ज्य गिवनावी GUJCET-E-2015

Test Booklet No.

01040

Test Booklet Code

This booklet contains 48 pages.

DO NOT open this Test Booklet until you are asked to do so.

Important Instructions:

- This test consists 120 questions of Physics, Chemistry and Biology. Each question carries 1 mark. For each correct response the candidate will get 1 mark. For each incorrect response 1/4 mark will be deducted. Maximum marks is 120.
- This Test is of 3 hours duration.
- 3) Use Black Ball Point Pen only for writing particulars on OMR Answer Sheet and marking answers by darkening the circle '...
- Rough work is to be done on the space provided for this purpose in the Test Booklet only.
- 5) On completion of the test, the candidate must handover the Answer Sheet to the Invigilator in the Room / Hall. The candidates are allowed to take away this Test Booklet with them.
- 6) The CODE for this Booklet is D. Make sure that the CODE printed on the Answer Sheet is the same as that on this booklet. In case of discrepancy, the candidate should immediately report the matter to the Invigilator for replacement of both the Test Booklet and the Answer Sheet.
- 7) The candidate should ensure that the Answer Sheet is not folded. Do not make any stray marks on the Answer Sheet.
- Do not write your Seat No. anywhere else, except in the specified space in the Test Booklet / Answer Sheet.
- Use of White fluid for correction is not permissible on the Answer Sheet.
- Each candidate must show on demand his / her Admission Card to the Invigilator.
- No candidate, without special permission of the Superintendent or Invigilator, should leave his /her seat.
- 12) Use of Manual Calculator is permissible.
- 13) The candidate should not leave the Examination Hall without handing over their Answer Sheet to the Invigilator on duty and must sign the Attendance Sheet (Patrak 01). Cases where a candidate has not signed the Attendance Sheet (Patrak 01) be deemed not to have handed over the Answer Sheet and dealt with as an unfair means case.
- 14) The candidates are governed by all Rules and Regulations of the Board with regard to their conduct in the Examination Hall. All cases of unfair means will be dealt with as per Rules and Regulations of the Board.
- No part of the Test Booklet and Answer Sheet shall be detached under any circumstances.
- 16) The candidates will write the Correct Test Booklet Code as given in the Test Booklet / Answer Sheet in the Attendance Sheet. (Patrak 01)

SEAL

GUJCET-E-2015 BOOKLET D

[2]

Ma	PH atch the following two columns	HYSI(W = V9. V = W/9 = Nm Contimb	R=V= Volt I columb Til metre Bl
	Column I	7101	Column II	Nm	kg x m
a)	Electrical resistance	p)	ML ³ T ⁻³ A ⁻²	kem's-2	mx.
b)	Electrical potential	q)	ML ² T ⁻³ A ⁻²	· Amp X	Time kg.
c)	Specific resistance	r)	ML ² T ⁻³ A ⁻¹	-2-1	m11-4
d)	Specific conductance	s)	None of these	e =-	3

(A)	a-q, b-s, c-r, d-p
(B)	a = n $b = a$ $c = s$ $d = r$

(B)
$$a-p, b-q, c-s, d-r \varphi$$

$$u(C) \quad \underline{a-q}, b-r, c-p, d-s$$

(D)
$$a-p, b-r, c-q, d-s$$

V =	ka	9	=	c	
	8	m		m	
		100			

- Angle of minimum deviation for a prism of refractive index 1.5 is equal to 2) Angle of minimum deviation for a priority of the angle of prism is the angle of prism of given prism. Then the angle of prism is $\delta_{m} = A$
 - (A) 41°24'

(B) 60°

(C) 80°

1)

$$A = \sin\left(A + \frac{\epsilon_m}{2}\right)$$

A ray of light passes from a medium A having refractive index 1.6 to the medium B having refractive index 1.5. The value of critical angle of medium A is ___

$$\checkmark$$
(A) $\sin^{-1}\left(\frac{16}{15}\right)$

(B)
$$\sin^{-1}\left(\frac{1}{2}\right)$$

(B)
$$\sin^{-1}\left(\frac{1}{2}\right)$$
 $\frac{1.5 = i\left(\frac{3}{2}\frac{A}{2}\right)}{\sin\left(\frac{A}{2}\right)}$

(C)
$$\sin^{-1}\sqrt{\frac{16}{15}}$$

(D)
$$\sin^{-1} \left(\frac{15}{16} \right)$$

(Space for Rough Work)

GUJCET-E-2015 BOOKLET

	The power of plane mirror is	
4)	The power of P	(1

(A) ∞

(B) 2D

(C) 0

- (D) 4D
- Light waves travel from optically rarer medium to optically denser medium. Its velocity decreases because of change in 5)
 - (A) frequency

(B) amplitude

(C) wavelength

- (D) phase
- $c = \frac{\lambda}{4} \int$
- The Network shown in Figure is a part of the circuit. (The battery has 6) negligible resistance)

ible resistance)
$$R = 2\Omega \quad E = 12 \text{ V} \quad L = 5 \text{ mH}$$

$$A \circ \rightarrow \text{MWWM} \qquad | \qquad \qquad |$$

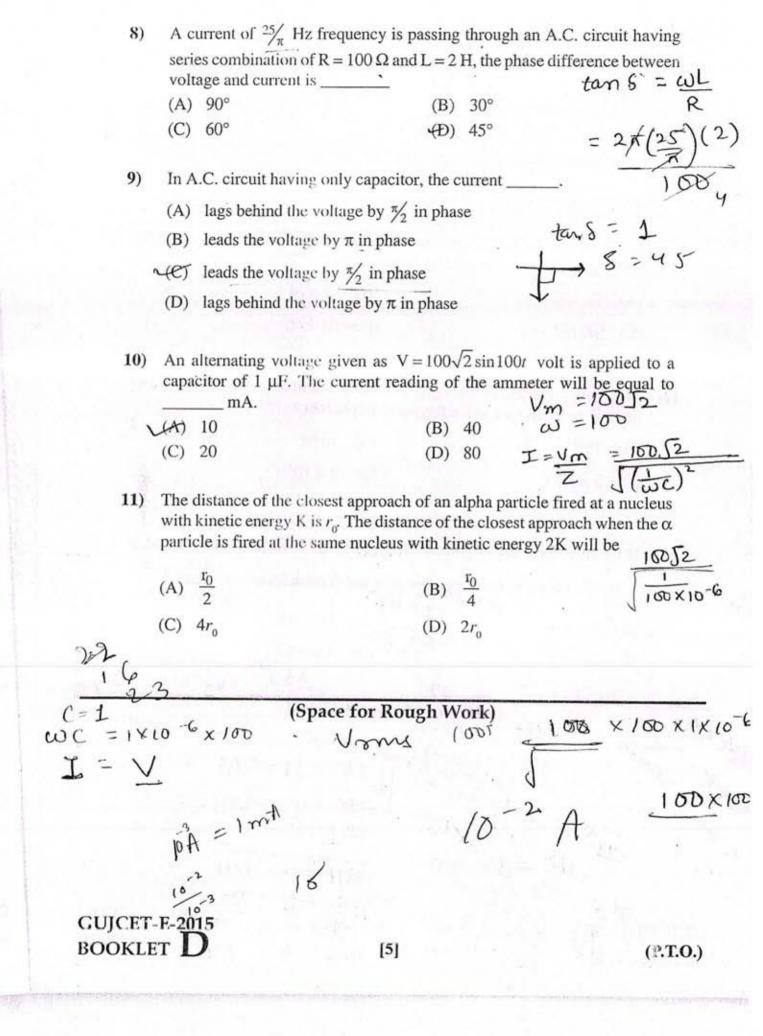
At a certain instant the current I = 2 A and it is decreasing at the rate of 102 As-1. What is the potential difference between the points B and A?

