SUBJECT: CHEMISTRY	DAY-2		
SESSION : AFTERNOON	TIME: 02.30 P.M. TO 03.50 P.M.		

MAXIMUM MARKS	TOTAL DURATION	MAXIMUM TIME FOR ANSWERING		
60	80 MINUTES	70 MINUTES		

MENTION YOUR	QUESTION BOOKLET DETAILS			
CET NUMBER	VERSION CODE	SERIAL NUMBER		
	A - 1	729873		

DOs:

- 1. Check whether the CET No. has been entered and shaded in the respective circles on the OMR answer sheet.
- 2. This Question Booklet is issued to you by the invigilator after the 2nd Bell i.e., after 2.30 p.m.
- 3. The Serial Number of this question booklet should be entered on the OMR answer sheet.
- 4. The Version Code of this question booklet should be entered on the OMR answer sheet and the respective circles should also be shaded completely.
- 5. Compulsorily sign at the bottom portion of the OMR answer sheet in the space provided.

DON'TS:

- 1. THE TIMING AND MARKS PRINTED ON THE OMR ANSWER SHEET SHOULD NOT BE DAMAGED/MUTILATED/SPOILED.
- 2. The 3rd Bell rings at 2.40 p.m., till then;
 - Do not remove the paper seal present on the right hand side of this question booklet.
 - Do not look inside this question booklet.
 - Do not start answering on the OMR answer sheet.

IMPORTANT INSTRUCTIONS TO CANDIDATES

- 1. This question booklet contains 60 questions and each question will have one statement and four distracters. (Four different options / choices.)
- 2. After the 3rd Bell is rung at 2.40 p.m., remove the paper seal on the right hand side of this question booklet and check that this booklet does not have any unprinted or torn or missing pages or items etc., if so, get it replaced by a complete test booklet. Read each item and start answering on the OMR answer sheet.
- 3. During the subsequent 70 minutes:
 - · Read each question carefully.
 - Choose the correct answer from out of the four available distracters (options / choices) given under each question / statement.
 - Completely darken / shade the relevant circle with a BLUE OR BLACK INK BALL POINT PEN
 against the question number on the OMR answer sheet.

Correct Method of shading the circle on the OMR answer sheet is as shown below:

- 4. Please note that even a minute unintended ink dot on the OMR answer sheet will also be recognised and recorded by the scanner. Therefore, avoid multiple markings of any kind on the OMR answer sheet.
- 5. Use the space provided on each page of the question booklet for Rough Work. Do not use the OMR answer sheet for the same.
- 6. After the **last bell is rung at 3.50 p.m.**, stop writing on the OMR answer sheet and affix your LEFT HAND THUMB IMPRESSION on the OMR answer sheet as per the instructions.
- 7. Hand over the **OMR ANSWER SHEET** to the room invigilator as it is.
- 8. After separating the top sheet (Our Copy), the invigilator will return the bottom sheet replica (Candidate's copy) to you to carry home for self-evaluation.
- 9. Preserve the replica of the OMR answer sheet for a minimum period of ONE year.

Turn Over

1. The unit cell with crystallographic dimensions, $a \neq b \neq c$, $\alpha = \gamma = 90$ and $\beta \neq 90$ is

(1) Triclinic

(2) Monoclinic

(3) Orthorhombic

(4) Tetragonal

2. While charging the lead storage battery,

- (1) PbSO₄ on anode is reduced to Pb
- (2) PbSO₄ on cathode is reduced to Pb
- (3) PbSO₄ on cathode is oxidized to Pb
- (4) PbSO₄ on anode is oxidized to PbO₂

3. Adenosine is an example of

(1) Nucleotide

(2) Purine base

(3) Pyrimidine base

(4) Nucleoside

4. Orlon has monomeric unit

(1) Acrolein

(2) Glycol

(3) Vinyl cyanide

(4) Isoprene

5. The two electrons have the following set of quantum numbers :

$$P = 3, 2, -2, +\frac{1}{2}$$

$$Q = 3, 0, 0, +\frac{1}{2}$$

Which of the following statement is true?

