Part A: 25 marks

Part B: 50 marks

Entrance Examination: M.Sc. Mathematics, 2011

$_{ m Hall}$	Ticket	Number								

Time: 2 hours
Max. Marks. 75

Instructions

- Write your Booklet Code and Hall Ticket Number on the OMR Answer Sheet given to you. Also write the Hall Ticket Number in the space provided above.
- There is negative marking. In part A a right answer gets 1 mark and a wrong answer gets − 0.33 mark. In part B a right answer gets 2 marks and a wrong answer gets −0.66 mark.
- Answers are to be marked on the OMR answer sheet following the instructions provided there upon.
- 4. Hand over the question paper booklet and the OMR answer sheet at the end of the examination.
- 5. No additional sheets will be provided. Rough work can be done in the question paper itself/space provided at the end of the booklet.
- Calculators are not allowed.
- 7. There are a total of 50 questions in Part A and Part B together.
- 8. The appropriate answer should be coloured in either a blue or black ball point or sketch pen. DO NOT USE A PENCIL.

Part A

- Statement: All mathematicians are intellectuals.
 - Conclusions:
 - (1) Raju is not a mathematician so he is not an intellectual
 - (2) All intellectuals are mathematicians
 - A. Only (1) is correct
 - B. Only (2) is correct
 - C. Both (1) and (2) are correct
 - D. Neither (1) nor (2) is correct
- 2. For any natural number n, the sum, $\binom{n}{1} + 2\binom{n}{2} + 3\binom{n}{3} + \cdots + n\binom{n}{n} = n$
 - $\mathbf{A}. n2^n$
 - B. $n2^{n-1}$
 - C. $n2^{n+1}$
 - D. none of the above
- 3. Let $f: \mathbb{R} \{0\} \to \mathbb{R}$ be defined as f(x) = |x| then
 - A. f is continuous and differentiable
 - \mathbf{B} . f is continuous but not differentiable
 - C. f differentiable but discontinuous
 - \mathbf{D} . f is discontinuous
- 4. Let $(a_n), (b_n)$ be two convergent sequences converging to l, m respectively. If we define $c_n = \begin{cases} a_n + m & \text{if } n \text{ is odd,} \\ b_n + l & \text{if } n \text{ is even,} \end{cases}$ then
 - **A.** (c_n) is a Cauchy sequence which is not convergent
 - **B**. (c_n) is bounded but not convergent
 - **C.** (c_n) is a convergent sequence converging to l+m
 - **D**. (c_n) has only two convergent subsequences
- 5. Let G be a group and $a, b \in G$. If $a^{17} = b^{17}$ and $a^{30} = b^{30}$ then
 - $\mathbf{A}.\ a=b$
 - **B**. ab = ba and $o(a) \neq o(b)$
 - C. $a = b^{-1}$ and $o(a) \neq o(b)$
 - **D**. o(a) = o(b) and $a \neq b$

- 6. Let \bar{f} , ϕ be vector valued and scalar valued functions on \mathbb{R}^3 respectively, then
 - **A**. $\operatorname{curl}(\operatorname{grad} \phi) = 0$
 - **B**. curl(curl \bar{f}) = 0
 - **C**. grad(div \bar{f}) = 0
 - **D**. div(grad ϕ) = 0
- 7. The number of points in the plane equidistant from P = (-1,0), Q = (1,0), R = (0,1) is
 - \mathbf{A} . 0
 - **B**. 1
 - C. 2
 - D. infinite
- 8. The number of subgroups of \mathbb{Z}_{10} is
 - **A**. 1
 - **B**. 2
 - **C**. 3
 - D. 4
- 9. The number of nontrivial homomorphisms from the cyclic group \mathbb{Z}_{14} to a group of order 7 is
 - **A**. 1
 - **B**. 2
 - C. 3
 - D. 6
- 10. Let $X = \{0, 1\}$, $Y = \{2, 7\}$, $Z = \{0, 2, 4\}$. Which of them admit group structure
 - \mathbf{A} . only X
 - **B**. only X, Z
 - C. all of them
 - D. none of them