(A) 8.0 V

(B) 10 V

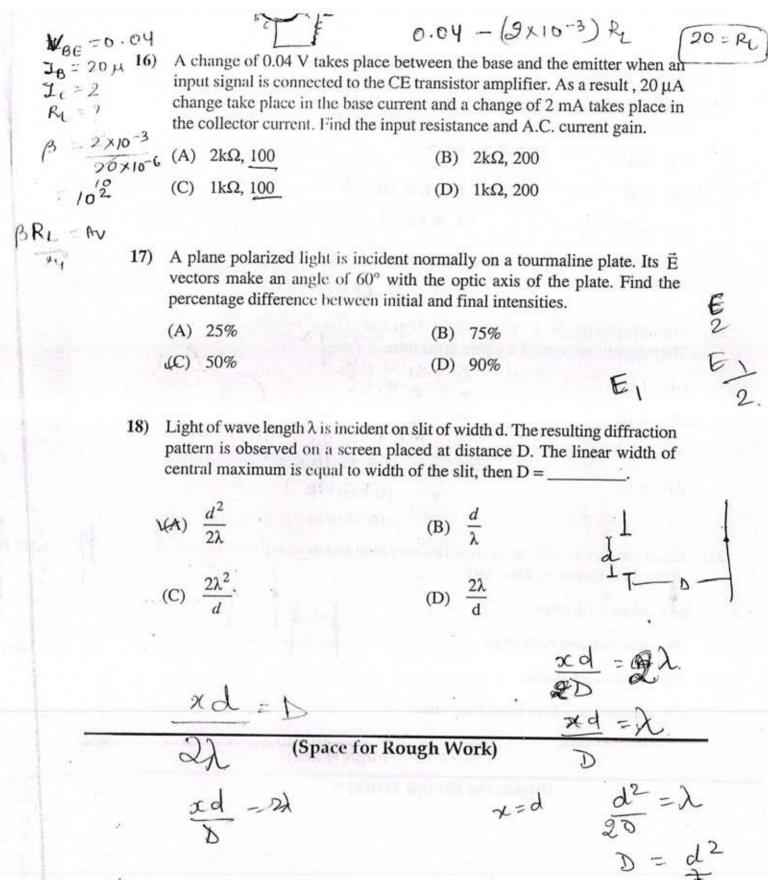
(C) 8.5 V

- (D) 15 V
- A rod of 10 cm length is moving perpendicular to uniform magnetic field of intensity 5×10^{-4} Wb/m². If the acceleration of the rod is 3 m/s², then the 7) rate of increase of induced emf is
 - (A) 2.5 × 10⁻⁴ Vs⁻¹


(B) 20 × 10⁻⁴ Vs

(C) $25 \times 10^{-4} \text{ Vs}$

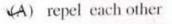
(D) $20 \times 10^{-4} \text{ Vs}^{-1}$


BOOKLET D

u

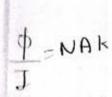
Number of spectral line in hydrogen atom is (B) 15 (A) 6 (D) a. (C) 8 A radioactive element X disintegrates successively as under $X \xrightarrow{\beta} X_1 \xrightarrow{\alpha} X_2 \xrightarrow{\beta} X_3 \xrightarrow{\alpha} X_4$ If atomic number and atomic mass number of X are respectively 72 and 180, what are the corresponding values for X4? (B) 71, 176 (A) 69, 176 (D) 70, 172 (C) 69, 172 The energy released by the fission of one uranium atom is 200 MeV. The 14) number of fission per second required to produce 6.4 W power is (A) 10¹¹ (D) 2×10^{10} (C) 2×10^{11} If by successive disintegration of 92 U238, the final product obtained is $_{82}\text{Pb}^{206}$, then how many number of α and β particles are emitted? (A) 8 and 6 (C) 6 and 8 (Space for Rough Work

GU BO


In a N-P-N transistor about 1010 electrons enter the emitter in 2115, when it is connected to a battery. Then $I_E = 1$ ___μΛ.

The effective length of a magnet is 31.4 cm and its pole strength is 0.8 Am 20) The magnetic moment, if it is bent in the form of a semicircle is

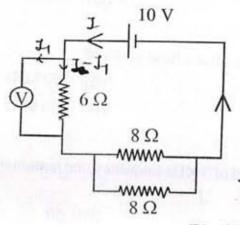
(C) 1.2

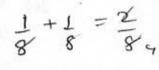

Equal currents are passing through two very long and straight parallel wires in the same direction. They will

- (B) lean towards each other
- (C) attract each other
- (D) neither attract nor repel each other

(Space for Rough Work)

24)

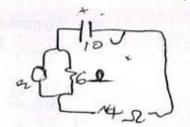

2


GUJCET-E-2015 BOOKLET L

[8]

GUJCET-E-BOOKLET

22) A voltmeter of a very high resistance is joined in the circuit as shown in figure. The voltage shown by this voltmeter will be _____.



