 I

(c) 2 I

- (d) I
- 54. As compared to a full-wave rectifier using two diodes, the four diode bridge rectifier has the dominant advantage of
 - (a) higher current carrying capacity
- (b) lower peak inverse voltage

(c) lower ripple factor

(d) higher efficiency

Electronics - II

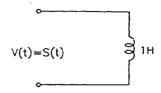
7

Page:

8 of 11

2008

ELECTRONICS & COMMUNICATION ENGINEERING - II

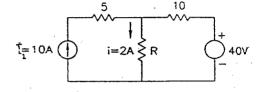

SET - E

- 55. When a unit impulse voltage is applied to an inductor of 1 H, the energy supplied by the source is
 - (a) ∞

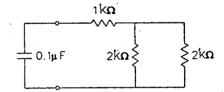
(b) 1J

(c) $\frac{1}{2}J$

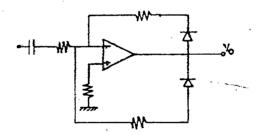
(d) 0



- 56 The value of R for i = 2A is
 - (a) 5


(b) 10

(c) 40


(d) 60

- 57. The time constant for the circuit shown below is
 - (a) 0.2 microsecond
 - (b) 0.8 millisecond
 - (c) 0.4 millisecond
 - (d) 0.2 millisecond

- 58. For a sinusoidal input, the circuit shown in the figure will act as a
 - (a) Pulse generator
 - (b) Ramp generator
 - (c) Full-wave rectifier
 - (d) Voltage doubler

- 59. A second-order band-pass active filter can be obtained by cascading a low pass second order section having cut off frequency for with a high pass second order section having cut-off frequency fol provided
- (a) $f_{OH} > f_{OL}$ (b) $f_{OH} < f_{OL}$ (c) $f_{OH} = f_{OL}$
- (d) $f_{OH} \le \frac{1}{2} f_{OL}$
- 60. If $\alpha = 0.995$, $I_E = 10$ mA and $I_{CO} = 0.5$ μ A, then I_{CEO} will be
 - (a) $100 \mu A$
- **(b)** 10.1 mA
- (c) $25 \mu A$
- (d) 10.5 mA

Electronics - II

Page:

9 of 11

2008

ELECTRONICS & COMMUNICATION ENGINEERING - II

SET - E

- 61. A programme having features such as data abstraction, encapsulation and data hiding, polymorphism inheritance is called
 - (a) Structured programme
- (b) Object oriented programme
- (c) Open source programme
- (d) Real time programme
- 62. The library function exit () causes as exit from
 - (a) the loop in which it occurs
- (b) the block is which it occurs
- (c) the functions in which it occurs
- (d) the programme in which it occurs
- 63. The "go to statement" causes control to go to
 - (a) An operator
- (b) A label
- (c) A variable
- (d) A function
- 64. The differential equation satisfying $y = A e^{3x} + B e^{2x}$ is

(a)
$$\frac{d^2y}{dx^2} + 5\frac{dy}{dx} - 6y = 0$$

(b)
$$\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 6y = 0$$

(c)
$$\frac{d^2y}{dx^2} + 5\frac{dy}{dx} + 6y = 0$$

(d)
$$\frac{d^2y}{dx^2} - 5\frac{dy}{dx} - 6y = 0$$

- 65. For an energy signal g(t) and its time-shifted version f(t-T), the
 - (a) amplitude spectra are identical and their phase spectra are also identical
 - (b) amplitude spectra are identical but their phase spectra are different
 - (c) amplitude spectra are different but their phase spectra are identical
 - (d) amplitude spectra and their phase spectra are different
- 66. As the modulation index of an FM signal with sinusoidal modulation is increased from zero to two, the power in the carrier component will
 - (a) Decrease continuously

- (b) Increase continuously
- (c) First increase, becomes zero and then decrease
- (d) First decrease, become zero and then increase
- 67. For a short wave radio link between two stations via the ionosphere, the ratio of the maximum usable frequency to the critical frequency
 - (a) is always less than 1

