SEAL

GUJCET-E-2015

Test Booklet No.

06446

Test Booklet Code

B

This booklet contains 48 pages.

DO NOT open this Test Booklet until you are asked to do so.

Important Instructions:

- 1) This test consists 120 questions of Physics, Chemistry and Biology. Each question carries 1 mark. For each correct response the candidate will get 1 mark. For each incorrect response 1/4 mark will be deducted. Maximum marks is 120.
- 2) This Test is of 3 hours duration.
- 3) Use Black Ball Point Pen only for writing particulars on OMR Answer Sheet and marking answers by darkening the circle 4.2.
- 4) Rough work is to be done on the space provided for this purpose in the Test Booklet only.
- On completion of the test, the candidate must handover the Answer Sheet to the Invigilator in the Room / Hall. The candidates are allowed to take away this Test Booklet with them.
- 6) The CODE for this Booklet is **B**. Make sure that the CODE printed on the Answer Sheet is the same as that on this booklet. In case of discrepancy, the candidate should immediately report the matter to the Invigilator for replacement of both the Test Booklet and the Answer Sheet.
- 7) The candidate should ensure that the Answer Sheet is not folded. Do not make any stray marks on the Answer Sheet.
- 8) Do not write your Seat No. anywhere else, except in the specified space in the Test Booklet / Answer Sheet.
- 9) Use of White fluid for correction is not permissible on the Answer Sheet.
- 10) Each candidate must show on demand his / her Admission Card to the Invigilator.
- 11) No candidate, without special permission of the Superintendent or Invigilator, should leave his / her seat.
- 12) Use of Manual Calculator is permissible.
- 13) The candidate should not leave the Examination Hall without handing over their Answer Sheet to the Invigilator on duty and must sign the Attendance Sheet (Patrak 01). Cases where a candidate has **not** signed the Attendance Sheet (Patrak 01) be deemed not to have handed over the Answer Sheet and dealt with as an unfair means case.
- 14) The candidates are governed by all Rules and Regulations of the Board with regard to their conduct in the Examination Hall. All cases of unfair means will be dealt with as per Rules and Regulations of the Board.
- 15) No part of the Test Booklet and Answer Sheet shall be detached under any circumstances.
- 16) The candidates will write the Correct Test Booklet Code as given in the Test Booklet / Answer Sheet in the Attendance Sheet. (Patrak 01)

 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} 2^{238} \\ \end{array} \end{array} & \begin{array}{c} 2^{06} \\ \end{array} & \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} & \begin{array}{c} 2^{238} \\ \end{array} & \begin{array}{c} \end{array} \\ \end{array} & \begin{array}{c} 2^{06} \\ \end{array} & \begin{array}{c} \end{array} \\ \end{array} & \begin{array}{c} \end{array} \\ \end{array} & \begin{array}{c} 2^{238} \\ \end{array} & \begin{array}{c} \end{array} & \begin{array}{c} 2^{06} \\ \end{array} & \begin{array}{c} \end{array} & \begin{array}{c} \end{array} & \begin{array}{c} 2^{06} \\ \end{array} & \begin{array}{c} \end{array} & \begin{array}{c} \end{array} & \begin{array}{c} 2^{06} \\ \end{array} & \begin{array}{c} \end{array} & \begin{array}{c} \end{array} & \begin{array}{c} 2^{06} \\ \end{array} & \begin{array}{c} \end{array} & \begin{array}{c} \end{array} & \begin{array}{c} 2^{06} \\ \end{array} & \begin{array}{c}$

٠.	9)
20 DY	ec Tus
200	210° 210° 210°

A change of 0.04 V takes place between the base and the emitter when an input signal is connected to the CE transistor amplifier. As a result, 20 µA change take place in the base current and a change of 2 mA takes place in the collector current. Find the input resistance and A.C. current gain.

(A) $1k\Omega$, 200 ΔΣΕ (B) $1k\Omega$, 100 ΔΣΕ 20 × 0⁻⁶. (C) $2k\Omega$, 200 β ² ΔΣβ₃ (D) $2k\Omega$, 100 ΔΣε 2× 10⁻³. (E) $\frac{2\times10}{20\times0}$ $\frac{3+6}{10^3}$ $\frac{3}{3}$ $\frac{2}{3}$ $\frac{2}{3}$

A plane polarized light is incident normally on a tourmaline plate. Its E vectors make an angle of 60° with the optic axis of the plate. Find the percentage difference between initial and final intensities.

