Q.P. Code: 5067

(3 Hours)

[Total Marks: 80

(5)

(5)

(5)

Instructions:

1) Question No. 1 is compulsory.

2) Attempt any THREE of the remaining.

3) Figures to the right indicate full marks.

Q 1. A) Find Laplace of $\{t^5 cosht\}$

B) Find Fourier series for
$$f(x) = 1 - x^2$$
 in (-1, 1)

C) Find a, b, c, d, e if,

$$f(z) = (ax^4 + bx^2y^2 + cy^4 + dx^2 - 2y^2) + i(4x^3y - exy^3 + 4xy) \text{ is analytic}$$
 (5)

D) Prove that
$$\nabla \left(\frac{1}{r}\right) = -\frac{\tilde{r}}{r^3}$$

Q.2) A) If
$$f(z) = u + iv$$
 is analytic and $u + v = \frac{2 \sin 2x}{e^{2y} + e^{-2y} - 2\cos 2x}$, find $f(z)$ (6)

B) Find inverse Z-transform of
$$f(z) = \frac{z+2}{z^2-zz+1}$$
 for $|z| > 1$ (6)

C) Find Fourier series for $f(x) = \sqrt{1 - \cos x}$ in $(0, 2\pi)$

Hence, deduce that
$$\frac{1}{2} = \sum_{1}^{\infty} \frac{1}{4n^2 - 1}$$
 (8)

Q.3) A) Find
$$L^{-1}\left\{\frac{1}{(s-2)^{\frac{1}{2}(s+3)}}\right\}$$
 using Convolution theorem (6)

B) Prove that
$$f_1(x) = 1$$
, $f_2(x) = x$, $f_3(x) = (3x^2-1)/2$ are orthogonal over (-1, 1) (6)

C) Verify Green's theorem for
$$\int_c^{} \overline{F}.\overline{dr}$$
 where $\overline{F}=(x^2-y^2)i+(x+y)j$ and c is the

[TURN OVER

Q.4) A) Find Laplace Transform of
$$f(t) = |sinpt|, t \ge 0$$
 (6)

B) Show that $\overline{F} = (y \sin z - \sin x) i + (x \sin z + 2yz) j + (xy \cos z + y^2) k$ is irrotational.

Hence, find its scalar potential. (6)

C) Obtain Fourier expansion of $f(x) = x + \frac{\pi}{2}$ where $-\pi < x < 0$

$$=\frac{\pi}{2}$$
 - x where $0 \le x \le \pi$

Hence, deduce that (i) $\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{5^2} + \dots$

$$(ii)\frac{\pi^4}{6c} = \frac{1}{4} + \frac{1}{24} + \frac{1}{24} + \dots$$
 (8)

Q.5) A) Using Gauss Divergence theorem to evaluate $\iint_S \overline{N} \cdot \overline{F} ds$ where $\overline{c} = 4xi - 2y^2j + z^2k$

and S is the region bounded by
$$x^2 + y^2 = 4$$
, $z = 0$, $z = 3$

B) Find
$$Z\{2^k \cos(3k + 2)\}, k \ge 0$$

C) Solve
$$(D^2+2D+5)y = e^{-t}sint$$
, with $y(0)=0$ and $y'(0)=1$

Q.6) A) Find L⁻¹
$$\left\{ \tan^{-1} \left(\frac{2}{s^2} \right) \right\}$$
 (6)

B) Find the bilinear transformation which maps the points 2, i, -2 onto points 1, i, -1 by

using cross-ratio property. (6)

C) Find Fourier Sine integral representation for
$$f(x) = \frac{e^{-\alpha x}}{x}$$
 (8)

--XXX---