Instructions

- (1) This question paper consists of 50 multiple choice questions carrying 2 marks each. Answer all questions.
- (2) Answers are to be marked in the OMR sheet provided.
- (3) For each question, darken the appropriate bubble to indicate your answer.
- (4) Use only HB pencils for bubbling answers.
- (5) Mark only one bubble per question. If you mark more than one bubble, the question will be evaluated as incorrect.
- (6) If you wish to change your answer, please erase the existing mark completely before marking the other bubble.
- (7) Let $\mathbb{Z}, \mathbb{R}, \mathbb{Q}$ and \mathbb{C} ($\mathbb{Z}_+, \mathbb{R}_+, \mathbb{Q}_+$ and \mathbb{C}_+) denote the set of (respectively positive) integers, real numbers, rational numbers and complex numbers respectively.
- (8) For $n \ge 1$, the norm given by $||(x_1, x_2, \dots, x_n)|| = (x_1^2 + x_2^2 + \dots + x_n^2)^{1/2}$ denotes the standard norm on \mathbb{R}^n . The metric given by $d(x, y) = ||x - y||$ is called the standard metric on \mathbb{R}^n .

MATHEMATICS

(1) Consider the function

$$
f(z) = \frac{1}{1 + z^2}
$$

where $z \in \mathbb{C}$ and let

$$
f(z) = \sum_{n=1}^{\infty} a_n (z - a)^n
$$

be the Taylor expansion of $f(z)$ around the point $a \in \mathbb{R}$. The radius of convergence of this power series is

(A)
$$
(1 + a^2)^{1/2}
$$
.
\n(B) $(1 + a^2)^{-1/2}$.
\n(C) $a + (1 + a^2)^{1/2}$.
\n(D) $a - (1 + a^2)^{-1/2}$
\n(2) Let

$$
f: [-1, 1] \to \mathbb{R},
$$

$$
g: [-1, 1] \to \mathbb{Q} \cap [-1, 1],
$$

$$
h: \mathbb{R} \to [-1, 1]
$$

be continuous maps. Then,

(A) both f and g are necessarily not surjective.

.

- (B) both g and h are necessarily not surjective.
- (C) both h and f are necessarily not surjective.
- (D) all of f , g and h are necessarily not surjective.
- (3) Consider the sequence of functions

$$
f_n(x) = 1/(1 + nx)
$$

where $x \in (0, 1)$. Then,

- (A) $f_n(x) \to 0$ pointwise but not uniformly on $(0, 1)$.
- (B) $f_n(x) \to 0$ uniformly on $(0, 1)$.
- (C) $\int_0^1 f_n(x) dx \to 0$ as $n \to \infty$.
- (D) $f'_n(1/n) \to 0$ as $n \to \infty$.

(4) Let A be a 3×3 matrix with complex entires whose eigenvalues are $1, \pm 2i$. Suppose that for some $\alpha, \beta, \gamma \in \mathbb{C}$,

$$
\alpha A^{-1} = A^2 + \beta A + \gamma I
$$

where I is the 3×3 identity matrix. Then (α, β, γ) equals

- (A) $(-1, -4, 4)$.
- (B) $(-4, -1, 4)$.
- (C) $(-1, 4, -2)$.
- (D) $(-1, -2, 4)$.
- (5) Let γ be the circle $|z| = 3$ in the complex plane described in the counterclockwise direction. Then

$$
\int_{\gamma} \frac{3z^2 + z - 2}{(z - 2)^2} dz
$$

equals

- (A) $2π*i*$.
- (B) $14\pi i$.
- (C) $26\pi i$.
- (D) $38πi$.
- (6) Consider the function

$$
f(x) = \begin{cases} x^2, & \text{if } x \in \mathbb{Q}; \\ 0, & \text{otherwise.} \end{cases}
$$

Then

- (A) f is continuous but not differentiable at $x = 0$.
- (B) f is differentiable at $x = 0$.
- (C) f is continuous but not differentiable at $x = 1$.
- (D) f is differentiable at $x = 1$.

(7) Let $p(z) = a_0 + a_1 z + a_2 z^2 + \ldots + a_n z^n$ be a polynomial of degree of $n \ge 1$ where a_0, a_n are both non-zero. Then

$$
f(z) = 1/p(1/z),
$$

which is a meromorphic function on $\mathbb{C} \setminus \{0\},\$

- (A) has a removable singularity at $z = 0$ and is non-vanishing there.
- (B) has a removable singularity at $z = 0$ and has a zero of order n at $z = 0$.
- (C) has a pole of order n at $z = 0$.
- (D) has an essential singularity at $z = 0$.

