	.brpaper.com_for na,BCA,BBA,MBA,MCA,Bsc-IT,			
Msc-IT,M-tech	, Distance-Education,B-com.			
S.B. Re	oll No			
			PHYSICS-I n/2355/Dec-2011	
Duratio	on: 3 Hrs.	OHIHHOH		Max. Marks: 75
Duranc		Sectio		Max. Marks. 13
Q1. A)	Choose the correct answer	20010	·	5
(i)	The wave length associated with a par	ticle of	f mass 'm' and moving with veloci	ty V is given by
	$\lambda = \frac{h}{mv}$ where 'n' is Planck's constant.	. The d	limensional formula of 'n' is	
	(a) ML ² T		$M^{1}L^{-1}T^{-1}$	
	(b) $ML^{1}T^{-1}$	(c) I	$\mathrm{ML}^{2}\mathrm{T}^{\text{-}1}$	
(ii)	If $ \vec{A} \times \vec{B} = \vec{A} \cdot \vec{B}$ then angle between \vec{A}	and I	\vec{B} is	
	(a) 0	(b) 1	$\pi/4$	
	(c) $\pi/2$	(d) 5	$5\pi/4$	
(iii)	A body is not in transletory equilibrium			
	(a) Resultant force on it is zero		It is at rest	
(iv)		41 . 4	It is in uniform motion s are 100m apart and whose velocity	vis 25m/s. These
(iv) A boat anchor is rocked by waves whose crests are 100m apart and whose velocity is 25m/s. These waves strike the boat once every:				
	(a) 2500sec	(b) (0.25sec	
	(c) 1500sec	(d) 4	4sec.	
(v)	Hydrogen and nitrogen are at the same	tempe	rature. The modules of which one of	of them will have
	more average K.E?	4 > > 7		
	(a) Hydrogen		Vitrogen	404240
	(c) Both have equal K.E	(a) D	Depends upon actual value of tempe	
B)	State true or false		* •	5
	All motorials award when heated			
	ii) All materials expand when heated iii) Steel is more elastic than rubber.			
(iv) All parts of a rotating wheel have same angular acceleration.				
(v) A cyclist cannot negotiate a curve without bending himself.				
	in the blanks	out ben	Ring minsen.	5
		V E 4	ha Baktan ka ka ka	
	If a light and a heavy body have equal K.E, the lighter body has momentum.			
	(2) If normal reaction is doubled, the co-efficient of friction is			
(3)	If $\vec{A} + \vec{B} = \vec{A} - \vec{B}$ then \vec{B} is a	vector.	•	
	W = Mass X	•,	1 1 2 21	
(5)	When sand is poured on a rotating disc	its ang	gular velocity will	
Section-B				
Q2. (i)	Attempt any six questions $6x5=30$ The frequency of vibration (ν) of a stretched string depends upon the load applied T, length 1, and its mass per unit length μ . Find dimensionally the formula of frequency.			
(ii)	Find a unit vector that perpendicular to both \vec{A} and \vec{B} where $\vec{A} = 2\hat{i} + \hat{j} + \hat{k}$ and $\vec{B} = \hat{i} - \hat{j} + 2\hat{k}$			
(iii)	State and prove Newton's third law of motion			
(iv)	A ball is dropped from rest at a height of 12m. If it loses 25% of its K.E on striking the ground, what			
	is the height to which it bounces? How do you account for this loss in K.E?			
(v)	What do you mean by banking of roads? Why is it done? A train has to negotiate a curve of radius 400m. By how much the outer rail is raised as compared with the inner rail for a speed of 48km/n? Given that the distance between the rail is 1m.			

Contd...

1st Exam/Common/2355

- (vi) Derive and expression of terminal velocity for a spherical body of radius 'r', density 'p' moving through a fluid of density ' σ '.
- (vii) A layer of ice 20mm thick has formed on a pond. The temperature of air is -20°C. Find how long will it take for another 1mm layer of ice to form. Given thermal conductivity of ice 0.008 cgs units. Density of ice $=1g/cm^3$

Section-C

Q3. Attempt any three questions

WAY!

10x3=30

- (1) (a) Distinguish between streamline and turbulent flow.
 - (b) State and prove Bernoulli's theorem

7

- (ii) What are ultrasonic's? Explain how these are produced by piezoelectric method. Give two applications of ultra Sonics.
- (iii) (a) What are systematic errors? Explain with example different types of systematic errors. How can each of these be minimized?
 - (b) The young's modulus (y) of a material is given by the relation $y = \frac{Mgl}{\pi r^2 l}$. If the percentage error in W (=Mg), L, r and l are 0.5%, 1%, 3%, 4% respectively. What is the percentage error in y.
- (iv) (a) Distinguish among positive, negative and zero work done? Give example of each.
 - (b) Define power obtain expression of power in terms of force and velocity?
 - (c) What should be the power of an engine required to lift 90 tonnes of coat per hour from a mine whose depth is 200m? $g = 9.8 \text{m/s}^2$, 1 tonne = 1000kg)
- (v) (a) Define the terms torque and angular momentum. What is the relation between the two?
 - (b) A man sitting at the centre of a rotating table with his arms out stretched. Angular speed of table is 40rpm. If the man folds his hands to reduce his moment of inertia to 2/5 of its initial value, WWW.bibsip what will be new angular speed?