- (1) P and Q have same energy
- (2) P has greater energy than Q
- (3) P has lesser energy than Q
- (4) P and Q represent same electron

6. H_2O_2 cannot oxidise

(1) PbS

(2) Na₂SO₃

(3) O_3

(4) KI

7. In the given set of reactions,

2-Bromopropane
$$\xrightarrow{\text{AgCN}} X \xrightarrow{\text{LiA/H}_4} Y$$

the IUPAC name of product 'Y' is

- (1) N-Methylpropanamine
- (2) N-Isopropylmethanamine

(3) Butan-2-amine

(4) N-Methylpropan-2-amine

8. On heating with concentrated NaOH solution in an inert atmosphere of CO₂, white phosphorous gives a gas. Which of the following statement is <u>incorrect</u> about the gas?

- (1) It is less basic than NH₃.
- (2) It is more basic than NH₃.
- (3) It is highly poisonous and has smell like rotten fish.
- (4) It's solution in water decomposes in the presence of light.

9. Sodium metal crystallizes in B.C.C. lattice with edge length of 4.29 Å. The radius of sodium atom is

(1) 2.857 Å

(2) 1.601 Å

(3) 2.145 Å

(4) 1.857 Å

14.	(1) (2) (3) (4)	Copper has more affinity for or Iron has less affinity for oxyge Copper has less affinity for oxyge Sulphur has less affinity for ox Sulphur has less affinity for ox MA ₃ B – Square planar MABCD – Square planar	xygen than n than Sul ygen than ygen at hi	Sulphur at high temperature. phur at high temperature. Sulphur at high temperature. gh temperature.
	(1) (2) (3) (4) Which of	Copper has more affinity for or Iron has less affinity for oxyge Copper has less affinity for oxyguphur has less affinity for oxyge Sulphur has less affinity for oxyge the following will be able to she	xygen than n than Sul ygen than ygen at his	Sulphur at high temperature. phur at high temperature. Sulphur at high temperature. gh temperature. crical isomerism?
	(1) (2) (3) (4)	Copper has more affinity for or Iron has less affinity for oxyge Copper has less affinity for oxyguphur has less affinity for oxygen	xygen than n than Sul ygen than ygen at hi	Sulphur at high temperature. phur at high temperature. Sulphur at high temperature. gh temperature.
13.	(1) (2) (3)	Copper has more affinity for order of the less affinity for oxyge Copper has less affi	xygen than n than Sul	Sulphur at high temperature. Sulphur at high temperature. Sulphur at high temperature.
13.	(1) (2) (3)	Copper has more affinity for order of the less affinity for oxyge Copper has less affi	xygen than n than Sul	Sulphur at high temperature. Sulphur at high temperature. Sulphur at high temperature.
13.	(1) (2)	Copper has more affinity for our Iron has less affinity for oxyge	xygen than n than Sul	Sulphur at high temperature. phur at high temperature.
13.	(1)	Copper has more affinity for o	xygen than	Sulphur at high temperature.
13.				
13.	is based of	on the principle that		, in a possession converter. The method
13.	Copper is	s extracted from Copper pyrites	by heating	in a Ressemer converter. The method
	(3)	Na ₂ SO ₄	(4)	Na ₃ PO ₄
	(1)	NaCl	(2)	Na ₂ S
12.	The elect	rolyte having maximum floccula	tion value	for AgI/Ag ⁺ sol. is
	(3)	30 min	(4)	15 min
	(1)	3 hr	(2)	20 min
11.		order reaction, the concentrations it half completed?	of the rea	actant is reduced to 12.5% in one hour.
	(3)	0.01 M glucose solution	(4)	0.1 M glucose solution
		0.06% glucose solution	(2)	0.6% glucose solution
	(1)		(3)	0 (0/ -11

- 15. The electronic configuration of Gd²⁺ is (at. no. of Gd is 64)
 - (1) [Xe] $4f^8$

(2) [Xe] $4f^7$

(3) [Xe] $4f^7 5d^1 6s^2$

- (4) [Xe] $4f^7 5d^{1}$
- 16. $MSO_4 \xrightarrow{NH_4OH} \downarrow X_{white} \xrightarrow{NH_4OH} Y \xrightarrow{H_2S} \downarrow Z$

Here M and Z are

(1) Cu, ZnS

(2) Zn, ZnS

Fe, FeS (3)

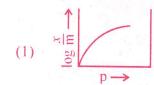
- (4) Al, Al_2S_3
- 17. The hydrolysis of optically active 2-bromobutane with aqueous NaOH result in the formation of
 - (1) (+) butan-2-ol