(A) 6 V

(B) 2.5 V

(C) 5 V

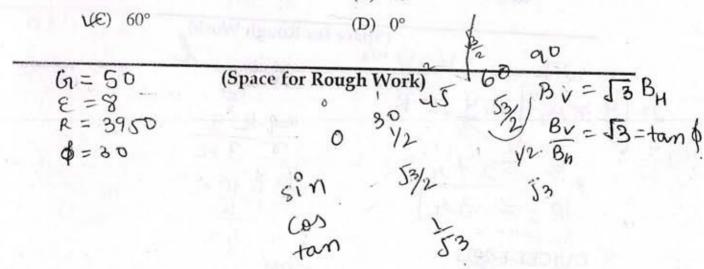
(D) 3 V

23) A galvanometer of resistance 50 Ω is connected to a battery of 8 V along with a resistance of 3950 Ω in series. A full scale deflection of 30 div is obtained in the galvanometer. In order to reduce this deflection to 15 division, the resistance in series should be _____ Ω

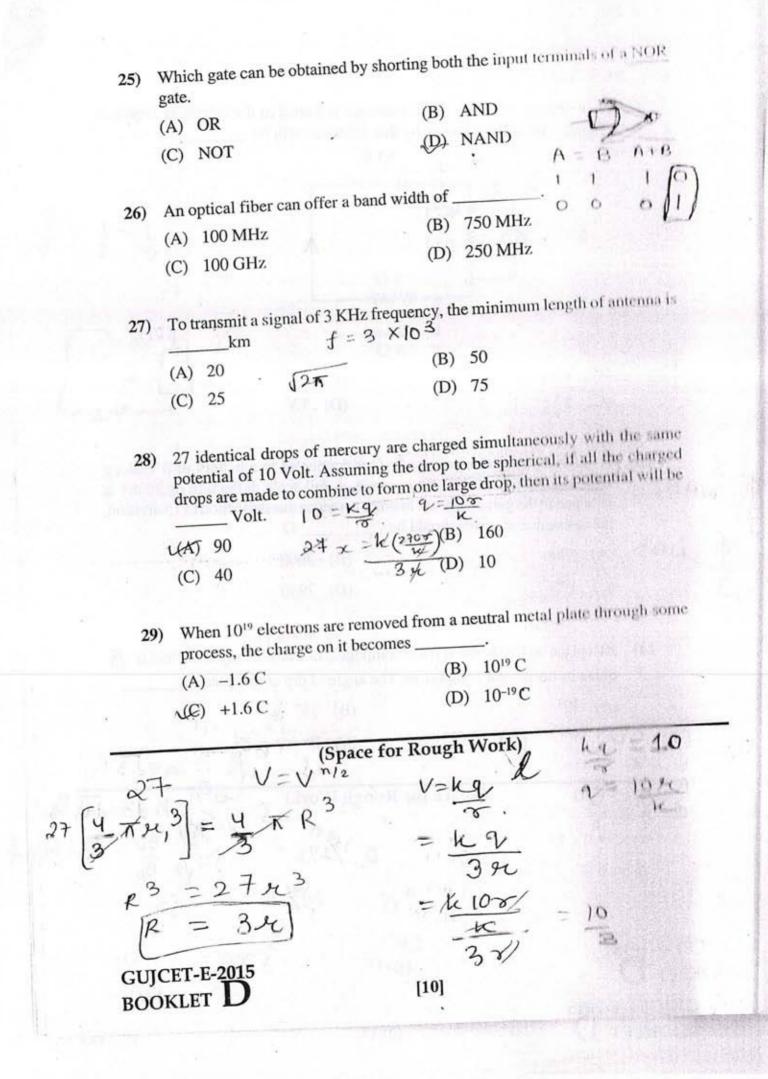
\$ - NAH

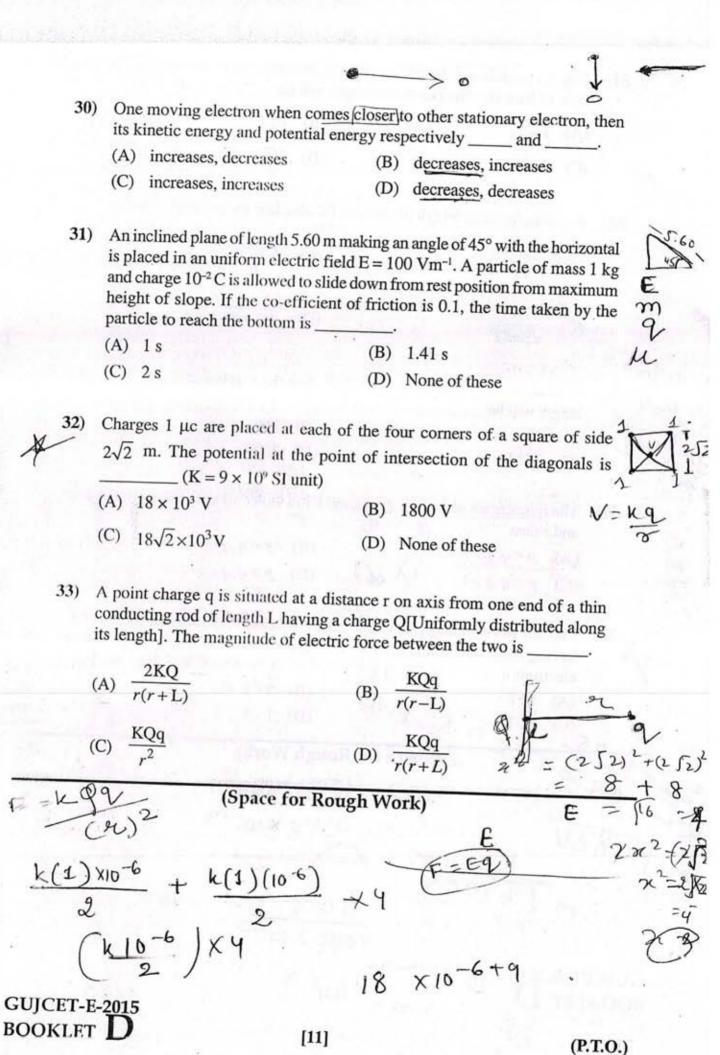
(A) 7900

(B) 2000


(C) 1950

(D) 7950


24) At a place on Earth, the vertical component of Earth's magnetic field is $\sqrt{3}$ times its horizontal component. The angle of dip at this place is _____.


