Instructions

- (1) This question paper consists of 50 multiple choice questions carrying 2 marks each. Answer all questions.
- (2) Answers are to be marked in the OMR sheet provided.
- (3) For each question, darken the appropriate bubble to indicate your answer.
- (4) Use only HB pencils for bubbling answers.
- (5) Mark only one bubble per question. If you mark more than one bubble, the question will be evaluated as incorrect.
- (6) If you wish to change your answer, please erase the existing mark completely before marking the other bubble.
- (7) Let \mathbb{Z} , \mathbb{R} , \mathbb{Q} and \mathbb{C} (\mathbb{Z}_+ , \mathbb{R}_+ , \mathbb{Q}_+ and \mathbb{C}_+) denote the set of (respectively positive) integers, real numbers, rational numbers and complex numbers respectively.
- (8) For $n \ge 1$, the norm given by $||(x_1, x_2, \dots, x_n)|| = (x_1^2 + x_2^2 + \dots + x_n^2)^{1/2}$ denotes the standard norm on \mathbb{R}^n . The metric given by d(x, y) = ||x - y|| is called the standard metric on \mathbb{R}^n .

MATHEMATICS

(1) Consider the function

$$f(z) = \frac{1}{1+z^2}$$

where $z \in \mathbb{C}$ and let

$$f(z) = \sum_{n=1}^{\infty} a_n (z-a)^n$$

be the Taylor expansion of f(z) around the point $a \in \mathbb{R}$. The radius of convergence of this power series is

(A)
$$(1 + a^2)^{1/2}$$
.
(B) $(1 + a^2)^{-1/2}$.
(C) $a + (1 + a^2)^{1/2}$.
(D) $a - (1 + a^2)^{-1/2}$.
Let

$$(2)$$
 Let

$$f: [-1, 1] \to \mathbb{R},$$
$$g: [-1, 1] \to \mathbb{Q} \cap [-1, 1],$$
$$h: \mathbb{R} \to [-1, 1]$$

be continuous maps. Then,

- (A) both f and g are necessarily not surjective.
- (B) both g and h are necessarily not surjective.
- (C) both h and f are necessarily not surjective.
- (D) all of f, g and h are necessarily not surjective.
- (3) Consider the sequence of functions

$$f_n(x) = 1/(1+nx)$$

where $x \in (0, 1)$. Then,

- (A) $f_n(x) \to 0$ pointwise but not uniformly on (0, 1).
- (B) $f_n(x) \to 0$ uniformly on (0, 1).
- (C) $\int_0^1 f_n(x) \, dx \to 0$ as $n \to \infty$.
- (D) $f'_n(1/n) \to 0$ as $n \to \infty$.

(4) Let A be a 3×3 matrix with complex entires whose eigenvalues are $1, \pm 2i$. Suppose that for some $\alpha, \beta, \gamma \in \mathbb{C}$,

$$\alpha A^{-1} = A^2 + \beta A + \gamma I$$

where I is the 3×3 identity matrix. Then (α, β, γ) equals

- (A) (-1, -4, 4).
- (B) (-4, -1, 4).
- (C) (-1, 4, -2).
- (D) (-1, -2, 4).
- (5) Let γ be the circle |z| = 3 in the complex plane described in the counterclockwise direction. Then

$$\int_{\gamma} \frac{3z^2 + z - 2}{(z - 2)^2} \, dz$$

equals

- (A) $2\pi i$.
- (B) $14\pi i$.
- (C) $26\pi i$.
- (D) $38\pi i$.
- (6) Consider the function

$$f(x) = \begin{cases} x^2, & \text{if } x \in \mathbb{Q}; \\ 0, & \text{otherwise.} \end{cases}$$

Then

- (A) f is continuous but not differentiable at x = 0.
- (B) f is differentiable at x = 0.
- (C) f is continuous but not differentiable at x = 1.
- (D) f is differentiable at x = 1.

(7) Let $p(z) = a_0 + a_1 z + a_2 z^2 + \ldots + a_n z^n$ be a polynomial of degree of $n \ge 1$ where a_0, a_n are both non-zero. Then

$$f(z) = 1/p(1/z),$$

which is a meromorphic function on $\mathbb{C} \setminus \{0\}$,

- (A) has a removable singularity at z = 0 and is non-vanishing there.
- (B) has a removable singularity at z = 0 and has a zero of order n at z = 0.
- (C) has a pole of order n at z = 0.
- (D) has an essential singularity at z = 0.