(8) Let u, v be eigenvectors of a matrix A corresponding to non-zero real eigenvalues α, β . Suppose that $\alpha \neq \beta$. Then,

- (A) $u + v$ is always an eigenvector of A corresponding to $\alpha + \beta$.
- (B) $u + v$ is an eigenvector of A only if $\alpha = 0$ and $\beta = 1$.
- (C) $u + v$ is an eigenvector of A only if $\alpha = 1$ and $\beta = 0$.
- (D) $u + v$ is never an eigenvector of A.

(9) The set of all limit points of

$$
S=\{n+\frac{1}{3m^2}:n,m\in\mathbb{N}\}
$$

is

- (A) N.
- (B) Q.
- $(C) \mathbb{R}$.
- $(D) \mathbb{Z}$.

(10) Let λ be a non-zero real number. Then

$$
\lim_{x \to \lambda} \frac{\int_{\lambda}^{x} \cos(t^2) dt}{x^3 - \lambda^3}
$$

equals

(11) Let $\mathcal{C}^1(\mathbb{R})$ be the collection of all continuously differentiable functions on \mathbb{R} . Let

$$
S = \{ f \in \mathcal{C}^1(\mathbb{R}) : f(0) = 0, f(1) = 1, |f'(x)| \le 3/4 \text{ for all } x \in \mathbb{R} \}.
$$

Then

- (A) S is empty.
- (B) S is non-empty and finite.
- (C) S is countably infinite.
- (D) S is uncountable.

(12) Which of the following functions is Lipschitz on $[0, \infty)$?

- (A) a polynomial of degree at least 2.
- $(B) e^x$.
- (C) $x \sin x$.
- (D) the function defined by

$$
f(x) = \begin{cases} x^2, & \text{if } 0 \le x \le 1; \\ x^{1/2}, & \text{if } 1 \le x < \infty. \end{cases}
$$

(13) Suppose B is a subset of the vector space \mathbb{R}^3 with 3 elements.

- (A) *B* must generate \mathbb{R}^3 .
- (B) B cannot be independent.
- (C) If B generates \mathbb{R}^3 then B is independent.
- (D) Either B is independent or B generates \mathbb{R}^3 .
- (14) Let A be an $m \times n$ real-valued matrix and B be an $n \times m$ real-valued matrix so that $AB = I$. Then we must have
	- (A) $n > m$.
	- (B) $m \geq n$
	- (C) if $BA = I$ then $m > n$
	- (D) either $BA = I$ or $n > m$.
- (15) Let A be an $n \times n$ real-valued matrix such that $A^2 = A$.
	- (A) A must be invertible.
	- (B) A cannot be invertible.
	- (C) If A is invertible then $A = I$.
	- (D) Either $A = I$ or $A = 0$.
- (16) Let A be an $n \times n$ real-valued matrix such that $A^2 + I = 0$. Then A cannot be
	- (A) orthogonal.
	- (B) skew-symmetric.
	- (C) symmetric.
	- (D) invertible.
- (17) Let A be a 3×3 real-valued matrix such that $A^3 = I$ but $A \neq I$. Then the trace of A must be
	- (A) 0.
	- (B) 1.
	- $(C) -1.$
	- (D) 3.
- (18) Which of the following polynomials is reducible over R?
	- (A) $x^6 + 342x + 18934$.
	- (B) $x^2 + x + 1$.
	- (C) $x + 1$.
	- (D) $x^2 + 2x + 2$.

(19) Let $a, b, c \in \mathbb{Z}$ be integers. Consider the polynomial $p(x) = x^5 + 12ax^3 + 34bx + 43c$. (A) $p(x)$ is irreducible over $\mathbb R$ if and only if $p(x)$ is reducible over $\mathbb C$.

