ELECTRONICS & COMMUNICATION ENGINEERING

ONE MARK QUESTIONS

1. The Voltage e_0 in the figure is

- (a.) 2 V
- (b.) $\frac{4}{2}$ V
- (c.) 4V
- (d.)8V

2. Each branch of a Delta circuit has impedance $\sqrt{3}Z$, then each branch of the equivalent Wye circuit has impedance.

- (a.) $\frac{Z}{\sqrt{3}}$
- (b.)3Z
- (c.) $3\sqrt{3Z}$
- $(d.)\frac{Z}{3}$

3. The admittance parameter Y_{12} in the 2-port network in Figure is

- (a.) -0.2 mho
- (b.)0.1 mho
- (c.) -0.05 mho
- (d.)0.05 mho

4. MOSFET can be used as a

- (a.) current controlled capacitor
- (b.) voltage controlled capacitor
- (c.) current controlled inductor

www.parikshaguru.com

- (d.) voltage controlled inductor
- 5. The effective channel length of a MOSFET in saturation decreases with increase in
 - (a.) gate voltage
 - (b.) drain voltage
 - (c.) source voltage
 - (d.)body voltage
- 6. The current gain of a BJT is
 - (a.) $g_m r_0$
 - $(b.)\frac{g_m}{r_0}$
 - $(c.) g_m r_{\pi}$
 - $(d.)\frac{g_m}{r_{\pi}}$
- 7. The ideal OP-AMP has the following characteristics.
 - (a.) $R_i = \infty$, $A = \infty$, R = 0
 - $(b.)R_i = \infty$, $A = \infty$, $R_0 = 0$
 - $(c.) R_i = \infty, A = \infty, R_0 = \infty$
 - $(d.)R_i = 0, A = \infty, R_0 = \infty$
- 8. Consider the following two statements:

Statement 1:

A stable multivibrator can be used for generating square wave.

Statement 2:

Bistable multivibrator can be used for storing binary information.

- (a.) Only statement 1 is correct
- (b.) Only statement 2 is correct
- (c.) Both the statements 1 and 2 are correct
- (d.) Both the statements 1 and 2 are incorrect
- 9. The 2's complement representation of -17 is
 - (a.) 101110
 - (b.) 101111
 - (c.) 111110
 - (d.) 110001
- 10. For the ring oscillator shown in the figure, the propagation delay of each inverter is 100 pico sec. What is the fundamental frequency of the oscillator output?

- (a.) 10 MHz
- (b.) 100 MHz
- (c.) 1 GHz
- (d.)2 GHz
- 11. An 8085 microprocessor based system uses a 4K x 8bit RAM whose starting address is AAOO H. The address of the last byte in this RAM is
 - (a.) OFFF H
 - (b.) 1000 H
 - (c.) B9FF H

www.parikshaguru.com

(d.)BAOO H

The transfer function of a system is given by $H(s) = \frac{1}{s^2(s-2)}$. The impulse response of the system 12.

is

- (* denotes convolution, and U(t) is unit step function)
- (a.) $(t^2 * e^{-2t})U(t)$ (b.) $(t * e^{2t})U(t)$

- (c.) $(te^{-2t})U(t)$ (d.) $(te^{-2t})U(t)$
- The region of convergence of the z-transform of a unit step function is 13.
 - (a.) |z| > 1
 - (b.)|z| < 1
 - (c.) (Real part of z) > 0
 - (d.) (Real part of z) < 0
- Let $\delta(t)$ denote the delta function. The value of the integral $\int_{-\infty}^{\infty} \delta(t) \cos\left(\frac{3t}{2}\right) dt$ is 14.
 - (a.) 1
 - (b.)-1
 - (c.)0
- If a signal f(t) has energy E, the energy of the signal f(2t) is equal to 15.
 - (a.) E
 - (b.) $\frac{E}{2}$
 - (c.)2E
 - (d.)4E
- The equivalent of the block diagram in the figure is given is 16.

(a.)

(b.)

(d.)