- (A) 90%
- **(B)** 50%
- (D) 25%

Light of wave length λ is incident on slit of width d. The resulting diffraction pattern is observed on a screen placed at distance D. The linear width of central maximum is equal to width of the slit, then D =

- (B) $\frac{2\lambda^2}{d}$ I 2 To Y.

 (B) $\frac{d^2}{2\lambda}$ or $\frac{2D}{d}$
- (A) $\frac{2\lambda}{d}$ $d = 2 \frac{\sqrt{2}}{2}$ (C) $\frac{d}{\lambda}$ $\frac{\sqrt{2}}{2}$ $\frac{\sqrt{2}}{2}$

		-N transisto			nter the em μA.	itter in 2 μ	s, when it
<i>\{</i>	(A) 160 (B) 400			[C2 87	<u>.</u> 2	1013>	<1-6×10
`	(C) 800)		•	E,	2	× 10-6.
	(D) 200		(600×1 图成10	06	<u> </u>	6×10	10-19+6 10-19+6
		ctive length onetic momen	t, if it is ben	t in the form			s 0.8 Am. Am ² .
(A) 0.12	2	22	PQ		an 1 8	2 B1.4.
المعارض	B) 1.2 C) 0.16	· · · · · · · · · · · · · · · · · · ·	200				81.4
(I	D) 1.6	~ U *	78×10	2	2	Q2	0 × 10 ⁻²
		rents are pas		h two very le	ong and str	aight para	llel wires
(A	A) neith	ner attract no	or repel eac	h other	1		
(B	attra	ct each othe		1		\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
(C) lean	towards eac	h other		. Au	. 1	
(D) repel	each other		•		1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
						· <u>· · ·</u>	

GUJCET-E-2015 BOOKLET $\overset{\circ}{B}$

22)	(A) 10 (C) 160 When 10 ¹⁹ electrons are remprocess, the charge on it becomes (A) 10 ⁻¹⁹ C (C) 10 ¹⁹ C	noved from a neutral metal plate the comes; (B) +1.6 C (D) -1.6 C	ough some
22)	(C) 160 When 10 ¹⁹ electrons are remprocess, the charge on it becomes (A) 10 ⁻¹⁹ C	comes;	
22)	(C) 160 When 10 ¹⁹ electrons are rem		
19 3 11 3 12	(A) 10 (C) 160	(D)/90	
15 3	(A) 10		88
	100	(B) 40	
21)	potential of 10 Volt. Assum	ary are charged simultaneously within the drop to be spherical, if all to form one large drop, then its potential.	the charged
	$\begin{array}{c c} (C) & 50 \end{array} \qquad \begin{array}{c} 2 & 5 \\ \end{array}$	$\frac{108}{000} \frac{108}{(D)} = \frac{25}{20} \times 100$	S 4
	(A) 75	JUB 108 25 1×108	32 106
20)	To transmit a signal of 3 KIkm	Iz frequency, the minimum length of	of antenna is
			. `
****	(A) 250 MHz (C) 750 MHz	(B) 100 GHz (D) 100 MHz	
<i>(</i> 19)	An optical fiber can offer a		
	(C) AND	(D) OR	
		(b) NOI	·