- (B) $p(x)$ is irreducible over $\mathbb R$ if and only if $p(x)$ is irreducible over $\mathbb Q$.
- (C) $p(x)$ is irreducible over Z if and only if $p(x)$ is irreducible over Q.
- (D) $p(x)$ is irreducible over Q if and only if $p(x)$ is irreducible over C.
- (20) The number of abelian groups of order 27 is
	- (A) 1.
	- (B) 2.
	- (C) 3.
	- (D) 4.
- (21) For which of the following values of n is there a group of order n with no proper normal subgroups?
	- (A) $n = 21$.
	- (B) $n = 9$.
	- (C) $n = 60$.
	- (D) $n = 98$.
- (22) The smallest integer n for which the permutation group S_n on n letters contains an element of order 12 is
	- (A) 5.
	- (B) 7.
	- (C) 9.
	- (D) 11.

(23) Let G be a finite group of order 3n for some $n \in \mathbb{Z}$. Suppose all the elements of G of order 3 are conjugate. Then,

- (A) G must be cyclic.
- (B) G cannot be abelian.
- (C) G must be abelian and not cyclic.
- (D) G must be abelian and may or may not be cyclic.
- (24) The number of automorphisms (including the identity) of the permutation group S_3 on 3 letters is
	- (A) 1.
	- (B) 6.
	- (C) 9.
	- (D) 12.
- (25) Consider the ring $R = \{a/b : a, b \in \mathbb{Z}, b \text{ odd}\}\$ with the usual addition and multiplication operations. Then,
	- (A) R is a field isomorphic to $\mathbb Q$.
	- (B) R is a field but not isomorphic to \mathbb{Q} .
	- (C) R is not a field.
	- (D) R is isomorphic to $\mathbb Q$ as a ring but is not a field.
- (26) The number of groups of order 6 is
	- (A) 1.
	- (B) 2.
	- (C) 3.
	- (D) 4.
- (27) Let A and B be $n \times n$ real-valued matrices and $C = AB BA$. Then we must have
	- (A) $C = 0$.
	- (B) $C = I$.
	- (C) $C = -I$.
	- (D) $C \neq I$.
- (28) Suppose X is a subset of $\mathbb R$ such that every bounded sequence in X has a subsequence with limit in X . Then,
	- (A) X must be compact.
	- (B) X must be open.
	- (C) X must be closed.
	- (D) X must be bounded.
- (29) For which of the following sets $X \subset \mathbb{R}^2$, with the subspace topology, is there a continuous surjection $f : [0, 1] \to X$.
	- (A) $X = \{(x, y) \in \mathbb{R}^2 : x \ge 0, y = 0\}.$
	- (B) $X = \{(x, y) \in \mathbb{R}^2 : 0 < x \le 1, y = 0\}.$
	- (C) $X = \{(x, y) \in \mathbb{R}^2 : xy = 0, |x| \le 1, 0 \le y \le 1\}.$
	- (D) $X = \{(x, y) \in \mathbb{R}^2 : 1 \leq |x| \leq 2, y = 0\}.$
- (30) Consider the function

$$
f(x) = \begin{cases} \frac{|x|^{\pi - 1}}{x}, & x \neq 0, \\ 0 & x = 0. \end{cases}
$$

- (A) $f(x)$ is continuous everywhere but not differentiable at 0.
- (B) $f(x)$ is differentiable everywhere but $f'(x)$ is not continuous at 0.
- (C) $f(x)$ is differentiable everywhere and $f'(x)$ is continuous at 0.
- (D) $f(x)$ is not continuous at 0.
- (31) Let $f : \mathbb{R} \to \mathbb{R}$ be a differentiable function such that $f'(x)$ is continuous and $f(x+1) = f(x) + 1$ for all $x \in \mathbb{R}$.
	- (A) $f'(x)$ must be bounded.
	- (B) $f(x)$ must be bounded.
	- (C) Both $f(x)$ and $f'(x)$ must be unbounded.
	- (D) Both $f(x)$ and $f'(x)$ must be bounded.

(32) The sequence

$$
a_n = (-1)^n \frac{\log(n^4 + 1)}{n^2 + 1}
$$

(A) is convergent.

(B) is bounded but not convergent.

(C) is neither bounded nor convergent.

(D) is convergent but not bounded.

(33) Let $f : [0, 1] \to \mathbb{R}$ be a function such that $g(x) = (f(x))^2$ is continuous. Then,

(A) f must be bounded but need not be continuous.

(B) f must be continuous.

(C) f is continuous if and only if f is bounded.

(D) f is continuous if and only if f is not bounded.

