Reg. No.:....

D 2095

Q.P. Code: [D 07 PMA 06]

(For the candidates admitted from 2007 onwards)

M.Sc. DEGREE EXAMINATION, MAY 2013.

Second Year

Mathematics

MECHANICS

Time: Three hours

Maximum: 100 marks

Answer any FIVE questions.

All questions carry equal marks.

- 1. (a) Define velocity-dependent potential and Rayleigh's dissipation function.
 - (b) Derive the Lagrange's equation interms of dissipation function.
- (a) Derive the Hamilton's principle for a non-holonomic system.
 - (b) Discuss the motion of a hoop rolling down an inclined plane, without slipping.

- (a) Derive the Lagrange's equations from Hamilton's principle.
 - (b) State Brachistochrome problem and obtain its solution.
- 4. (a) Derive the canonical equation of motion.
 - (b) State and prove the principle of Least Action.
- 5. (a) Show that the transformation $Q = \log\left(\frac{1}{q}\sin p\right), \ P = q\cot p \text{ is canonical.}$
 - (b) Show that the transformation for a system of one degree of freedom

$$Q = q \cot \alpha - p \sin \alpha$$

$$P = q \sin \alpha + p \cos \alpha$$

satisfies the sympletic condition for any value of the parameter α . Find a generating function for the transformation.

- 6. (a) For a one dimensional system with the Hamiltonian $H = \frac{p^2}{2} \frac{1}{2q^2}$ show that there is a constant of the motion $D = \frac{pq}{2} Ht$.
 - (b) For the point transformation in a system of two degrees of freedom Q₁ = q₁², Q₂ = q₁ + q₂ find the most general transformation equation for P₁ and P₂ consistent with the overall transformation being canonical.

D 2095

- (a) Solve the Harmonic oscillation problem in one-dimension using the Hamilton-Jacobi's method.
 - (b) Explain the notion of separation of variables in the Hamilton-Jacobi equation.
- (a) Derive the Hamilton-Jacobi equation for Hamilton's characteristic function.
 - (b) Show that the function

$$S = \frac{mw}{2}(q^2 + \alpha^2)\cot wt - mwq\alpha \csc wt$$

is a solution of the Hamilton-Jacobi equation for Hamilton's principal function for the linear harmonic oscillator with $H = \frac{1}{2m}(p^2 + m^2w^2q^2)$. Show also that this function generates a correct solution to the

motion of the harmonic oscillator in time.

D 2096

Q.P. Code: [D 07 PMA 07]

(For the candidates admitted from 2007 onwards)
M.Sc. DEGREE EXAMINATION, MAY 2013.

Second Year

Mathematics

OPERATIONS RESEARCH

Time: Three hours Maximum: 100 marks

Answer any FIVE questions.

Each question carries 20 marks.

 $(5 \times 20 = 100)$

1. (a) Solve by simplex method the following Minimize $z = x_1 + 3x_2 + 3x_3$

Subject to
$$3x_1 - x_2 + 2x_3 \le 7$$

 $2x_1 - 4x_2 \ge -12$
 $-4x_1 + 3x_2 + 8x_3 \le 10$

 $x_1, x_2, x_3 \ge 0.$

(b) Solve the following LPP by artifical variable technique

Minimize $z = 4x_1 + 3x_2$

Subject to $2x_1 + x_2 \ge 10$

$$-3x_1+2x_2 \le 6$$

$$x_1 + x_2 \ge 6$$

$$x_1, x_2 \ge 0.$$

Using dual simplex method solve the LPP 2. (a)

Minimize
$$z = 2x_1 + x_2$$

Subject to
$$3x_1 + x_2 \ge 3$$

 $4x_1 + 3x_2 \ge 6$
 $x_1 + 2x_2 \ge 3$
 $x_1, x_2 \le 0$.

Solve the transportation problem (b)

	. 1	2	3	4	Supply
1	21	16	25	13	11
п	17	18	14	23	13
Ш	32	27	18	41	19
emand	6	10	12	15	

D

Solve the following assignment problem 3. (a)

	I	11	Ш	IV	V
1	11	17	8	16	20
2	9	7	12	6	15
3	13	16	15	12	16
4	21	24	17	28	26
5	14	10	12	11	13

Prove that the dual of the dual is the primal. (b)

4. (a) A project schedule has the following characteristics:

Activity: 1-2 1-3 2-4 3-4 3-5 4-9 5-6

Time: (weeks) 4 1 1 1 6 5 4

Activity: 5-7 6-8 7-8 8-10 9-10

Time: (weeks) 8 1 2 5 7

Draw the network and find the optimum critical path.

(b) A project consists of the following activities and three estimates

Activity	Least time (days)	Greatest time (days)	Most likely time (days)
1-2	3	15	6
2-3	2	14	5
1-4	6	30	12
2-5	2	8	5
2-6	5	17	11
3–6	3 .	. 15	. 6
4-7	3	27	. 9
5-7	1	7	4
6-7	2	8	5

- (i) Draw the network
- (ii) What is the probability that the project will be completed in 27 days.