- 11. Two coins whose probabilities of heads showing up are p_1, p_2 are tossed, the probability that at least one tail shows up is
 - **A**. $2 p_1 p_2$
 - **B**. p_1p_2
 - **C**. $p_1(1-p_2)$
 - **D**. $1 p_1 p_2$
- 12. 2 ones. 2 twos. 1 three and 1 five are to be arranged to get a 6 digit number. The number of different numbers that can be obtained this way is
 - A. 6!
 - **B**. $\frac{6!}{2!}$
 - C. $\frac{6!}{2!2!}$
 - D. $\frac{6!}{2!3!}$
- 13. Let $a_n > 0$, $\forall n \in \mathbb{N}$ then consider the statements:

 - S_1) If $\sum a_n$ converges then $\sum a_n^2$ also converges S_2) If $\sum a_n^2$ converges then $\sum a_n$ also converges
 - **A**. Both S_1 and S_2 are true
 - **B**. S_1 is true but S_2 is false
 - $C. S_2$ is true but S_1 is false
 - **D**. Both S_1 and S_2 are false
- 14. Let $x \in \mathbb{R}$, [x] denotes the greatest integer less than or equal to x, then consider the statements:
 - S_1) $[x^2] = [x]^2$
 - S_2) $|x^2| = |x|^2$
 - **A**. Both S_1 and S_2 are true
 - **B**. S_1 is true but S_2 is false
 - \mathbb{C} . S_2 is true but S_1 is false
 - **D**. Both S_1 and S_2 are false

- 15. Let $x \in \mathbb{R} \{0\}$ then the correct statement is:
 - **A**. If $x^2 \in \mathbb{Q}$, then $x^3 \in \mathbb{Q}$
 - **B**. If $x^3 \in \mathbb{Q}$, then $x^2 \in \mathbb{Q}$
 - C. If $x^2 \in \mathbb{Q}$ and $x^4 \in \mathbb{Q}$ then $x^3 \in \mathbb{Q}$
 - **D**. If $x^2 \in \mathbb{Q}$ and $x^5 \in \mathbb{Q}$ then $x \in \mathbb{Q}$
- 16. The number of solutions of $X^5 \equiv 1 \pmod{163}$ in \mathbb{Z}_{163} is
 - A. 1
 - B. 2
 - C. 3
 - D. 4
- 17. Let $f: \mathbb{R} \to \mathbb{R}$ be a polynomial such that f(0) > 0 and $f(f(x)) = 4x + 1 \ \forall x \in \mathbb{R}$, then f(0) is
 - A. 1/4
 - B. 1/3
 - C. 1/2
 - D. 1
- 18. Let $f: \mathbb{R} \to \mathbb{R}$ be a polynomial and let (x_n) be a sequence of real numbers converging to 2. Then the sequence $(f(x_n))$ converges to
 - **A**. f(2)
 - $\mathbf{B}.\ f(4)$
 - **C**. f(8)
 - **D**. f(16)
- 19. Let V be the vector space of continuous functions on [-1,1] over \mathbb{R} . Let $u_1, u_2, u_3, u_4 \in V$ defined as $u_1(x) = x$, $u_2(x) = |x|$, $u_3(x) = x^2$, $u_4(x) = x|x|$ then
 - **A.** $\{u_1, u_2\}$ is linearly dependent
 - **B**. $\{u_1, u_3, u_4\}$ is linearly dependent
 - C. $\{u_1, u_2, u_4\}$ is linearly dependent
 - D. none of the above

20. The rank of
$$\begin{bmatrix} 1 & 2 & 1 & -1 \\ -1 & 1 & 2 & 1 \\ 1 & 5 & 4 & -1 \\ -1 & 4 & 5 & 1 \end{bmatrix}$$
 is