(34) Let (a_n) be the sequence given by

$$
a_n = \int_{-\infty}^{\infty} \frac{\cos(nx)}{1 + x^2} dx.
$$

Then,

- (A) (a_n) is bounded.
- (B) (a_n) is bounded but does not converge.
- (C) (a_n) converges but $\sum_{n=1}^{\infty}$ $n=-\infty$ a_n diverges.
- $(D) \sum_{i=1}^{\infty}$ $n=-\infty$ a_n converges.

(35) Let $\varphi, \psi : S \to S$ be two functions on a finite set S such that

$$
\varphi(\varphi(x)) = \psi(\psi(x)) = x, \ \forall x \in S.
$$

Suppose further that φ has a unique fixed point in S. Then,

(A) ψ must have a unique fixed point.

- (B) ψ must have at least one fixed point.
- (C) ψ must have no fixed points.
- (D) ψ must have an even number of fixed points.

(36) Let u_k and v_k , $k \geq 1$, be real-valued functions satisfying

$$
\int_0^1 (u_k(t) + iv_k(t))^4 dt = 0
$$

for all k. Let $A_k =$ $\frac{1}{c}$ 0 $u_k^4(t)dt\bigg)^{1/4}$ and $B_k =$ $\frac{1}{c}$ 0 $v_k^4(t)dt\bigg)^{1/4}$. Then, (A) A_k/B_k must be bounded but B_k/A_k may be unbounded.

- (B) B_k/A_k must be bounded but A_k/B_k may be unbounded.
- (C) both A_k/B_k and B_k/A_k must be bounded.
- (D) both A_k/B_k and B_k/A_k may be unbounded.
- (37) Let (x_n) be a sequence of real numbers which is not Cauchy. Then,
	- (A) (x_n) is necessarily unbounded.
	- (B) (x_n) may be convergent.
	- (C) For every $\epsilon > 0$ there is a subsequence (x_{n_k}) such that $|x_{n_k} x_{n_j}| < \epsilon$ for all k and j sufficiently large, $k \neq j$.
	- (D) For some $\epsilon > 0$ there is a subsequence (x_{n_k}) such that $|x_{n_k} x_{n_j}| > \epsilon$ for all k and j sufficiently large, $k \neq j$.

(38) Let
$$
(x_n)
$$
 be a sequence of complex numbers which converges to 0. Then, we must have,

(A)
$$
\sum_{n=1}^{\infty} x_n
$$
 converges.
\n(B) $\sum_{n=1}^{\infty} x_n^2$ converges.

(C) There is a subsequence (x_{n_k}) such that \sum^{∞} $n=1$ $2^k x_{n_k}$ converges.

(D) There is no subsequence (x_{n_k}) such that $\sum_{n=1}^{\infty}$ $n=1$ $4^k x_{n_k}$ converges.

$$
(39) Let
$$

$$
F(y) = \int_{-\infty}^{\infty} (x + iy)^3 e^{-\frac{(x + iy)^2}{2}} dx, \ y \in \mathbb{R}
$$

Then,

- (A) $F(y)$ is never 0.
- (B) $F(0) = 0$ but $F(y) \neq 0$ for $y \neq 0$.
- (C) $F(y) = 0$ for all $y \in \mathbb{R}$.
- (D) $F(y) = 0$ if and only if y is rational.
- (40) Let $C[0, 1]$ be the space of continuous functions on [0, 1]. Define the operator $T: C[0,1] \to C[0,1]$ by $Tf(x) = f(x^2)$ and let $f_n(x) = T^n f(x)$ for $f \in C[0,1]$. Then,
	- (A) $g(x) = \lim_{n \to \infty} f_n(x)$ exist for all $x \in [0, 1]$ and $g \in C[0, 1]$.
	- (B) $\lim_{n\to\infty} f_n(x)$ need not exist.
	- (C) $g(x) = \lim_{n \to \infty} f_n(x)$ exist for all $x \in [0,1]$ and $g \in C[0,1]$ if and only if $f(0) = f(1).$
	- (D) The sequence $(f_n(x))$ is unbounded for every $x \in [0,1]$.
- (41) Let $f \geq 0$ be such that