(8) Let u, v be eigenvectors of a matrix A corresponding to non-zero real eigenvalues α, β . Suppose that $\alpha \neq \beta$. Then,

- (A) u + v is always an eigenvector of A corresponding to $\alpha + \beta$.
- (B) u + v is an eigenvector of A only if $\alpha = 0$ and $\beta = 1$.
- (C) u + v is an eigenvector of A only if $\alpha = 1$ and $\beta = 0$.
- (D) u + v is never an eigenvector of A.

(9) The set of all limit points of

$$S = \{n + \frac{1}{3m^2} : n, m \in \mathbb{N}\}$$

is

- (A) \mathbb{N} .
- (B) \mathbb{Q} .
- (C) \mathbb{R} .
- (D) Z.

(10) Let λ be a non-zero real number. Then

$$\lim_{x\to\lambda}\frac{\int_\lambda^x\cos(t^2)\;dt}{x^3-\lambda^3}$$

equals

(A)	$\frac{\cos(\lambda^2)}{3\lambda^2}.$
(B)	$\frac{\sin(\lambda^2)}{3\lambda^2}.$
(C)	$\frac{2\cos(\lambda^2)}{3\lambda^2}.$
(D)	$\frac{2\sin(\lambda^2)}{3\lambda^2}.$

(11) Let $\mathcal{C}^1(\mathbb{R})$ be the collection of all continuously differentiable functions on \mathbb{R} . Let

$$S = \{ f \in \mathcal{C}^1(\mathbb{R}) : f(0) = 0, f(1) = 1, |f'(x)| \le 3/4 \text{ for all } x \in \mathbb{R} \}.$$

Then

- (A) S is empty.
- (B) S is non-empty and finite.
- (C) S is countably infinite.
- (D) S is uncountable.

(12) Which of the following functions is Lipschitz on $[0, \infty)$?

- (A) a polynomial of degree at least 2.
- (B) e^x .
- (C) $x \sin x$.
- (D) the function defined by

$$f(x) = \begin{cases} x^2, & \text{if } 0 \le x \le 1; \\ x^{1/2}, & \text{if } 1 \le x < \infty. \end{cases}$$

(13) Suppose B is a subset of the vector space \mathbb{R}^3 with 3 elements.

- (A) B must generate \mathbb{R}^3 .
- (B) B cannot be independent.
- (C) If B generates \mathbb{R}^3 then B is independent.
- (D) Either B is independent or B generates \mathbb{R}^3 .
- (14) Let A be an $m \times n$ real-valued matrix and B be an $n \times m$ real-valued matrix so that AB = I. Then we must have
 - (A) n > m.
 - (B) $m \ge n$
 - (C) if BA = I then m > n
 - (D) either BA = I or n > m.
- (15) Let A be an $n \times n$ real-valued matrix such that $A^2 = A$.
 - (A) A must be invertible.
 - (B) A cannot be invertible.
 - (C) If A is invertible then A = I.
 - (D) Either A = I or A = 0.

- (16) Let A be an $n \times n$ real-valued matrix such that $A^2 + I = 0$. Then A cannot be
 - (A) orthogonal.
 - (B) skew-symmetric.
 - (C) symmetric.
 - (D) invertible.

(17) Let A be a 3×3 real-valued matrix such that $A^3 = I$ but $A \neq I$. Then the trace of A must be

- (A) 0.
- (B) 1.
- (C) -1.
- (D) 3.

(18) Which of the following polynomials is reducible over \mathbb{R} ?

- (A) $x^6 + 342x + 18934$.
- (B) $x^2 + x + 1$.
- (C) x + 1.
- (D) $x^2 + 2x + 2$.

(19) Let $a, b, c \in \mathbb{Z}$ be integers. Consider the polynomial $p(x) = x^5 + 12ax^3 + 34bx + 43c$.

(A) p(x) is irreducible over \mathbb{R} if and only if p(x) is reducible over \mathbb{C} .