- A. 1
- **B**. 2
- C. 3
- **D**. 4

21. If
$$p(x)$$
 is a polynomial of degree 10^{2011} then $\lim_{x\to\infty} p(x)e^{-x}$

- **A**. is 0
- B. is 1
- C. is ∞
- D. does not exist

22. Let
$$p = \int_0^1 \sqrt{1-x} \ dx$$
, $q = \int_0^1 \sqrt{1-x^2} \ dx$ and $r = \int_0^1 \sqrt{1+x} \ dx$.

- **A**. $p \le q \le r \le 1$
- **B**. $p \leq q \leq 1 \leq r$
- C. $q \leq p \leq 1 \leq r$
- **D**. $1 \le p \le q \le r$

23. Let A be a
$$4 \times 4$$
 real matrix. Which of the following 4 conditions is not equivalent to the other 3?

- A. The matrix A is invertible.
- **B**. The system of equations Ax = 0 has only trivial solution.
- C. Any two distinct rows u and v of A are linearly independent.
- **D**. The system of equations Ax = b has a unique solution $\forall b \in \mathbb{R}^4$.

24. The set of complex numbers satisfying the equation
$$z = |z|^2$$
 is

- A. an empty set.
- B. a finite set.
- C. an infinite set.
- D. a line.

- 25. Let A be a subset of real numbers containing all the rational numbers. Which of the following statements is true?
 - A. A is countable.
 - **B**. If A is uncountable, then $A = \mathbb{R}$.
 - **C**. If A is open, then $A = \mathbb{R}$.
 - D. None of the above statement is true.

Part B

- 26. Let X be the set of all nonempty finite subsets of \mathbb{N} . Which one of the following is not an equivalence relation on X:
 - **A.** $A \sim B$ if and only if min $A = \min B$
 - **B.** $A \sim B$ if and only if A, B have same number of elements
 - **C.** $A \sim B$ if and only if A = B
 - **D**. $A \sim B$ if and only if $A \cap B = \phi$
- 27. Which of the following statements is not true:
 - A. Every bounded sequence of real numbers has a convergent subsequence
 - **B.** If subsequences (x_{2n}) and (x_{3n}) of a sequence (x_n) converges respectively to x and y then x = y
 - C. A monotone sequence of real numbers is convergent if and only if it is bounded
 - **D.** A sequence (x_n) of real numbers is convergent if and only if the sequence $(|x_n|)$ is convergent
- 28. The absolute maximum value of $f(x) = \frac{1}{1+|x|} + \frac{1}{1+|x-1|}$ on $\mathbb R$ is attained at
 - **A**. x = 0 only
 - **B**. x = 1 only
 - C. x = 0 and x = 1 only
 - **D**. no point of \mathbb{R}