(A) 30°

(B) 45°

GUJCET-E-2015 BOOKLET D

	1.2 more approximate the	
34)	If alpha particle and deutron move with velocity v and $2v$ respectively, the ratio of their de - Broglie wave length will be	
	(A) $1:\sqrt{2}$ (B) $1:1$	
8	(A) $1:\sqrt{2}$ (B) $1:1$ $\frac{\lambda_1}{\lambda_2} = \frac{(0)^2 \sqrt{2}}{(0)^2 \sqrt{2}}$ (C) $2:1$ (D) $\sqrt{2}:1$ $\frac{\lambda_1}{\lambda_2} = \frac{(0)^2 \sqrt{2}}{(0)^2 \sqrt{2}}$	
25)	de - Broglie wave length of atom at TK absolute temperature will be	1
35)	h $\sqrt{2mKT}$	696
	(A) $\frac{h}{mKT}$ (B) $\frac{\sqrt{2mKT}}{h}$	
	h (D) $\sqrt{2}$ ET	
	$(C) \frac{h}{\sqrt{3mKT}} $ (D) $\sqrt{2mKT}$	
12 ml		
10=3mx 10=3mx 10=3x7 2=3x7	If the wave length of light is 4000A°, then the number of waves in 1 mm length will be	(A N
2 3KT	(A) 25 (B) 250	
N = 2	(C) 2500 (D) 25000	10
2	The state of the s	20
37)	: CV and attended and Illtra violet rays are respectively P. q	P.0 2 n
R M I	(A) p < q, q > r (B) $p < q, q < r$	× ^
I	The state of the s	RO:
38)	having work function is one of	2 47 ROX
V	electrons is	1017
	-(A) 1:2 (C) 2:1 0 5 $\sqrt{6D}$ (B) 3:1 $\sqrt{2}$ 0 5 $\sqrt{2}$	2 RS
70	2(Space for Rough Work)	R
12 pot 9 8	7=4000 X10-10m - 1100 14	- 1
12 mot 2 m	1×10-3	
[2m	h + + + + + + + + + + + + + + + + + + +	
121	me V	18
Y		4.2
	4000 × 10-10	1
	2,5 ×103	GUj
GUJC BOOI	ET-E-2015 10 ⁻³⁺¹⁰⁻³ [12]	BOC

A and B are two points on a uniform ring of radius 1. The region is R. $\angle AOB = \theta$ as shown in the figure. The equivalent resistance between points A & B is $\frac{R_1 = \frac{g \, \ell_1}{R_2}}{R_2} = \frac{g \, (80)}{R_2 \, (80)}$ A and B are two points on a uniform ring of radius r. The resistance of the

$$\frac{R_1 = \frac{g \, \ell_1}{R_2}}{\frac{g \, \ell_2}{A}} = \frac{g(ro)}{R 2\pi - o}$$

$$\frac{R}{4\pi} \left(2\pi - \Theta\right)$$

$$\frac{1}{R_1} + \frac{1}{R_2}$$
(B)
$$R\left(1 - \frac{\theta}{2\pi}\right) \qquad \frac{R_1 R_2}{I_1 + R_2}$$

(C)
$$\frac{R(2\pi-\theta)}{4\pi}$$

(D)
$$\frac{R}{4\pi^2}(2\pi-\theta)\theta$$

(C) $\frac{R(2\pi-\theta)}{4\pi}$ (D) $\frac{R}{4\pi^2}(2\pi-\theta)\theta$ $\frac{R_2(\frac{\tau \cdot \theta}{2\pi-\theta})}{\frac{2\pi}{4\pi}}$ $\frac{R_2(\frac{\tau \cdot \theta}{2\pi-\theta})}{\frac{2\pi}{4\pi}}$ $\frac{R_2(\frac{\tau \cdot \theta}{2\pi-\theta})}{\frac{2\pi}{4\pi}}$ Two wires of equal length and equal diameter and having resistivities $\frac{R_2(\frac{\tau \cdot \theta}{2\pi-\theta})}{\frac{2\pi}{4\pi}}$ and $\frac{R_2(\frac{\tau \cdot \theta}{2\pi-\theta})}{\frac{2\pi}{4\pi}}$ $\frac{R_2(\frac{\tau \cdot \theta}{2\pi$

$$\frac{P0+(2N-0)R}{2N}$$

$$(A) (\rho_1 + \rho_2)$$

(B)
$$\frac{\rho_1 \rho_2}{\rho_1 + \rho_2}$$

(B)
$$\rho_1 + \rho_2$$

$$d_1 = d_2$$
 $a_1 = a_2$

$$\frac{(A) (\rho_1 + \rho_2)}{(A) (\rho_1 + \rho_2)}$$

(D)
$$\sqrt{\rho_1 \rho_2}$$

$$\frac{2\pi}{R0} + \frac{2\pi}{(2\pi-0)R}$$

$$R^{2} \circ R^{2} = \frac{2\pi}{R^{2}} + \frac{2\pi}{(2\pi - 0)}R = \frac{1}{R}$$

$$R_{1} = R_{2} \left(\frac{\sqrt{2}}{2\pi - 0}\right)$$
(Space for Rough Work)
$$R_{2} = \frac{1}{2} \frac{1}{2} \frac{1}{4}$$

$$R_{3} = \frac{1}{2} \frac{1}{4}$$

$$R_{1} = g_{1} L/A$$

 $R_{2} = g_{2} L/A$

20

GUJCET-E-2015 BOOKLET D

CHEMISTRY

41) Reaction 3ClO⁻ → ClO₃ + 2Cl⁻ occurs in following two steps.

(i) $^{\downarrow}$ ClO $^{-}$ + ClO $^{-}$ $\stackrel{K_1}{\longrightarrow}$ ClO $^{\downarrow}_2$ + Cl $^{-}$ (Slow step)

(ii) $ClO_2^- + ClO^- \xrightarrow{K_2} ClO_3^- + Cl^-$ (Fast step)

then the rate of given reaction = _____.

X(A) K, [CIO-]2

(B) K₂[ClO₂] [ClO]

(C) K₁[ClO]

(D) K₂[ClO]

42) At given temperature and pressure adsorption of which gas of the following will take place the most?

(A) Di hydrogen

(B) Ammonia

(C) Di oxygen

(D) Dinitrogen

43) Which type of colloid is the dissolution of sulphur (S₈)?