- (B) p(x) is irreducible over \mathbb{R} if and only if p(x) is irreducible over \mathbb{Q} .
- (C) p(x) is irreducible over \mathbb{Z} if and only if p(x) is irreducible over \mathbb{Q} .
- (D) p(x) is irreducible over \mathbb{Q} if and only if p(x) is irreducible over \mathbb{C} .
- (20) The number of abelian groups of order 27 is
 - (A) 1.
 - (B) 2.
 - (C) 3.
 - (D) 4.
- (21) For which of the following values of n is there a group of order n with no proper normal subgroups?
 - (A) n = 21.
 - (B) n = 9.
 - (C) n = 60.
 - (D) n = 98.

- (22) The smallest integer n for which the permutation group S_n on n letters contains an element of order 12 is
 - (A) 5.
 - (B) 7.
 - (C) 9.
 - (D) 11.
- (23) Let G be a finite group of order 3n for some $n \in \mathbb{Z}$. Suppose all the elements of G of order 3 are conjugate. Then,
 - (A) G must be cyclic.
 - (B) G cannot be abelian.
 - (C) G must be abelian and not cyclic.
 - (D) G must be abelian and may or may not be cyclic.
- (24) The number of automorphisms (including the identity) of the permutation group S_3 on 3 letters is
 - (A) 1.
 - (B) 6.
 - (C) 9.
 - (D) 12.
- (25) Consider the ring $R = \{a/b : a, b \in \mathbb{Z}, b \text{ odd}\}$ with the usual addition and multiplication operations. Then,
 - (A) R is a field isomorphic to \mathbb{Q} .
 - (B) R is a field but not isomorphic to \mathbb{Q} .
 - (C) R is not a field.
 - (D) R is isomorphic to \mathbb{Q} as a ring but is not a field.
- (26) The number of groups of order 6 is
 - (A) 1.
 - (B) 2.
 - (C) 3.
 - (D) 4.

- (27) Let A and B be $n \times n$ real-valued matrices and C = AB BA. Then we must have
 - (A) C = 0.
 - (B) C = I.
 - (C) C = -I.
 - (D) $C \neq I$.
- (28) Suppose X is a subset of \mathbb{R} such that every bounded sequence in X has a subsequence with limit in X. Then,
 - (A) X must be compact.
 - (B) X must be open.
 - (C) X must be closed.
 - (D) X must be bounded.
- (29) For which of the following sets $X \subset \mathbb{R}^2$, with the subspace topology, is there a continuous surjection $f: [0, 1] \to X$.
 - (A) $X = \{(x, y) \in \mathbb{R}^2 : x \ge 0, y = 0\}.$
 - (B) $X = \{(x, y) \in \mathbb{R}^2 : 0 < x \le 1, y = 0\}.$
 - (C) $X = \{(x, y) \in \mathbb{R}^2 : xy = 0, |x| \le 1, 0 \le y \le 1\}.$
 - (D) $X = \{(x, y) \in \mathbb{R}^2 : 1 \le |x| \le 2, y = 0\}.$
- (30) Consider the function

$$f(x) = \begin{cases} \frac{|x|^{\pi-1}}{x}, & x \neq 0, \\ 0 & x = 0. \end{cases}$$

- (A) f(x) is continuous everywhere but not differentiable at 0.
- (B) f(x) is differentiable everywhere but f'(x) is not continuous at 0.
- (C) f(x) is differentiable everywhere and f'(x) is continuous at 0.
- (D) f(x) is not continuous at 0.
- (31) Let $f : \mathbb{R} \to \mathbb{R}$ be a differentiable function such that f'(x) is continuous and f(x+1) = f(x) + 1 for all $x \in \mathbb{R}$.
 - (A) f'(x) must be bounded.
 - (B) f(x) must be bounded.
 - (C) Both f(x) and f'(x) must be unbounded.
 - (D) Both f(x) and f'(x) must be bounded.

(32) The sequence

$$a_n = (-1)^n \frac{\log(n^4 + 1)}{n^2 + 1}$$

(A) is convergent.

(B) is bounded but not convergent.

(C) is neither bounded nor convergent.

(D) is convergent but not bounded.

(33) Let $f:[0,1] \to \mathbb{R}$ be a function such that $g(x) = (f(x))^2$ is continuous. Then,

(A) f must be bounded but need not be continuous.