Which of the following functions is uniformly continuous

A.
$$f:(0,1) \to \mathbb{R}, \ f(x) = \frac{e^{\cos x} \sqrt{1 + \sinh x}}{2 + \tan^2(x^2)}$$

B.
$$f: \mathbb{R} - \{0\} \to \mathbb{R}, \ f(x) = x^2 \sin(\frac{1}{x}),$$

C.
$$f: \mathbb{R} - \{0\} \to \mathbb{R}, \ f(x) = \cos\left(\frac{1}{x}\right)$$

- **D**. none of the above
- 30. If $f: \mathbb{R} \to \mathbb{R}$ then pick up a true statement from the following:
 - **A.** If f is continuous then |f| is continuous
 - **B**. If f is differentiable then |f| is differentiable
 - C. If f is integrable then $f(\sqrt{|x|})$ is integrable
 - **D**. If f is discontinuous then |f| is discontinuous
- 31. Let $\bar{f} = (1, f_2(x, y, z), f_3(x, y, z))$ be solenoidal where f_2, f_3 are scalar valued functions. Let S be the unit sphere in \mathbb{R}^3 and \hat{n} be unit outward normal. Then $\int_{S} x\bar{f}.\hat{n}dS =$
 - \mathbf{A} . 0
 - \mathbf{B} . π
 - C. $4\pi/3$
 - \mathbf{D} . 4π
- 32. Let $M_3(\mathbb{R})$ be the space of all 3×3 real matrices. Let $V \subset M_3(\mathbb{R})$ be the space of symmetric matrices with trace 0. Then dimension of the quotient space $\frac{M_3(\mathbb{R})}{V}$ is
 - A. 6
 - **B**. 5
 - C. 4
 - **D**. 3
- 33. Let V be the vector space of continuous functions on [-1,1] over \mathbb{R} . Which one of the following is a subspace of V
 - **A**. $\{f \in V/f \text{ vanishes at some point in } [-1,1]\}$
 - B. $\{f \in V/f(0) = 0\}$
 - C. $\{f \in V/f(x) \neq 0 \ \forall x \in [-1, 1]\}$ D. $\{f \in V/f(-1) \neq f(1)\}$

- 34. Let $M_2(\mathbb{R})$ be the space of all 2×2 real matrices, I be the identity matrix in $M_2(\mathbb{R})$. Pick up the correct statement
 - **A.** \exists two different matrices $A, B \in M_2(\mathbb{R})$ such that AB + BA = I
 - **B.** \exists two different matrices $A, B \in M_2(\mathbb{R})$ such that AB BA = I
 - C. \exists a singular matrix $A \in M_2(\mathbb{R})$ such that $A^2 + I = 0$
 - **D.** $\exists A \in M_2(\mathbb{R})$ such that $A^3 \neq 0$ but $A^4 = 0$
- 35. Let $G = \{1, -1, i, -i\}$ be the group under multiplication. Which of the following statements is true
 - A. identity map is the only homomorphism from G to G
 - **B.** the map $z \to \bar{z}$ is a homomorphism from G to G
 - C. the map $z \to z^2$ is not a homomorphism from G to G
 - D. none of the above
- 36. Each element of a 2×2 matrix A is selected randomly from the set $\{-1,1\}$ with equal probability. The probability that A is singular is
 - A. 1/8
 - **B**. 2/8
 - C. 3/8
 - D. 4/8
- 37. General solution of $\frac{d^4y}{dx^4} + y = 0$ is
 - **A**. $C_1e^x C_2e^{-x} + C_3\cos x C_4\sin x$
 - **B**. $C_1 e^x + C_2 x e^{-x} + C_3 \cos x + C_4 \sin x$
 - C. $C_1 e^x C_2 e^{-x} + C_3 \cosh x C_4 \sinh x$
 - **D**. $C_1 x e^x C_2 e^{-x} + C_3 \cos x C_4 \sin x$

- 38. Let A_n and B_n , $n \in \mathbb{N}$ be non empty subsets of \mathbb{R} such that $A_1 \supseteq A_2 \supseteq$ $A_3 \supseteq \ldots$ and $B_1 \subseteq B_2 \subseteq B_3 \subseteq \ldots$ Let the cardinality of A_n be a_n and the cardinality of B_n be b_n . Then the cardinality of
 - A. $\bigcap_{\substack{n=1\\ \infty}}^{\infty} A_n \text{ is } \lim_{n \to \infty} a_n$ B. $\bigcap_{\substack{n=1\\ \infty}}^{\infty} A_n \text{ is } \min_n a_n$ C. $\bigcup_{\substack{n=1\\ \infty}}^{\infty} B_n \text{ is } \lim_{n \to \infty} b_n$ D. $\bigcup_{n=1}^{\infty} B_n \text{ is } \max_n b_n$
- 39. The area bounded on the right by x + y = 2, on the left by $y = x^2$ and below by x-axis is
 - **A**. 23/6
 - **B**. 5/6
 - **C**. 17/20
 - \mathbf{D} . 0
- 40. The distance of the point (3, -4, 5) from the plane 2x + 4y + 6z + 6 = 0measured along a line with direction ratios 2,1,3 is
 - $\mathbf{A}. \sqrt{14}$
 - **B**. $\sqrt{24}$
 - **C**. $\sqrt{30}$
 - **D**. $\sqrt{94}$
- 41. Consider the statements:
 - S_1) In the set of 2×2 real matrices $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ is similar to a diagonal matrix
 - S_2) If M is a 2×2 real matrix and $M^n = I$ for some $n \in \mathbb{N}$ then M = I
 - **A**. Both S_1 and S_2 are true
 - **B**. S_1 is true but S_2 is false
 - $C. S_2$ is true but S_1 is false
 - **D**. Both S_1 and S_2 are false