- 17. If the characteristic equation of a closed-loop system is $s^2 + 2s + 2 = 0$, then the system is
 - (a.) overdamped
 - (b.) critically damped
 - (c.) underdamped
 - (d.) undamped
- 18. The root-locus diagram for a closed-loop feedback system is shown in the figure. The system is over damped.

- (a.) Only if $0 \le K \le 1$
- (b.) Only if 1 < K < 5
- (c.) only if K > 5
- (d.) if $0 \le K < 1$ or K > 5
- 19. The Nyquist plot for the open-loop transfer function G (s) of a unity negative feedback system is shown in the figure, if G (s) has no pole in the right-half of s-plane, the number of roots of the system characteristic equation in the right-half of s-plane is

- (a.)0
- (b.)1
- (c.)2
- (d.)3
- 20. A band limited9 signal is sampled at the Nyquist rate. The signal can be recovered by passing the samples through
 - (a.) an RC filter
 - (b.) an envelope detector
 - (c.) a PLL
 - (d.) an ideal low-pass filter with the appropriate bandwidth

- 21. The PDF of a Gaussian random variable X is given by $P_x(x) = \frac{1}{3\sqrt{2\pi}}e^{\frac{-(x-4)^2}{18}}$. The probability of the event $\{X = 4\}$ is
 - (a.) $\frac{1}{2}$
 - (b.) $\frac{1}{3\sqrt{2\pi}}$
 - (c.)0
 - (d.) $\frac{1}{4}$
- 22. A transmission line is distortionless if
 - (a.) $RL = \frac{1}{GC}$
 - (b.)RL = GC
 - (c.) LG = GC
 - (d.)RG = LC
- 23. If a plane electromagnetic wave satisfies the equation $\frac{\partial^2 E_x}{\partial z^2} = c^2 \frac{\partial^2 E_x}{\partial t^2}$, the wave propagates in the
 - (a.) x-direction
 - (b.)z-direction
 - (c.) y-direction
 - (d.)xy plane at an angle of 45° between the x and z directions
- 24. The phase velocity of waves propagating in a hollow metal waveguide is
 - (a.) greater than the velocity of light in free space
 - (b.) less than the velocity of light in free space
 - (c.) equal to the velocity of light in free space
 - (d.) equal to the group velocity
- 25. The dominant mode in a rectangular waveguide is TE_{10} , because this mode has
 - (a.) no attenuation
 - (b.)no cut-off
 - (c.) no magnetic field component
 - (d.) the highest cut-off wavelength

TWO MARKS QUESTIONS

26. The voltage e_0 in the figure is

- (a.) 48 V
- (b.)24 V
- (c.)36 V
- (d.)28 V
- 27. In the figure, the value of the load resistor R which maximizes the power delivered to it is

- (a.) 14.14 Ω
- (b.) 10Ω
- (c.) 200Ω
- (d.) 28.28 Ω
- 28. When the angular frequency ω in the figure is varied from 0 to ∞ , the locus of the current phasor I_2 is given by

(c.)

(d.)

29. The Z parameters Z_{11} and Z_{21} for the 2-port network in the figure are

(a.)
$$Z_{11} = -\frac{6}{11}\Omega$$
; $Z_{21} = \infty \frac{6}{11}\Omega$;

(b.)
$$Z_{11} = \frac{6}{11}\Omega$$
; $Z_{21} = \frac{4}{11}\Omega$;

(c.)
$$Z_{11} = \frac{6}{11}\Omega$$
; $Z_{21} = \frac{16}{11}\Omega$;

(d.)
$$Z_{11} = \frac{4}{11}\Omega$$
; $Z_{21} = \frac{4}{11}\Omega$;

30. An npn BJT has $g_m = 38$ mA/V, $C_{\pi} = 10 \times 10^{-14}$ F, and $C_{\pi} = 4 \times 10^{-13}$ F, and DC current gain $\beta_0 = 90$. For this transistor f_T and f_{β} are

(a.)
$$f_T = 1.64 \times 10^8 \text{ Hz}$$
 and $f_B = 1.47 \times 10^{10} \text{ Hz}$