(A) Associated colloid

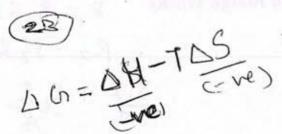
(B) Multimolecular colloid

(C) Micelle

(D) Macromolecular colloid

44) For Adsorption phenomenon,

(A) $\Delta H = +ve$, $\Delta S = -ve$

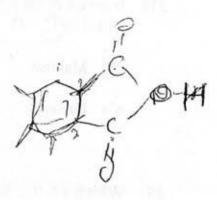

 $\Delta H = -ve, \Delta S = -ve$

(C) $\Delta H = -ve$, $\Delta S = +ve$

(D) $\Delta H = +ve$, $\Delta S = +ve$

(Space for Rough Work)

14


45)	Which of the	following s	statement is	incor	rect for KN	∕InO₄?	
	(A) It is an	oxidising ag	gent.	~			
	(B) It is use	d as bleach	ing agent in	textil	e industries	s. ~	
	(C) It is use	d as antisep	tic.			~	
	(D) It is dar	k purple col	oured amor	phous	substance		
				- \			
46)	Which of the		n has the ma	ximu	m theoretic	al magnetic r	noment?
•	(A) Fe3+26	- 23		(B)	Ti3+ (22)	= 19	7.7
	(C) Cr ³⁺ 24	= 21		(D)	Co3+ 27	= 24	
47)	Which of the	following o	xide has the	maxi	imum basic	eity?	
	(A) La ₂ O ₃			(B)	Sm ₂ O ₃	filoso.	
	(C) Pr ₂ O ₃			(D)	$\mathrm{Gd_2O_3}$	di juguri	
48)	Which of the	following sp	ectrochemic	cal se	ries is true	?	
	(A) SCN ⁻ <	NH ₃ < F" <	en < CO				
	(B) SCN ⁻ <1	7 < en < N	$H_{x} < CO$				
	(C) SCN ⁻ <1	F < NH ₃ <	en < CO				
	(D) SCN ⁻ <1	< en < C	$O < NH_3$			7.1	
		(Space	e for Roug	gh W	ork)		
11111	1111	, Ce	n =5		• 1		
	[H]	· C.	n = 1				
CIT	可问	62	n = 3				
ति वि		Co	n = 0	1	m.	N 1 = 1	
GUJCET- BOOKLE			[19]				(P.T.O.)

49)	Whi	ch of the followir	g complex is p	arama	gnetic?
	(A)	[Ni (CO) ₄]		(B)	[Ni (CN) ₄] ²⁻
	(C)	[Co(NH ₃) ₆] ³⁺		L(D)	[NiCl ₄] ²
50) M /	Both of N	n [Ni (CO) ₄] and [Ni in these comple	Ni(CN) ₄] ²⁻ are d	iamag &	netic. The types of hybridisation respectively.
4/	(A)	sp ³ , sp ³		(B)	dsp ² , sp ³
7		sp³, dsp²		(D)	dsp ² , dsp ²
51)	Whi	ich of the following	ng order of acid	ic stre	ength is not correct?
	(A)	Cl ₃ ·C·COOH >	Cl ₂ ·CH·COOH	> Cl·(CH ₂ ·COOH
	(B)		COOH > C6H	COO	H
	(C)		OOH > CH ₃ ·CH	·CH ₂ ·	COOH > CH ₂ ·CH ₂ · CH ₂ · COOH
			1		
		Cl	CI COOL	- (CI	Cl CHCOOH
	(D)	CH ₃ COOH > C	H ₃ ·CH ₂ ·COOH	>(CI	1 ₃) ₂ ·CH·COOH
52)	Wh	at is the formula	of Acrolein?		
	(A)	$CH_2 = CH - CH$	Ю		231 ettere
	(B)	$CH_2 = CH - CC$	HOOH	0	2 3 1 aug
	(C)	$CH_2 = CH - CI$	N		13
	(D)	$CH_2 = CH - CC$	ONH ₂	0	
	d	8	Dic B		(Alouly)
चिप	1111		Space for Ro		C(N)4)2
1110	11			111	THE TOTAL PROPERTY OF THE PARTY
		d251	(28)		
Ni	,((d251	I	(n)	d'sp2
[]	1 4	11			
GUJCI	ET-E-	2015	SDB [20	ر ا	
ROOK	LEI	D	3/1/1/ 120	1	

GUJC BOOK

- (A) Benzene 1, 3 dicarboxylic acid
- (B) Benzene 1, 4 dicarboxylic acid
- (C) Benzene 1, 2 dicarboxylic acid
- (D) Benzene 1, 5 dicarboxylic acid

54) What is the name for red azo dye?

- (A) p hydroxy azo benzene
- (B) p amino azo benzene
- (C) β napthyl azo benzene
- (D) p N, N dimethyl amino azo benzene

55) Which of the following is not formed by Sandmayer reaction?

(A) C₆H₅Cl

(B) C₆H₅Br

√(€) C₆H₅I

(D) C₆H₅CN

56) For which vitamin liver is not the source?

- (A) Vitamin B
- (B) Vitamin B₁₂

(C) Vitamin - B,

(D) Vitamin - H

		ed by $C_1 - O -$			
	(A)	Maltose		(B)	Cellulose
	(C)	Lactose		(D)	Amylopectin
					no design to
8)		ch of the formerisation rea		polymer is f	ormed by cationic addition
	(A)	Butyl rubber		(B)	Teflon
	(C)	Poly styrene		(D)	PVC
9)	Whi	ch of the follo	wing poly	mer is used in	pigment?
	(A)	Buna - S		(B)	Teflon
	(C)	Neoprene		(D)	Orlon
60)	Тор	revent food fro	om spoilag	ge by microorg	anism, which substance is used:
	(A)	Aspartame	y	√(B)	Salt of sorbic acid
	(C)	Arneto	7	(D)	Tetrazine >
_	-	- A	(Space	for Rough V	Vork)

61) Which of the following defect is seen in FeO?

- (A) Metal excess defect
- (B) Displacement defect
- (C) Metal deficiency defect
- (D) Impurity defect

62) Which of the following substance possess antiferromagnetic property?

(A) Fe₃O₄

(B) H₂O

(C) CrO₂

(D) MnO

63) The boiling points for aqueous solutions of sucrose and urea are same at constant temperature. If 3 gm of urea is dissolved in its 1 litre solution, what is the weight of sucrose dissolved in its 1 litre solution?

[Urea - 60 gm/mole, sucrose = 342 gm/mole]

(A) 3.0 gram

(B) 6.0 gram

(C) 17.1 gram

(D) 34.2 gram

64) Which option is inconsistant for Raoult's law?