- 42. Let f(x) = (x-2)(x-4)(x-6) + 2 then f has
 - A. all real roots are between 0 and 6
 - **B.** a real root between 0 and 1
 - C. a real root between 6 and 7
 - D. exactly two roots between 0 and 6
- 43. For a fixed $y \in [0, 1]$, the value of $\int_0^1 [x+y]dx$ is (where for a real number t, [t] is the greatest integer less than or equal to t)
 - \mathbf{A} . 0

 - **B**. $\frac{1}{2}$ **C**. $\frac{1}{2} + y$
- 44. Let V be the vector space of all 2×3 real matrices and W be vector space of all 2×2 real matrices. Then
 - **A.** there is a one-one linear transformation from $V \to W$.
 - **B.** kernel of any linear transformation from $V \to W$ is nontrivial.
 - C. there is an onto linear transformation from $W \to V$.
 - **D.** there is an isomorphism from $V \to W$.
- 45. Let A be a 2×2 real matrix. Which of the following statements is true?
 - **A**. All the entries of A^2 are non-negative.
 - B. The determinant of A^2 is non-negative.
 - C. the trace of A^2 is non-negative.
 - **D**. all the eigenvalues of A^2 are non-negative.
- 46. Let $f, g: \mathbb{R} \to \mathbb{R}$ be two differentiable functions. Suppose that f'(x) > g'(x) > 0 for x > 0. Then
 - **A**. $f(x) \ge g(x)$ for all x > 0
 - **B**. $f(x) \leq g(x)$ for all x > 0
 - C. $f(x) f(0) \ge g(x) g(0)$ for all x > 0
 - **D**. $f(x) f(0) \ge g(x) g(0)$ for all x.

- 47. Let $f: \mathbb{R} \to \mathbb{R}$ be given by $f(x) = |x| \sin(x)$. Then
 - **A**. f is differentiable at 0 and f'(0) = 0.
 - **B.** f is differentiable at 0 and f'(0) = 1.
 - \mathbf{C} . f is continuous at 0, but not differentiable at 0.
 - **D**. f is not continuous at 0, but differentiable at 0.
- 48. Consider the group $\mathbb{Z}_p \times \mathbb{Z}_p$ under addition. The number of cyclic subgroups of order p is
 - **A**. 1
 - **B**. p 1
 - **C**. p + 1
 - **D**. $p^2 1$
- 49. Let R be a ring with unity. Then
 - A. The set of all nonzero elements in R forms a group under multiplication
 - **B**. The set of all nonzero invertible elements in R forms a group under multiplication
 - C. The set of all non zero divisors in R forms a group under multiplication
 - **D**. none of the above
- 50. Let $A, B \subset \mathbb{R}$ and $C = \{a+b/a \in A, b \in B\}$. Then the false statement in the following is:
 - **A**. If A, B are bounded sets, then C is a bounded set
 - **B**. If C is a bounded set, then A, B are bounded sets
 - C. If $\mathbb{R} A$, $\mathbb{R} B$ are bounded sets, then $\mathbb{R} C$ is a bounded set
 - **D**. If $\mathbb{R} C$ is a bounded set, then $\mathbb{R} A$, $\mathbb{R} B$ are bounded sets