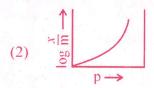
(-) butan-2-ol

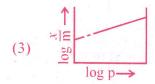
(3) (±) butan-1-ol

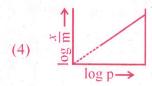
- (4) (\pm) butan-2-ol
- 18. The distinguishing test between methanoic acid and ethanoic acid is
 - Litmus test (1)

Tollen's test


Esterification test (3)


- (4) Sodium bicarbonate test
- 19. In $H_2 O_2$ fuel cell the reaction occurring at cathode is


 - $(1) \quad 2H_{2(g)} + O_{2(g)} \longrightarrow 2H_2O_{(l)} \qquad (2) \quad O_{2(g)} + 2H_2O_{(l)} + 4e^- \longrightarrow 4\overline{O}H_{(aq)}$


 - (3) $H^+ + e^- \longrightarrow \frac{1}{2} H_2$ (4) $H^+_{(aq)} + \overline{O}H_{(aq)} \longrightarrow H_2O_{(l)}$

20. Which of the following curve is in accordance with Freundlich adsorption isotherm?

21. How many ions per molecule are produced in the solution when Mohr salt is dissolved in excess of water?

(1) 4

(2) 5

(3) 6

(4) 10

22. Glycogen is

- (1) a polymer of β -D-glucose units
- (2) a structural polysaccharide
- (3) structurally very much similar to amylopectin
- (4) structurally similar to amylopectin but extensively branched

23. Number of possible alkynes with formula C_5H_8 is

(1) 2

(2) 3

(3) 4

(4) 5

- 24. Which of the following aqueous solution has the highest freezing point?
 - (1) 0.1 M Sucrose

(2) 0.01 M NaCl

(3) 0.1 M NaCl

- (4) 0.01 M Na₂SO₄
- 25. Half life period of a first order reaction is 10 min. Starting with initial concentration 12 M, the rate after 20 min is
 - (1) $0.0693 \text{ M min}^{-1}$

(2) $0.693 \times 3 \text{ M min}^{-1}$

(3) $0.0693 \times 3 \text{ M min}^{-1}$

- (4) $0.0693 \times 4 \text{ M min}^{-1}$
- 26. The salt which responds to dilute and concentrated H₂SO₄ is
 - (1) CaF₂

(2) $Ba(NO_3)_2$

(3) Na₂SO₄

- (4) Na₃PO₄
- 27. On heating potassium permanganate, one of the following compound is not obtained:
 - (1) O_2

(2) MnO

(3) MnO₂

(4) K_2MnO_4

28.
$$\longrightarrow$$
 Br + Mg dry ether \rightarrow A $\xrightarrow{\text{H}_2\text{O}}$ B.

The product 'B' is

(1) OH

(2) MgBr

 $(3) \qquad \bigcirc$

(4) O OH

29.	The form	nation o	f cyanol	nydrin fr	om a keto	ne is an e	xample of
	(1)			substitut		(2)	Nucleophilic addition
	(3) Electrophilic addition					(4)	Electrophilic substitution
30.	One of t	he follow	wing is a	in essent	ial amino	acid.	
	(1)	Tyros	sine			(2)	Cysteine
	(3)	Isoleu	icine			(4)	Serine
1.	The oau	ooug goly	ution of	C-11	1, 111		
1.				Ionowin	ig sait will		lowest pH:
	(1)	NaC/	3			(2)	NaClO
	(3)	NaC/	O_2			(4)	NaC/O ₄
2.	For one	of the	element	various	successiv	e ionizati	on enthelpios (in IrI mal-1)
2.	For one below:	of the e	element 2 nd	various 3 rd	successive 4 th	e ionizati	on enthalpies (in kJ mol ⁻¹) are given
2.	below:	3	_ w ^a			V 100 100 100 100 100 100 100 100 100 10	
2.	below:	1 st 577.5	2 nd	3 rd	4 th	5 th	
2.	I.E.	1 st 577.5	2 nd	3 rd	4 th	5 th	
2.	I.E.	1 st 577.5	2 nd	3 rd	4 th	5 th 14,820	
33.	The elem (1) (3) 0.30 g of	1 st 577.5 nent is Si Al f an orga 0.18 g	2 nd 1810	3 rd 2750	4 th 11,580	5 th 14,820 (2) (4) C, H and	P
	The elem (1) (3) 0.30 g of CO ₂ and	1 st 577.5 nent is Si Al f an orga 0.18 g	2 nd 1810 anic con H ₂ O. If	3 rd 2750	4 th 11,580	5 th 14,820 (2) (4) C, H and	P Mg d Oxygen on combustion yields 0.44 g ghs 60, then molecular formula of the