(b.)
$$f_T = 1.47 \times 10^{10} \text{ Hz}$$
 and $f_\beta = 1.64 \times 10^8 \text{ Hz}$

(c.)
$$f_T = 1.33 \times 10^{12} \text{ Hz}$$
 and $f_\beta = 1.47 \times 10^{10} \text{ Hz}$

(d.)
$$f_T = 1.47 \times 10^{10} \text{ Hz}$$
 and $f_\beta = 1.33 \times 10^{12} \text{ Hz}$

31. The transistor shunt regulator shown in the figure has a regulated output voltage of 10V, when the input varies from 20V to 30V, The relevant parameters for the zener diode and the transistor are: Vz = 9.5, $V_{BE} = 0.3V$, $\beta = 99$. Neglect the current through R_B . Then the maximum power dissipated in the zener diode (P_Z) and the transistor (P_T) are

- (a.) $P_Z = 75 \text{mW}, P_T = 7.9 \text{W}$
- $(b.)P_Z = 85mW, P_T = 8.9W$
- (c.) $P_Z = 95 \text{mW}, P_T = 9.9 \text{W}$
- $(d.)P_Z = 115mW, P_T = 11.9W$
- 32. The oscillator circuit shown in the figure is

- (a.) Hartley oscillator with $f_{\text{oscillation}} = 79.6 \text{MHz}$
- (b.) Colpitts oscillator with $f_{\text{oscillation}} = 50.3 \text{ MHz}$
- (c.) Hartley oscillator with $f_{\text{oscillation}} = 159.2 \text{MHz}$
- (d.) Colpitts oscillator with $f_{\text{oscillation}} = 159.2 \text{MHz}$
- 33. The inverting OP-AMP shown in the figure has an open loop gain of 100. The closed-loop gain $\frac{v_0}{v_s}$ is

- (a.) 8
- (b.)-9
- (c.)-10
- (d.)-11
- 34. In the figure assume the OP-AMPs to be ideal. The output v_0 of the circuit is:

- (a.) $10\cos(100t)$
- (b.) $10\int_0^t \cos(100\tau) d\tau$
- (c.) $10^{-4} \int_0^t \cos(100\tau) d\tau$
- $(d.) 10^{-4} \frac{d}{dt} \cos\left(100t\right)$
- 35. In the figure, the LED

- (a.) emits light when both S_1 and S_2 are closed.
- (b.) emits light when both S_1 and S_2 are open.
- (c.) emits light when only of S_1 and S_2 is closed.
- (d.) does not emit light, irrespective of the switch positions.
- 36. In the TTL circuit in the figure, S_2 and S_0 are select lines and X_7 to X_0 are input lines. S_0 and X_0 are LSBs. The output Y is

- (a.) indeterminate
- (b.) $A \oplus B$
- (c.) $\overline{A \oplus B}$
- (d.) $\overline{C}(\overline{A \oplus B}) + C.(A \oplus B)$
- 37. The digital block in the figure is realized using two positive edge triggered D-flip-flops. Assume that for $t < t_0$, $Q_1 = Q_2 = 0$. The circuit in the digital block is given by:

(a.)

(b.)

(c.)

(d.)

38. In the DRAM cell in the figure, the V_t of the NMOSFET is 1V. For the following three combinations of WL and BL voltages.

- (a.) 5V; 3V; 7V
- (b.)4V; 3V; 4V
- (c.) 5V; 5V; 5V
- (d.)4V; 4V; 4V
- 39. The impulse response functions of four linear systems S1, S2, S3, S4 are given respectively by

$$h_1(t)=1$$
 $h_2(t)=U(t)$

$$h_3(t) = \frac{U(t)}{t+1}$$
 $h_4(t) = e^{-3t}U(t)$

Where U(t) is the unit step function. Which of these systems is time invariant, causal, and stable?