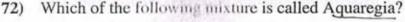
- (A) Volume of liquid solvent + volume of liquid solute = volume of solution.
- (B) Solute does not undergo association in solution
- (C) The change in heat of dilution for solution = 0
- (D) Solute undergoes dissociation in solution

$$\frac{3}{60} = \frac{x}{342}$$

	65)	Which of the	ch colligative	property is mor	re useful to	determine the	molecular weigh)
				vapour pressu			
		(B)		of freezing poi			
		(C)	Elevation in	boiling point			
		(D)	Osmotic pre	ssure			
	66)	The	resulting solution o	ntion obtained of NaCl	at the end	of electrolysi	s of concentrated
		(A)	turns red litr	nus into blue			D OH
		(B)	remains colo	ourless with ph	enolphthal		Silver Co.
		(C)	turns blue lit	tmus into red			
		(D)	the colour of	f red or blue li	tmus does 1	not change	
×.	67)	Volt ager	respectively. nt.	for metal A, B State the corre	ect order fo	r their ability	80 Volt and -0.46 to act as reducing
V			C > B > A A > B > C		(D)	B > C > A C > A > B	
	68)	Two	electrolytic	cells containing	ng molten	solutions of N	lickel chloride & tof electric current
		is no	assed through	them, what w	rill be the v 1? (Al - 27 s	veight of Nick gm/mole, Ni -	58.5 gm/mole ⁻¹)
		(A)	100 march 100 ma		3 (B)	29.25 gm	8)
		(C)	117 gm		(D)	5.85 gm	
Conc	. a	V	Nacl H ^t		A 7 D-	34 0.8 0.46	B <c<a.< td=""></c<a.<>
8 = 27	して	8	m=(5)	\$ (5) ×18	NE P	och Us	
		or r	1~	1 10			ROME OF THE RESIDENCE
B	UJCE OOK	LET	D		[24]		Q rates

69)	Which method	is used to ge	very pure germanium	used in semiconductor?
0/	Willett member	is used to Se	reij ping bermanan	abea in definediadetor.

- (A) electrolysis
- (B) liquation
- (C) vapour phase refining
- (D) zone +refining

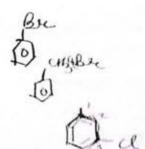


70) Which product will be obtained in the following reaction?

Reaction:
$$P_{4_{(0)}} + 3NaOH_{(asy)} + 3H_2O_{(0)} \rightarrow$$

- (A) $PH_{3_{(g)}} + 3Na_1HPO_{2_{(aq)}}$ (B) $2PH_{3_{(g)}} + 3Na_2HPO_{2_{(aq)}}$
- (C) $PH_{3_{(g)}} + 3NaH_1PO_{2_{(aq)}}$ (D) $2PH_{3_{(g)}} + 3NaH_2PO_{2_{(aq)}}$

- (A) SOCI, and CCLNO.
- (B) COCI, and CCI, NO,
- (C) COCI, and CCL NO.
- (D) SOCl₂ and CCl₃NO₂



- (A) Two parts of cone HCl and two parts of cone. HNO,
- (B) Three parts of conc. HCl and 1 part of dil. HNO,
 - (C) Three parts of dil HCl and 1 part of conc. HNO,
- (D) Three parts of cone. HCl and 1 part of cone. HNO₃

12.02.000						
73)	Which (of the	fallowing	ic all	wlia	halida?
13)	** IIICII (or the	following	15 al.	ync	nande:

- (A) Benzyl chloride
- (B) 1 bromo benzene
- (C) (1 bromo ethyl) benzene
- (D) 3 chloro cyclo hex-1-ene

74) 50% of the reagent is used for dehydrohalogenation of 6.45 gm CH₄CH₂Cl. What will be the weight of the main product obtained?

[At. mass of H, C and Cl are 1, 12 & 35.5 gm/mole-1 respectively]

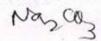
(A) 0.7 gm

(B) 2.8 gm

(C) 1.4 gm

(D) 5.6 gm

- (A) Swartz reaction
- · (B) Wurtz reaction
- Frinkel-stein reaction
 - (D) Hell-Volhard Zelinsky reaction
- 76) Which reagent is used for bromination of methyl phenyl other?
 - (A) Br, / Red P
 - (B) Br₂ / FeBr₃
 - (C) Br₂ / CH₃COOH
 - (D) HBr / Δ ·


77)	Which of t	he following	acid does not	have -COOH group	?
-----	------------	--------------	---------------	------------------	---

- (A) Ethanoic acid
- √ (B) Benzoic acid
- (C) Picric acid

(D) Salicylic acid

78) Which of the following statement is not correct?

- (A) Phenol is used to prepare analgesic drugs
- Solubility of phenol in water is more than that of chlorobenzene
- (C) Phenol is neutralised by sodium carbonate Na Co

Boiling point of o-nitrophenol is lower than that of p-nitrophenol

Total order of reaction $X + Y \rightarrow XY$ is 3) The order of reaction with respect to X is 2. State the differential rate equation for the reaction.

(A)
$$-\frac{d[X]}{dt} = K[X]^3[Y]^0$$
 \sim (B) $-\frac{d[X]}{dt} = K[X]^2[Y]$

$$\sqrt{B}$$
 $-\frac{d[X]}{dt} = K[X]^2[Y]$

(C)
$$-\frac{d[X]}{dt} = K[X]^0[Y]^1$$
 (D) $-\frac{d[X]}{dt} = K[X][Y]^2$

(D)
$$-\frac{d[X]}{dt} = K[X][Y]^2$$

80)
$$X \xrightarrow{\text{Step-II}} Y \xrightarrow{\text{Step-II}} Z$$
 is a complex reaction. Total order of reaction is 2 and Step - II is slow step. What is molecularity of Step-II?

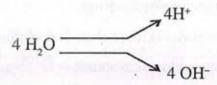
(A) 1

(B) 3

1(C) 2

(D) 4

BIOLOGY


- 81) Which one is not cranial bone?
 - (A) Frontal

(B) Temporal

(C) Zygometic

(D) Sphenoid

82)

In this process which of the following play important role?

(A) Chlorophyll

(B) Light energy

4C) Ca++, Mn++, Cl-

- (D) All of the above
- 83) Which of the following is correct trend of succession in Hydroseric succession?
 - (♠) Phytoplankton → Rooted submerged → Reed swamp → Sedge medow
 - (B) Phytoplankton \rightarrow Sedge medow \rightarrow Reed swamp \rightarrow Root submerged
 - (C) Phytoplankton → Reed swamp → Rooted submerged → Sedge medow
 - (D) Rooted submerged → Phytoplankton → Reed swamp → Sedge medow

84) On which surface of cell Donnan equilibrium occur?