(b) May be ≤ 1 depending on the distance between the two stations

(c) is always greater than 1

(d) Does not depend on the distance between the two stations

Electronics - II

9

Page:

L_		·				10 of 11	
	2008	ELECT	RONICS & COMMU	JNICATION ENGINEER	UI - DNIS	SET - E	
68.	A carrier voltage is simultaneously modulated by two sine waves causing modulation indices of 0.4 and 0.3. The overall modulation index is						
	(a) 0.35		(b) 0.7				
	(c) 0.5			(d) Can not be calculated known	d unless the phase	relations are	
69.	If each sta two-stage	age has a gain cascade ampl	of 10 dB, and noise lifier will be	figure of 10dB, then the	e overall noise fig	ure of a	
	(a) 10		(b) 1.09	(c) 1.0	(d) 10.9		
70.	De- emph	asis circuit is	used	* 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			
	(a) To atte	nuate high fre nuate midband	quencies	(b) To attenuate low free (d) None of the above	quencies		
71.	An amplit	fier has an ing wer will be	out power of 2 micro	owatts. The power gain o	of the amplifier is	60 dB. The	
	(a) 6 micro	owatts	(b) 120 microwatts	(c) 2 milliwatts	(d) 2 watts	,	
72.	A transmi	ission line has	a VSWR of 2, the r	eflection coefficient is			
	(a) $\frac{1}{3}$,	(b) 0	(c) $\frac{1}{4}$	(d) $\frac{1}{2}$	-	
73. Which vacuum based device is widely used as a power amplifier in satellite comm systems?						ication	
	(a) Amplit	ron	(b) Klystron	(c) Magnetron	(d) TWT	·	
74.	continuor			ship between $\overline{E},\overline{D},\overline{H}$ an one medium to another,			
	(a) At the boundary separating the two media, the tangential components of \overline{E} and \overline{H} are continuous						
	(b) At the boundary separating the two media the tangential components of only \overline{E} are continuous						
	(c) If there are surface charges present on the boundary then normal component of \overline{D} is continuous						
	(d) If there are no surface charges then normal component of \overline{D} is discontinuous						
75.	The input	impedance of	f short circuited loss	less line of length less th	an a quarter wav	elenth is	
	(a) Purely	resistive	(b) Purely inductive	e (c) Purely capacitiv	ve (d) Comple	žΧ	
Fler	tronics - II	<u> </u>	•	10	-	· OFT F	
			<u> </u>			SET-E	

Page:

11 of 11

2008

ELECTRONICS & COMMUNICATION ENGINEERING - II

SET - E

76. The intrinsic impedance of free space is $377\,\Omega$. The approximate intrinsic impedance of a medium with relative premittivity and permeability of 4 and 1 respectively will be

- (a) 75Ω
- (b) 94Ω
- (c) 188Ω
- (d) 377Ω

77. A 8 kHz communication channel has an SNR of 30 dB. If the channel bandwidth is doubled, keeping the signal power constant, the SNR for the modified channel will be

- (a) 27 dB
- **(b)** 30 dB
- (c) 33 dB
- (d) 60 dB

78. Two orthogonal signals $s_1(t)$ and $s_2(t)$ satisfy the following relation

(a) $\int_0^T s_1(t)s_2(t)dt = 0$

(b) $\int_0^T s_1(t)s_2(t)dt = 1$

(c) $\int_0^T s_1(t)s_2(t)dt = \infty$

(d) $\int_0^T s_1(t) s_2(t) dt = \pi$

79. In which modulation system, when modulating frequency is doubled, the modulation index also becomes double.

- (a) AM
- **(b)** FM
- (c) PM
- (d) None of the above

80. The matrix

$$A = \begin{bmatrix} -4 & -3 & -3 \\ 1 & 0 & 1 \\ 4 & 4 & x \end{bmatrix}$$

is its own adjoint. The value of x will be

(a) 5

(b) 3

(c) -3

(d) -5

Electronics - 11