- (a.) S1
- (b.)S2
- (c.) S3
- (d.)S4

www.parikshaguru.com

40. An electrical system and its signal-flow graph representations are shown in the figure (a) and (b) respectively. The values of G_2 and H, respectively, are

Figure (b)

(a.)
$$\frac{Z_3(s)}{Z_2(s) + Z_3(s) + Z_4(s)}, \frac{-Z_3(s)}{Z_1(s) + Z_3(s)}$$

(b.)
$$\frac{-Z_3(s)}{Z_2(s)-Z_3(s)+Z_4(s)}$$
, $\frac{-Z_3(s)}{Z_1(s)+Z_3(s)}$

(c.)
$$\frac{Z_3(s)}{Z_2(s) + Z_3(s) + Z_4(s)}, \frac{Z_3(s)}{Z_1(s) + Z_3(s)}$$

(d.)
$$\frac{-Z_3(s)}{Z_2(s)-Z_3(s)+Z_4(s)}, \frac{Z_3(s)}{Z_1(s)+Z_3(s)}$$

- 41. The open-loop DC gain of a unity negative feedback system with closed-loop transfer function $\frac{s+4}{s^2+7s+13}$ is
 - (a.) $\frac{4}{13}$
 - (b.) $\frac{4}{9}$
 - (c.)4
 - (d.)13
- 42. The feedback control system in the figure is stable.

- (a.) For all $K \ge 0$
- (b.) Only $K \ge 0$
- (c.) Only if $0 \le K < 1$
- (d.) Only if $0 \le K \le 1$
- 43. A video transmission system transmits 625 picture frames per second. Each frame consists of a 400 × 400 pixel grid with 64 intensity levels per pixel. The data rate of the system is
 - (a.) 16 Mbps
 - (b.) 100 Mbps
 - (c.) 600 Mbps
 - (d.)6.4 Gbps
- 44. The Nyquist sampling interval, for the signal Sinc(700t) + Sinc(500t) is
 - (a.) $\frac{1}{350}$ sec
 - (b.) $\frac{\pi}{350}$ sec
 - (c.) $\frac{1}{700}$ sec
 - (d.) $\frac{\pi}{175}$ sec
- 45. During transmission over a communication channel, bit errors occur independently with probability p. If a block of n bits is transmitted, the probability of at most one bit error is equal to
 - (a.) $1 (1 p)^n$
 - (b.)P + (n-1)(1-p)
 - $(c.) n p(1-p)^{n-1}$
 - $(d.)(1-p)^n + np(1-p)^{n-1}$
- The PSD and the power of a signal g(t) are, respectively, $S_g(\omega)$ and P_g . The PSD and the power of the signal ag(t) are, respectively,
 - (a.) $a^2S_g(\omega)$ and a^2P_g
 - (b.) $a^2S_g(\omega)$ and aP_g
 - (c.) $aS_g(\omega)$ and a^2P_g

- (d.) $aS_g(\omega)$ and aP_g
- 47. A material has conductivity of 10^{-2} mho/m and a relative permittivity of 4. The frequency at which the conduction current in the medium is equal to the displacement current is
 - (a.) 45 MHz
 - (b.)90 MHz
 - (c.) 450 MHz
 - (d.)900 MHz
- 48. A uniform plane electromagnetic wave incident normally on a plane surface of a dielectric material is reflected with a VSWR of 3. What is the percentage of incident power that is reflected?
 - (a.) 10%
 - (b.)25%
 - (c.) 50%
 - (d.)75%
- 49. A medium wave radio transmitter operating at a wavelength of 492 m has a tower antenna of height 124m. What is the radiation resistance of the antenna?
 - (a.) 25 Ω
 - (b.) 36.5Ω
 - $(c.)50\Omega$
 - $(d.)73 \Omega$
- 50. In a uniform linear array, four isotropic radiating elements are spaced $\frac{\lambda}{4}$ apart. The progressive phase shift between the elements required for forming the main beam at 60° off the end-fire is:
 - (a.) $-\pi$ radians
 - (b.) $-\frac{\pi}{2}$ radians
 - (c.) $-\frac{\pi}{4}$ radians
 - (d.) $-\frac{\pi}{8}$ radians