34.	One of the	e following amide w	vill not undergo Ho	ffma	nnn bromamide reaction:
	(1)	CH ₃ CONH ₂			
	(2)	CH ₃ CONHCH ₃			
	(3)	C ₆ H ₅ CONH ₂			
	(4)	CH ₃ CH ₂ CONH ₂			
35.	Cheilosis	and digestive disord	lers are due to the	defic	iency of
	(1)	Thiamine		2)	Ascorbic acid
	(3)	Riboflavin		(4)	Pyridoxine
36.	How mar		ctricity are required	d for	the oxidation of one mol of water to
	(1)	$9.65 \times 10^4 \text{ C}$		(2)	$1.93 \times 10^4 \mathrm{C}$
	(3)	$1.93 \times 10^5 \text{ C}$		(4)	$19.3 \times 10^5 \mathrm{C}$
37.		Aug Maria Para Fili			³ of 2 M CH ₃ OH to form an ester. The
	change in	the initial rate if each	ch solution is dilute	ed w	ith equal volume of water would be
	(1)	2 times		(2)	4 times
	(3)	0.5 times		(4)	0.25 times

38.	Which of the	efollowing	colloids	cannot be easily	coagulated?

- Lyophobic colloids (1)
- Multimolecular colloids (2)
- Macromolecular colloids (3)
- Irreversible colloids (4)

39. The complex ion having minimum magnitude of $\Delta_0(CFSE)$ is

- (1) $[Cr(CN)_6]^{3-}$ (2) $[Co(NH_3)_6]^{3+}$
- (3) $[\text{Co(C}l)_6]^{3-}$ (4) $[\text{Cr(H}_2\text{O})_6]^{3+}$

The arrangement of following compounds:

- bromomethane
- ii. bromoform
- chloromethane
- iv. dibromomethane

In the increasing order of their boiling point is

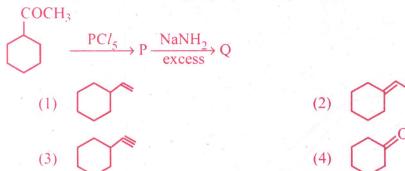
(1) iii < i < iv < ii

(2) iv < iii < i < ii

ii < iii < i < iv(3)

i < ii < iii < iv(4)

41. Iodoform can be prepared from all, except


propan-2-ol (1)

butan-2-one (2)

propan-1-ol (3)

acetophenone (4)

42. Identify 'Q' in the following sequence of reactions:

- **43.** Cryolite is
 - (1) Na₃A/F₆ and is used in the electrolysis of alumina for decreasing electrical conductivity.
 - (2) Na₃A/F₆ and is used in the electrolysis of alumina for lowering the melting point of alumina only.
 - (3) Na₃A/F₆ and is used in the electrolysis of alumina for lowering the melting point and increasing the conductivity of alumina.
 - (4) Na₃A/F₆ and is used in the electrolytic refining of alumina.

44. Which of the following compound of Xenon has pyramidal geometry?

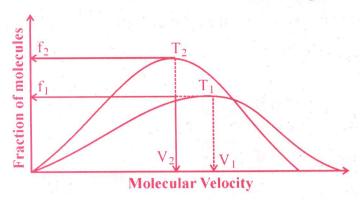
(1) XeOF₄

(2) XeF₂

(3) XeO₃

(4) XeF₄

45. After adding non-volatile solute freezing point of water decreases to -0.186 °C. Calculate ΔT_b if $K_f = 1.86$ K kg mol⁻¹ and $K_b = 0.521$ K kg mol⁻¹


(1) 0.521

(2) 0.0521

(3) 1.86

(4) 0.0186

46. Plot of Maxwell's distribution of velocities is given below:

Which of the following is correct about this plot?