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) dx dy < \infty.
$$

Define
$$
a_{mn} = \int_{m}^{m+1} \int_{n}^{n+1} f(x, y) dx dy
$$
. Then,
\n(A) $\sum_{n=-\infty}^{\infty} a_{mn}$ converges but $\sum_{m=-\infty}^{\infty} \left(\sum_{n=-\infty}^{\infty} a_{mn} \right)$ diverges.
\n(B) $\sum_{m=-\infty}^{\infty} a_{mn}$ converges but $\sum_{n=-\infty}^{\infty} \left(\sum_{m=-\infty}^{\infty} a_{mn} \right)$ diverges.
\n(C) $\sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} a_{mn}$ converges.
\n(D) Both $\sum_{n=-\infty}^{\infty} a_{mn}$ and $\sum_{m=-\infty}^{\infty} a_{mn}$ diverge.

(42) Let $k(\theta) = \sum_{n=1}^{\infty}$ $k=-n$ $e^{ik\theta}$. Then the value of the integral

$$
\frac{1}{2\pi}\int\limits_{0}^{2\pi}\cos(n\varphi)k(\theta-\varphi)d\varphi
$$

is

(A) 0.

- (B) $\cos(n\theta)$.
- (C) $\sin(n\theta)$.
- (D) An odd multiple of π .

(43) Suppose f is an entire function. Define

$$
\varphi(r) = \sup_{|z|=r} |f(z)|, r > 0.
$$

Then,

 $(A) \bigwedge^{\infty}$ $\boldsymbol{0}$ $\varphi(r)dr < \infty$ for all entire functions f. $(B) \int_{0}^{\infty}$ $\boldsymbol{0}$ $\varphi(r)dr = \infty$ for all entire functions f. $(C) \int_{0}^{\infty}$ 0 $\varphi(r)dr < \infty$ if and only if $f \equiv 0$. $(D) \nightharpoonup^{\infty}$ 0 $\varphi^2(r)dr < \infty$ for all entire functions f.

(44) Let v_1, v_2, \ldots, v_m be unit vectors in the sphere $S^{n-1} \subset \mathbb{R}^n$ such that $||v_j - v_k||^2 = 2$ for $j \neq k$, $1 \leq j, k \leq m$. Then, we must have

- (A) m is always greater than n .
- (B) m is at most 2^n but may be greater than n.
- (C) m is at most n .
- (D) m can be infinite.

(45) Let A and B be $n \times n$ real-valued matrices with trace(B) $0 < 0 <$ trace(A). Then, $F(t) = 1 - det(e^{tA + (1-t)B})$ has

- (A) infinitely many zeroes in $0 < t < 1$.
- (B) at least one zero in R .
- (C) no zeroes.
- (D) either no zeroes or infinitely many zeroes in R .

(46) Let A and B be bounded operators on a Hilbert space $\mathcal H$ such that $AB = BA$. Let λ be an eigenvalue for A. Then, it must be that

- (A) B has no eigenvalues.
- (B) B has at least one eigenvalue.
- (C) A and B have the same spectrum.
- (D) B has empty spectrum.
- (47) Let (f_n) be a sequence of entire functions converging to f uniformly on compact subsets of \mathbb{C} . Suppose, for all $n \geq 1$, f_n has n zeroes. Then,
	- (A) f must have infinitely many zeroes.
	- (B) f need not have any zeroes.
	- (C) f can have only finitely many zeroes.
	- (D) f cannot have any zero.
- (48) Let $A = \{f \in C[0,1]: f(x) \neq 0 \,\forall x \in [0,1]\}\$ where $C[0,1]$ is the set of continuous functions $f : [0, 1] \to \mathbb{R}$ with the sup norm. Then,
	- (A) A is closed.
	- (B) A is both open and closed.
	- (C) A is open.
	- (D) A is neither open nor closed.
- (49) Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function. Under which condition does the equation $y'' - y = f$ have a unique solution
	- (A) $y(0) y(1) = 1$.
	- (B) $y(0) = 1 + y(1), y(1) = 2 + y(0).$
	- (C) $y'(0) = y'(1) = 0.$
	- (D) $y(0) = 1 y'(1)$.
- (50) Let $f : \mathbb{R} \to \mathbb{R}$ be a strictly convex, continuous function such that we have $\lim_{|x| \to \infty} f(x) = \infty$. Then,
	- (A) f has a unique minimum.
	- (B) f has a unique maximum.
	- (C) f has a minimum but it need not be unique.
	- (D) f has a maximum but it need not be unique.