- (a) Explain in detail the basic differences between PERT and CPM.
 - (b) Explain about maximal flow model.
- 6. (a) Use revised simplex method to solve the LPP

 Maximize $z = x_1 + x_2$ Subject to $3x_1 + 2x_2 \le 6$ $x_1 + 4x_2 \le 4$ $x_1, x_2 \ge 0$.
 - (b) Explain about the matrix method of defining the dual problem.
- 7. (a) Using simulation find the value of π .
 - (b) Consider the following Markov chain with two states $P = \begin{pmatrix} 0.2 & 0.8 \\ 0.6 & 0.4 \end{pmatrix}$ with $a^{(0)} = (0.7, 0.3)$. Determine $a^{(1)}, a^{(4)}$ and $a^{(8)}$.
- (a) State the limitations and applications of simulation.
 - (b) Illustrate the use of Monto Carlo method for determining the value of I when $I = \int_{2}^{5} x^{3} dx$.

D 2097

Q.P. Code : [D 07 PMA 08]

(For the candidates admitted from 2007 onwards)

M.Sc. DEGREE EXAMINATION, MAY 2013.

Second Year

Mathematics

TOPOLOGY

Time: Three hours

Maximum: 100 marks

Answer any FIVE questions.

Each questions carries 20 marks.

- (a) Let X be a set, let B be a basis for a topology I on X. Then prove that I equals the collection of all unions of elements of B.
 - (b) Let Y be a subspace of X, let A be a subset of Y, let A denote the closure of A in X. Then prove that the closure of A in Y equals A ∩ Y.

- (a) Prove that the image of a connected space under a continuous map is connected.
 - (b) State and prove the intermediate value theorem.
- (a) Prove that every compact Hausdorff space is normal.
 - (b) State and prove the urysohn lemma.
- (a) Prove that a subspace of a completely regular space is completely regular and product of completely regular spaces is completely regular.
 - (b) Prove that a metric space X is complete if every cauchy sequence in X has a convergent subsequence.
- 5. (a) Prove that the map $\hat{\alpha}$ is a group isomorphism.
 - (b) If $x \circ \in S^{n-1}$ then prove that the inclusion $j: (S^{n-1}, x \circ) \to (R^n \circ, x_\circ)$ induces an isomorphism of fundamental groups.
- (a) State and prove the maximum and minimum value theorem.
 - (b) State and prove the Lebesgue number lemma.

- 7. (a) If J is uncountable then prove that the product space R^J is not normal.
 - (b) State and prove the Urysohn metrization theorem.
- 8. State and prove the Ascoli's theorem.

D 2098

Q.P. Code: [D 07 PMA 09]

(For the candidates admitted from 2007 onwards)

M.Sc. DEGREE EXAMINATION, MAY 2013.

Second Year

Mathematics

COMPUTER PROGRAMMING (C++ THEORY)

Time: Three hours

Maximum: 100 marks

Answer any FIVE questions.

All questions carry equal marks.

- (a) What are the advantages of object oriented programming?
 - (b) List out the difference between conventional programming and object oriented programming.
- 2. (a) Explain Enumerated data type.
 - (b) Explain the Nested If Statement with suitable example.
- (a) How are the operators classified?
 - (b) Explain scope resolution operator with suitable example.

- 4. (a) What are punctuators and explain their purpose?
 - (b) Write a program to pick out the Largest among three numbers.
- 5. (a) What are header file? How it can be used in C++?
 - (b) Write a program to find the given number is odd or even.
- 6. (a) Write a program using function to find X! / F!
 - (b) Write a short notes on math Library function.
- (a) Write a program to check whethere the two given matrix are equal or not.
 - (b) What is a constructor? Explain the role of constructors.
- 8. (a) List out the rules for overloading operators.
 - (b) Explain single and multiple inheritance with example.

D 2099

Q.P. Code: [D 07 PMA 10]

(For the candidates admitted from 2007 onwards)

M.Sc. DEGREE EXAMINATION, MAY 2013.

Second Year

Mathematics

FUNCTIONAL ANALYSIS

Time: Three hours Maximum: 100 marks

Answer any FIVE questions.

All questions carry equal marks.

- (a) State and prove Uniform Boundedness Theorem.
 - (b) State and prove Banach-Steinhaus theorem.
- 2. (a) State and prove the Schwarz inequality.
 - (b) State and prove the Bessel's inequality.

- (a) If P is a projection on H with range M and null space N then prove that M ⊥ N ⇔ P is self-adjoint and in this case N = M[⊥].
 - (b) If T is normal then prove that Mi's span H.
- 4. (a) Prove that $\sigma(x)$ is non-empty.
 - (b) Prove that $r(x) = \lim ||x^n||^{1/n}$.
- (a) Prove that the maximal ideal space m is a compact Hausdorff space.
 - (b) State and prove the Banach-Stone Theorem.
- (a) If N is a normed linear space then prove that the closed with sphere S* in N* is a compact Hausdorff space in the weak* topology.
 - (b) If P is a projection on a Banach space B and if M and N are its range and null space then prove that M and N are closed linear subspaces of B such that $B = M \oplus N$.

- 7. (a) Let M be a closed linear sub space of a Hilbert space H, let x be a vector not in M and let d be the distance from x to M. Then prove that there exists a unique vector y₀ in M such that || x y₀ ||= d.
 - (b) If M is a closed linear subspace of a Hilbert space H, then prove that $H = M \oplus M^{\perp}$.
- (a) If P is the projection on a closed linear subspace M of H then prove that M reduces an operator T iff TP = PT.
 - (b) Prove that two matrices in An are similar iff they are the matrices of a single operator on H relative to different bases.