(A) Cell wall

(B) Plasma membrane

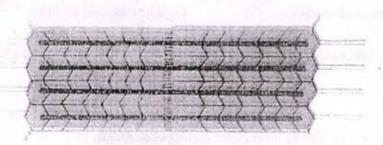
(C) Tonoplast

(D) Nuclear membrane

85) Which type of gene regulate sex-determination in Spinach plant?

- (A) Homozygous genes
- (B) Single gene
- (C) Heterozygous genes
- (D) Multiple genes

86) When the respiratory substances are more than one then which respiratory substrates are not used?


(A) Pure Protein

(B) Lipid

(C) Carbohydrate

(D) (A) and (B) both

87) State the condition of muscle contraction in following diagram.

- (A) Resting potential
- (B) Contraction
- (C) Maximally contracted
- (D) None

- 88) How many years are considered in one minute in Geological clock?
 - (A) 52000 years

- (B) 3,25,000 years
- (C) 1,87,500,000 years
- (D) 1,90,000 years
- 89) Which structure is formed at the time of exchange of gamete nuclei in given animal during sexual reproduction.

- (A) Plasmodesmata
- (B) Internal tubule
- (C) Cytoplasmic filaments
- (D) Cytoplasmic bridge
- 90) Name the plant shows adventive embryonic cells.
 - (A) Sunflower and Mango
- (B) Lemon and Maize
- (C) Citrus and Mango
- (D) Lemon and Palms

- 91) During respiration_____
 - 2 PGAL during glycolysis and none of the PGAL produced in Kreb's cycle
 - (B) 2 PGAL during glycolysis and 2 Pyruvic acid are produced in Kreb's cycle
 - (C) 2 PGAL during glycolysis and 4 Pyruvic acid are produced in Kreb's cycle
- (D) PGAL is not produced during respiratory events
- 92) Which of the following function is performed by collecting tubule of kidney?
 - (A) In the maintenance of pH and ionic balance of blood by the secretion of H⁺ and K⁺ ions
 - (B) Maintenance of pH of blood and removal of Na+ and K+ ions
 - (C) Absorption of glucose and ammonia from the blood
 - (D) None of above
- 93) A Nerve fibre can become excited through touch, smell, pressure and chemical changes and there is a change in polarity.
 - R It is called active potential.
 - (A) A and R both are correct and A is correct explanation of R.
 - (B) A is correct and R is wrong
 - (C) A and R both are correct but A is not correct explanation of Ro
 - (D) A is wrong and R is correct

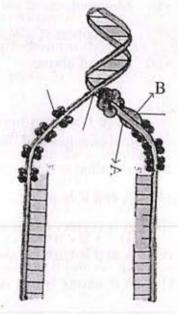
94) Select proper option, by matching column I, II and III.

Column I Column II Column III (Common Name) (Roman Numerical (Activation product) Designation) P) Prothrombin x) I i) Convertin Q) Proconvertin y) V ii) Fibrin R) Fibrinogen z) II iii) Thrombin S) Proaccelerin · w) VII iv) Accelerin (A) (P-z-iii) (Q-w-i) (R-y-ii) (S-x-iv)(R-x-iv) (R-x-iv) (R-y-i) (C) (P-w-ii) (Q-z-iii) (R-y-iv) (S-x-i) (D) (P-z-iii) (Q-w-i) (R-x-ii) (S-y-iv)

- 95) What is "A" and "B" in given diagram?
 - (A) A = RNA Primer

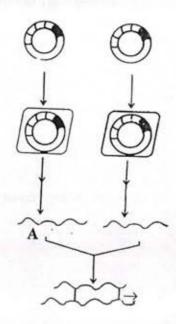
B = RNA Helicase

(B) A = Single strand Binding Protein


B = DNA Helicase

(C) A = RNA Primer

B = DNA Helicase


(D) A = Lagging strand

B = Movement of Helicase

			SUSSE MARKET IN THE RE		regal of the control of the first of
	96)		which field application of	biotechnolog	y occurs?
		(A)	Bio-medicine	Ţ	
		(B)	Agriculture		
		(C)	Environmental field		
		JD)	All of the above		
	97)	-	shows anti-allergic a	ınd anti-inflan	nmatory effect.
		(A)	Mineralocorticoids		
		(B)	Sexcorticoids		
		(C)	Glucocorticoids		
		(D)	Noradrenaline		most aleaded to 4
					and the same of the same of
	98)	Dur	ing the process of decomp	osition in whi	ch stage complex organic matter
			vert into inorganic ions a		
		(A)	Mineralization	(B)	Catabolism
		(C)	Fragmentation	(D)	All of the above
	99)	How	much amount of volum	e of air is in h	ungs FRC?
		(A)	1500 ml to 1600 ml	(B)	2500 ml to 3000 ml
	V.	(C)	2100 ml to 2500 ml	(D)	1600 ml to 2100 ml
-	March II	-	(Space f	or Rough V	Vork)
			-	1	
		*	0	12	EV+RU - 1100-15 +8
		*			1100 -16 +2
					.7/00 / 48
					F
				0 1	
GL	JCET	-E-2	015	1110	102 1 14904
BO	OKL	ET]	U	[37]	(P.T.O.)

100) What indicated "A" in given figure?

(A) Peptide bond

- (B) Disulfide bond
- (C) Glycocidic bond
- (D) Hydrophobic bond

101) What is total diastolic time of ventricle in cardiac cycle?

(A) 0.30 second

(B) 0.50 second

(C) 0.40 second

(D) 0.10 second

102) Which amino acid determines by four genetic codes?

- (A) Leucine (Leu) y
- (B) Serine (Ser)
- (C) Proline (Pro)
- (D) Tyrosine (Tyr)

(Space for Rough Work)

01

0.4

0.1

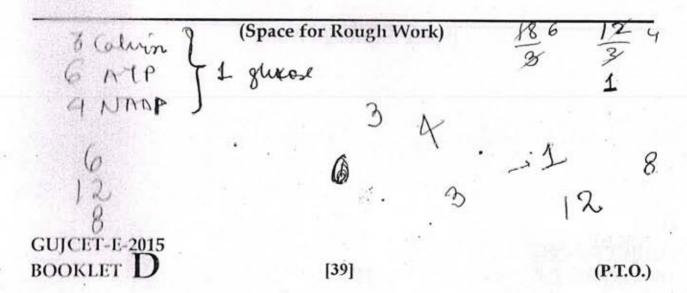
0.1 (0.5)

103)	W	hich	is	the	inhibitory	hormone	of	GH?
------	---	------	----	-----	------------	---------	----	-----

- (A) Insulin
- (B) Somatostatin
- (C) Parathormone
- (D) Testosterone

104) Complete and balanced the following reaction.

$$Na_1HPO_4 + X \rightarrow Y + NaH_2PO_4$$


- (A) $X = NaHCO_3$, Y = NaCl
- (B) $X = NaHCO_3$, $Y = H_2CO_3$

NaH

- (C) $X = H_2CO_3$, $Y = NaH_2CO_3$
- (D) $X = H_2CO_3$, $Y = NaHCO_3$

105) How many molecules of ATP and NADPH are require in formation of two molecules of glucose? How many Calvin cycles are required?