 $(1) \quad T_1 \le T_2$

(2) $f_1 > f_2$

 $(3) T_1 > T_2$

- $(4) V_1 < V_2$
- 47. The pair of compound which cannot exist together in solution is
 - (1) NaHCO₃ and NaOH
 - (2) NaHCO₃ and H₂O
 - (3) NaHCO₃ and Na₂CO₃
 - (4) Na₂CO₃ and NaOH
- 48. What amount of dioxygen (in gram) contains 1.8×10^{22} molecules?
 - (1) 0.0960

(2) 0.960

(3) 9.60

(4) 96.0

- **49.** Using MOT, compare O_2^+ and O_2^- species and choose the incorrect option.
 - (1) O_2^+ have higher bond order than O_2^- .
 - (2) O_2 is less stable.
 - (3) O_2^+ is diamagnetic while O_2^- is paramagnetic.
 - (4) Both O_2^+ and O_2^- are paramagnetic.
- **50.** Which of the following is not true?
 - (1) Erythromycin is a bacteriostatic antibiotic.
 - (2) Ampicillin is not a natural antibiotic.
 - (3) Prontosil is not converted into sulphanilamide in the body.
 - (4) Vancomycin is a broad spectrum antibiotic.
- 51. In the reaction

$$S + \frac{3}{2}O_2 \longrightarrow SO_3 + 2x \text{ kJ and } SO_2 + \frac{1}{2}O_2 \longrightarrow SO_3 + y \text{ kJ}$$

heat of formation of SO₂ is

$$(1)$$
 $x + y$

(2)
$$x - y$$

(3)
$$2x - y$$

$$(4) \quad 2x + y$$

- **52.** Arrange the following compounds in the increasing order of their acidic strength:
 - i. m-nitrophenol
- ii. m-cresol

iii. phenol

- iv. m-chlorophenol
- $(1) \quad iii \le ii \le i \le iv$

 $(2) \quad ii \le iv \le iii \le i$

 $(3) \quad ii < iii < iv < i$

 $(4) \quad ii < iii < i < iv$

53. In the sequence of following reactions:

$$P \xrightarrow{\text{(1) Br}_2} Q \xrightarrow{\text{(2) NaNO}_2/HC} Q \xrightarrow{\text{(2) H}_2O/H_3PO} R \xrightarrow{\text{KMnO}_4} \overline{OH}$$

the starting compound 'P' is

(1) o-nitro toluene

(2) m-nitro toluene

(3) o-bromo toluene

- (4) p-nitro toluene
- **54.** Acetic acid is treated with Ca(OH)₂ and the product so obtained is subjected to dry distillation. The final product is
 - (1) ethanal

(2) propanal

(3) propanone

(4) ethanol

- 55. The correct statement is
 - (1) BF₃ is the strongest Lewis acid among the other boron halides.
 - (2) BI₃ is the weakest Lewis acid among the boron halides.
 - (3) There is maximum $p\pi p\pi$ back bonding in BF₃.
 - (4) There is minimum $p\pi p\pi$ back bonding in BF₃.
- **56.** Which of the following compound possesses the "C H" bond with the lowest bond dissociation energy?
 - (1) Toluene

(2) Benzene

(3) n-pentane

(4) 2, 2-dimethyl propane

57.	In presence of HCl, H ₂ S results the precipitation	of Group-2	elements	but not	Gp-4
	elements during qualitative analysis. It is due to				
~					

(1) higher concentration of S^{2-}

(2) higher concentration of H⁺

(3) lower concentration of S^{2-}

(4) lower concentration of H⁺

58. One of the following conversion results in the change of hybridization and geometry:

(1) CH_4 to C_2H_6

(2) NH_3 to NH_4

(3) BF_3 to $B\overline{F}_4$

(4) H_2O to H_3O

59. Water softening by Clark's process uses

(1) CaHCO₃

(2) NaHCO₃

(3) Na₂CO₃

(4) $Ca(OH)_2$

60. An alkali metal hydride (NaH) reacts with diborane in 'A' to give a tetrahedral compound 'B' which is extensively used as reducing agent in organic synthesis. The compounds 'A' and 'B' respectively are

(1) C_2H_6 and C_2H_5Na

(2) CH_3COCH_3 and $B_3N_3H_6$

(3) C_6H_6 and $NaBH_4$

(4) $(C_2H_5)_2O$ and NaBH₄

