-EOMP/I-T/II/CBGs/App. Maths - 1 25-11-2016

Q.P. Code: 540701

(3 Hours)

[Total Marks: 80]

		Question No. 1 is compulsory.	
NB:		Attempt any three of the remaining.	
	2)	Attempt any three of the remaining.	
	3)	Figures to the right indicate full marks.	
1.	a)	Find the Laplace transform of te3t sin 4t.	05
	b)	Find half-range cosine series for $f(x)=e^x$, $0 \le x \le 1$.	05
	c)	Is $f(z) = \frac{z}{a}$ analytic?	05
	d)	Prove that $\nabla x(\overline{a}x\nabla logr) = 2\frac{(\overline{a}.\overline{r})\overline{r}}{r^4}$, where \overline{a} is a constant vector.	95
	-,	Prove that * x(ax riog) = r4 ;	
2.	a)	Find the Z-transform of $\frac{1}{(z-5)^3}$ if $ z < 5$.	06
	b)	If $V=3x^2y+6xy-y^3$, show that V is harmonic & find the corresponding analytic	06
		function.	08
	c)	Obtain Fourier series for the function	
		$\left(1+\frac{2x}{\pi},-\pi\leq x\leq 0\right)$	
		$f(x) = \begin{cases} 1 + \frac{\pi x}{\pi}, & -\pi \leq x \leq 0 \\ 1 - \frac{2\pi}{\pi}, & 0 \leq x \leq \pi \end{cases}$	
		hence deduce that $\frac{\sigma^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots$	
- 0		neitee deduce dim 8 - 12 , 35 , 25	-
V	-	((s47) ²]	06
3.	a)	Find L ⁻¹ $\frac{(s+2)^2}{(s^2+4s+8)^2}$ using convolution theorem.	
	b)	Show that the set of functions	06
		1, $\sin\left(\frac{\pi x}{L}\right)$, $\cos\left(\frac{\pi x}{L}\right)$, $\sin\left(\frac{2\pi x}{L}\right)$, $\cos\left(\frac{2\pi x}{L}\right)$,	
		Form an orthogonal set in (-L.L) and construct an orthonormal set.	
	c)	Verify Green's theorem for $\int (e^{ix} - xy^2) dx + (ye^x + y^2) dy$	08
		Where C is the closed curve bounded by $y^2 = x \& x^2 = y$.	
4.	a)	Find Laplace transform of $f(x) = K \frac{t}{T}$ for $0 \le t \le T$ & $f(t) = f(t+T)$.	06
	b)	Show that the vector, $\vec{F} = (x^2 - yz)\vec{i} + (y^2 - zx)\vec{j} + (z^2 - xy)\vec{k}$ is	06
	0)	irrotational and hence, find ϕ such that $\overline{F} = \nabla \phi$.	
	c)	Find Fourier series for $f(x)$ in $(0, 2\pi)$.	08
	-,	$f(x) = \begin{cases} x, & 0 \le x \le \pi \\ 2\pi - x, \pi \le x \le 2\pi \end{cases}$	
		$1(x) = (2\pi - x, \pi \le x \le 2\pi)$	
		hence deduce that	
		$\frac{z^4}{2c} = \frac{1}{c^4} + \frac{1}{2^4} + \frac{1}{c^4} + \dots$	
		96 1, 3, 3,	0.0
5.	a)		06
		$\iint \overline{N} \cdot \overline{F} ds$ where $\overline{F} = 2xi + xyj + zk$ over the region bounded by the cylinder x^2	
		,	
		$+ y^2 = 4, z = 0, z = 6.$	06
	b)	Find inverse Z – transform of $f(x) = \frac{z}{(z-1)(z-2)}$, $ z > 2$	00

TURN OVER

08

c) (i) Find $L^{-1} \left[log \left(\frac{s+1}{s-1} \right) \right]$ (ii) Find $L^{-1} \left[\frac{s+2}{s^2-4s+13} \right]$

6. a) Solve (D^2+3D+2) $y = 2(t^2+t+1)$ with y(0) = 2 & y'(0) = 0.

b) Find the bilinear transformation which maps the points 0, i, -2i of z-plane onto the points -4i, \infty, 0 respectively of w-plane. Also obtain fixed points of the transformation.

c) Find Fourier sine integral of

$$f(x) = \begin{cases} x, & 0 < x < 1 \\ 2 - x, 1 < x < 2 \\ 0, & x > 2 \end{cases}$$

stupidsid.com

Course: S.E. (SEM - III) (REV.-2012) (CBSGS) (COMPUTER ENGG.) COMMON WITH (INFORMATION TECHNOLOGY)(Prog. T1123 CW 1723A)

QP Code: 540701

Correction:

Q. 2(a)

Read As:

Find the inverse Z-transform of.......

Instead of:

Find the Z-transform of......

Query Update time: 25/11/2016@3:46 PM

Course: S.E. (SEM - III) (REV.-2012) (CBSGS) (COMPUTER ENGG.) COMMON WITH (INFORMATION TECHNOLOGY)(Prog. T1123 CW 1723A)

QP Code: 540701

Correction:

Q. 4(a)

Read As

Find laplace transform of f(t)=

Instead of:

Find laplace transform of f(x)=

Query Update time: 25/11/2016 04:31 PM