(B) f must be continuous.

(C) f is continuous if and only if f is bounded.

(D) f is continuous if and only if f is not bounded.

(34) Let (a_n) be the sequence given by

$$a_n = \int_{-\infty}^{\infty} \frac{\cos(nx)}{1+x^2} dx.$$

Then,

- (A) (a_n) is bounded.
- (B) (a_n) is bounded but does not converge. (C) (a_n) converges but $\sum_{n=-\infty}^{\infty} a_n$ diverges.
- (D) $\sum_{n=-\infty}^{\infty} a_n$ converges.

(35) Let $\varphi, \psi: S \to S$ be two functions on a finite set S such that

$$\varphi(\varphi(x)) = \psi(\psi(x)) = x, \ \forall x \in S.$$

Suppose further that φ has a unique fixed point in S. Then,

- (A) ψ must have a unique fixed point.
- (B) ψ must have at least one fixed point.
- (C) ψ must have no fixed points.
- (D) ψ must have an even number of fixed points.

(36) Let u_k and v_k , $k \ge 1$, be real-valued functions satisfying

$$\int_0^1 (u_k(t) + iv_k(t))^4 dt = 0$$

for all k. Let $A_k = \left(\int_0^1 u_k^4(t)dt\right)^{1/4}$ and $B_k = \left(\int_0^1 v_k^4(t)dt\right)^{1/4}$. Then, (A) A_k/B_k must be bounded but B_k/A_k may be unbounded.

- (B) B_k/A_k must be bounded but A_k/B_k may be unbounded.
- (C) both A_k/B_k and B_k/A_k must be bounded.
- (D) both A_k/B_k and B_k/A_k may be unbounded.
- (37) Let (x_n) be a sequence of real numbers which is not Cauchy. Then,
 - (A) (x_n) is necessarily unbounded.
 - (B) (x_n) may be convergent.
 - (C) For every $\epsilon > 0$ there is a subsequence (x_{n_k}) such that $|x_{n_k} x_{n_j}| < \epsilon$ for all k and j sufficiently large, $k \neq j$.
 - (D) For some $\epsilon > 0$ there is a subsequence (x_{n_k}) such that $|x_{n_k} x_{n_j}| > \epsilon$ for all k and j sufficiently large, $k \neq j$.
- (38) Let (x_n) be a sequence of complex numbers which converges to 0. Then, we must have,

(A)
$$\sum_{n=1}^{\infty} x_n$$
 converges.
(B) $\sum_{n=1}^{\infty} x_n^2$ converges.

(C) There is a subsequence (x_{n_k}) such that $\sum_{n=1}^{\infty} 2^k x_{n_k}$ converges.

(D) There is no subsequence (x_{n_k}) such that $\sum_{n=1}^{\infty} 4^k x_{n_k}$ converges.

$$(39)$$
 Let

$$F(y) = \int_{-\infty}^{\infty} (x+iy)^3 e^{-\frac{(x+iy)^2}{2}} dx, \ y \in \mathbb{R}$$

Then,

- (A) F(y) is never 0.
- (B) F(0) = 0 but $F(y) \neq 0$ for $y \neq 0$.
- (C) F(y) = 0 for all $y \in \mathbb{R}$.
- (D) F(y) = 0 if and only if y is rational.

- (40) Let C[0,1] be the space of continuous functions on [0,1]. Define the operator $T: C[0,1] \to C[0,1]$ by $Tf(x) = f(x^2)$ and let $f_n(x) = T^n f(x)$ for $f \in C[0,1]$. Then,

 - (A) $g(x) = \lim_{n \to \infty} f_n(x)$ exist for all $x \in [0, 1]$ and $g \in C[0, 1]$. (B) $\lim_{n \to \infty} f_n(x)$ need not exist. (C) $g(x) = \lim_{n \to \infty} f_n(x)$ exist for all $x \in [0, 1]$ and $g \in C[0, 1]$ if and only if f(0) = f(1).
 - (D) The sequence $(f_n(x))$ is unbounded for every $x \in [0, 1]$.
- (41) Let $f \ge 0$ be such that