- (A) 36 ATP, 24 NADPH, 12 Calvin cycles /
- (B) 36 ATP, 24 NADPH, 6 Calvin cycles
- (C) 18 ATP, 12 NADPH, 6 Calvin cycles
- (D) 24 ATP, 36 NADPH, 12 Calvin cycles >

106)	A -	The DNA fingerprint is the same for every cell, tissue and organ of a person.								
	R-	DNA fingerprint is used for treatment of inherited disorders like Huntigton's disease, Alzheimer's and Sickle cell anemia.								
	(A)	A and R both are correct. R is explanation of A								
	(B)	A is correct and R is wrong								
	(C)	A and R both are correct but R is not explanation of A								
	(D)	A is wrong and R is correct								
107)	Whi	ch part is not included in Coehle	ar duc	et?						
	(A)	Reissner's membrane	(B)	Scala Media						
,	(C)	Macula of Utricle	(D)	Tectorial membrane						
108)	Whi	ch is Gynandromorph type of ani	mal?							
	(A)	Drossophilla	(B)	Beetles						
	(C)	Silk worms	(D)	All of the above .						
109)	DNA	A polymerase enzyme is isolated	from	which bacteria?						
	(A)	E.Coli	(B)	Bacillus thrunegenesis						
	(C)	Thermus aquaticus	(D)	Agro bacterium						

110) Match the column I, II and III

Column I

Column II

Column III

- P) Trichomoniasis
- i) Herpes Simplex
- x) Pain in lower abdomen

- (Q) Syphilis
- ii) Neisseria gonorrhoeae
- y) Inflammation and itching in and around vagina

- (Conorrhoea
- iii) Treponema Pallidium
- z) Patchy hair loss

- (5) Genital herpes
- iv) Trichomonas Vaginalis
- w) Feeling of uneasiness

(A) (P-iv-y) (Q-iii-z) (R-ii-x) (S-i-w)

$$(P - iv - x) (Q - i - w) (R - ii - y) (S - iii - z)$$

$$M$$
 (D) (P-i-z) (Q-ii-y) (R-iv-w) (S-iii-x)

111) What is the height and weight of twelve weeks old human embryo?

- (A) 7.5 cm, 650 gram (B) 42 cm, 1800 gram
- (C) 7.5 cm, 14 gram
- (D) 32 cm, 650 gram

112) Assertion A: Restriction endonuclease recognize short palindromic sequence and cut at specific sites.

Reason - R: When a restriction endonuclease acts on Palindrome, it cleaves both the strands of DNA molecule.

- (A) A and R are both correct. R is explanation of A
- (B) A is correct and R is wrong
- (C) A and R are both correct but R is not explanation of A
- (D) A is wrong and R is correct
- 113) Write proper option by matching column I, II and III.

	Column I	Column II	Column III
	(Name)	(Enzyme)	(Function)
i)	Gastric Juice	P) Chymo- trypsinogen	A) Dipeptide convert into amino acid
ii)	Intestinal Juice	Q) Ptylin	B) Proteoses convert into small polypeptides
iii)	Saliva	R) Renin	 C) Casein convert into paracasein
iv)	Pancreatic juice		 D) Conversion of starch into maltose

- (A) (i R C) (ii S A) (iii Q B) (iv P D)
- (B) (i S D) (ii R C) (iii P B) (iv Q A)
- (C) (i R C) (ii S A) (iii Q D) (iv P B)
- (D) (i Q A) (ii P C) (iii R B) (iv S D)

114) Write the correct sequence of genetic diversity.)

K

- (A) Kingdom → Population → Species → Genes → Chromosome ♥
 → Nucleotides
 - (B) Species → Genes → Population → Chromosomes → Nucleotides (C)
 - √(C) Population → Species → Chromosomes → Genes → Nucleotides
 - (D) Kingdom → Species → Chromosomes → Genes → Nucleotides

115) Match the column I and II and select the correct option.

					- Priori
Co	lumn I			Col	umn II (concentration of DDT in ppm)
A)	Zoote	Zooto Plankton			0.003 ppm
(1)	Smal	lfishes		Q)	2'ppm
(C)	Wate	Water			25 ppm
101	Fish e	Fish eating birds			0.04 ppm
1)	Big fishes			T)	0.5 ppm
	A	В	C	D	Е
(1.4)	S	T	P	R	Q
(B)	S	T	Ŕ	Q	Рχ
(C)	S	T	P	Q	Rx
(D)	Q	P	S	T	Ry

116)	Which of the following disease shows the blockage of kidney tubules and causes severe back pain?							
	(A)	Renal calculi						
	(B)	Uremia						
	(C)	Kidney failure						
	(D)	Nephritis						
117)	Duri	ing photorespiration which compounds are formed having 2C and 3C ectively in Peroxisome?						
	(A)	Glycolate, Glycine 🥦						
	(B)	Serine, Glycine \(\beta \)						
	(C)	Glycine, Glycerate						
X	(D)	Phosphoglycerate, Glycolate						
118)	Duri	ing rainy season wooden doors and windows are not properly closed.						
	(A)	Plasmolysis						
	(B)	Osmosis						
	(C)	Diffusion						
	(Đ)	Imbibition						

(119) Match the column I, II and III

Column I

Column II

Column III

- N) Sickle Cell Anaemia
- Due to recessive PP genes
- P) Arrangement of Valine in place of Glutamic acid

- B) Phenyl Ketonuria
- ii) Due to absence of homogentisic oxidase enzyme
- Q) Inborn error of metabolism

- () Alkaptonuria
- iii) Follows Mendelian R) Urine turns black Principles
 - when exposed to air

- (1) Thalassaemia
- ivi Characters caused S) The required by homozygous recessive genes
 - haemoglobin is not generated in the blood

- 120) Which of the following is the symptom of Ulcerative colitis?
 - (A) Watery stools containing blood and mucus
 - (B) Loss of appetite
 - (C) Difficulty in swallowing
 - (D) Eyes turn yellow