$$\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}f(x,y)dxdy<\infty.$$

Define
$$a_{mn} = \int_{m}^{m+1} \int_{n}^{n+1} f(x, y) dx dy$$
. Then,
(A) $\sum_{n=-\infty}^{\infty} a_{mn}$ converges but $\sum_{m=-\infty}^{\infty} \left(\sum_{n=-\infty}^{\infty} a_{mn}\right)$ diverges.
(B) $\sum_{m=-\infty}^{\infty} a_{mn}$ converges but $\sum_{n=-\infty}^{\infty} \left(\sum_{m=-\infty}^{\infty} a_{mn}\right)$ diverges.
(C) $\sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} a_{mn}$ converges.
(D) Both $\sum_{n=-\infty}^{\infty} a_{mn}$ and $\sum_{m=-\infty}^{\infty} a_{mn}$ diverge.

(42) Let $k(\theta) = \sum_{k=-n}^{n} e^{ik\theta}$. Then the value of the integral

$$\frac{1}{2\pi} \int_{0}^{2\pi} \cos(n\varphi) k(\theta - \varphi) d\varphi$$

is

(A) 0.

- (B) $\cos(n\theta)$.
- (C) $\sin(n\theta)$.
- (D) An odd multiple of π .

(43) Suppose f is an entire function. Define

$$\varphi(r) = \sup_{|z|=r} |f(z)|, \ r > 0.$$

Then,

(A) $\int_{0}^{\infty} \varphi(r) dr < \infty$ for all entire functions f. (B) $\int_{0}^{\infty} \varphi(r) dr = \infty$ for all entire functions f. (C) $\int_{0}^{\infty} \varphi(r) dr < \infty$ if and only if $f \equiv 0$. (D) $\int_{0}^{\infty} \varphi^{2}(r) dr < \infty$ for all entire functions f.

(44) Let v_1, v_2, \ldots, v_m be unit vectors in the sphere $S^{n-1} \subset \mathbb{R}^n$ such that $||v_j - v_k||^2 = 2$ for $j \neq k, 1 \leq j, k \leq m$. Then, we must have

- (A) m is always greater than n.
- (B) m is at most 2^n but may be greater than n.
- (C) m is at most n.
- (D) m can be infinite.

(45) Let A and B be $n \times n$ real-valued matrices with trace(B) < 0 < trace(A). Then, $F(t) = 1 - det(e^{tA + (1-t)B})$ has

- (A) infinitely many zeroes in 0 < t < 1.
- (B) at least one zero in \mathbb{R} .
- (C) no zeroes.
- (D) either no zeroes or infinitely many zeroes in \mathbb{R} .
- (46) Let A and B be bounded operators on a Hilbert space \mathcal{H} such that AB = BA. Let λ be an eigenvalue for A. Then, it must be that
 - (A) B has no eigenvalues.
 - (B) B has at least one eigenvalue.
 - (C) A and B have the same spectrum.
 - (D) B has empty spectrum.

- (47) Let (f_n) be a sequence of entire functions converging to f uniformly on compact subsets of \mathbb{C} . Suppose, for all $n \ge 1$, f_n has n zeroes. Then,
 - (A) f must have infinitely many zeroes.
 - (B) f need not have any zeroes.
 - (C) f can have only finitely many zeroes.
 - (D) f cannot have any zero.
- (48) Let $A = \{f \in C[0,1] : f(x) \neq 0 \ \forall x \in [0,1]\}$ where C[0,1] is the set of continuous functions $f : [0,1] \to \mathbb{R}$ with the sup norm. Then,
 - (A) A is closed.
 - (B) A is both open and closed.
 - (C) A is open.
 - (D) A is neither open nor closed.
- (49) Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function. Under which condition does the equation y'' - y = f have a unique solution
 - (A) y(0) y(1) = 1.
 - (B) $y(0) = 1 + y(1), \quad y(1) = 2 + y(0).$
 - (C) y'(0) = y'(1) = 0.
 - (D) y(0) = 1 y'(1).
- (50) Let $f : \mathbb{R} \to \mathbb{R}$ be a strictly convex, continuous function such that we have $\lim_{|x|\to\infty} f(x) = \infty.$ Then,
 - (A) f has a unique minimum.
 - (B) f has a unique maximum.
 - (C) f has a minimum but it need not be unique.
 - (D) f has a maximum but it need not be unique.