23)	One moving electron when come its kinetic energy and potential en	* · · · · · · · · · · · · · · · · · · ·	ionary electron, th e r and	
	(A) decreases, decreases	(B) increases,	increases	ary 3
	(C) decreases, increases	(D) increases,	decreases	30
			The state of the s	LIM.
24)	An inclined plane of length 5.60 m is placed in an uniform placetric from			
	is placed in an uniform electric fie and charge 10 ⁻² C is allowed to slide	, · · · · · · · · · · · · · · · · · · ·		•
	height of slope. If the co-efficient			
X	nortials to reach the hattam is			209
act of	(A) 1s	1×(B) 1.41 s	2	Dolley,
000.	(C) 2s C2 BV 90.	(D) None of th	iese	≈
(6.0)	(A) 1 s (C) 2 s C 2 By GO. 14	Fzmg.		FZBIR
(25)	Charges 1 µc are placed at each			
	$2\sqrt{2}$ m. The potential at the po	int of intersection	of the diagonals is	
er e	$(K = 9 \times 10^9 \text{ SI unit})$		1	1.
	(A) $18 \times 10^{3} \text{ V}$ V V V V V V V V V V V V V V V V V V	(B) 1800 V		F . v.
.77 C.	(C) $18\sqrt{2} \times 10^3 \text{ V}$ 252	(D) None of the	ese	i
		1×9×109	XIXIO	
26)	A point charge q is situated at a di	stance r on axis from	none end of a thin	
	conducting rod of length L having			
i	its length]. The magnitude of electronic	ric force between the	e two is	<u>~</u>
	/KQq	KQq	26x10) ³
1	$(A) \frac{1}{r(r+L)}$	(B) $\frac{1}{r^2}$	56	
	ΨOα	2KO	212	
(C) $\frac{\kappa Qq}{r(r-1)}$	(D) $\frac{2KQ}{r(r+L)}$		•
		<u> </u>		
	(Space for Ro	ough Work)		

27) If alpha particle and deutron moratio of their de - Broglie wave	ove with velocity v and 2v respectively, the length will be
(A) $\sqrt{2} \cdot 1$	(B) 2:1
(C) 1:1	(D) $1:\sqrt{2}$
28) de - Broglie wave length of ator	n at TK absolute temperature will be
(A) $\sqrt{2mKT}$	$\frac{h}{\sqrt{3mKT}} = \frac{\lambda_1}{\lambda_2} = 2000000000000000000000000000000000000$
(C) $\frac{\sqrt{2mKT}}{}$	(D) $\frac{h}{mKT}$ $\frac{\geq 1}{2}$
h .	mKT
29) If the wave length of light is 40 length will be	00A°, then the number of waves in 1 mm
25000 d	1 (B) 2500 > 2 500 (D)
(C) 250	(B) 2500 (D) 25 1 ×10 ×10 ×10 ×10 ×10 ×10 ×10 ×10 ×10 ×
30) The frequencies of X rays, γ rays and r then ρ	and Ultra violet rays are respectively p, q
(A) $p > q, q < r$	(B) $p>q,q>r$ 10 on higher
(C) $p < q, q < r$	(B) $p>q,q>r$ 10 by higher pr R M 1 U V COPT R
A Company of the Comp	2.3 CV successivery including on a inetal,
electrons is	The ratio of maximum speed of emitted
(A) 1:3	(B) $2:1$ $1-0.5$
(C) 3:1	(D) 1:2 2.5-0.C
(Space for I	Rough Work)
- -	N maxo U
	Vmax12 1 Vmax2 2
	Vmax

32) A and B are two points on a uniform ring of radius r. The resistance of the ring is R. $\angle AOB = \theta$ as shown in the figure. The equivalent resistance between points A & B is

RO(271-0)

(B)

(C)
$$R\left(1-\frac{\theta}{2\pi}\right)$$

- Two wires of equal length and equal diameter and having resistivities ρ_1 and ρ_2 are connected in series. The equivalent resistivity of the combination w is - / A.

$$(C) \quad \frac{\rho_1 \rho_2}{\rho_1 + \rho_2}$$

Match the following two columns. 34)

	Column I		Column II
a)	Electrical resistance	p)	$ML^{3}T^{-3}A^{-2}$
b)	Electrical potential	q) [']	$ML^2T^{-3}A^{-2}$
c)	Specific resistance	13	$ML^2T^{-3}A^{-1}$
d)	Specific conductance	s)	None of these

$$(A)$$
 $a-p, b-r, c-q, d-s$

(B)
$$a-q, b-r, c-p, d-s$$

(C) $a-p, b-q, c-s, d-r$

(C)
$$a-p, b-q, c-s, d-r$$

(D)
$$a-q, b-s, c-r, d-p$$

Angle of minimum deviation for a prism of refractive index 1.5 is equal to the angle of prism of given prism. Then the angle of prism is _____

$$(\sin 48^{\circ}36' = 0.75)$$

$$(C)$$
 60°

$$(B) = \frac{12}{(B)} = 80^{\circ}$$

36) A ray of light passes from a medium A having refractive index 1.6 to the medium B having refractive index 1.5. The value of critical angle of medium

) A ray of light p	passes from a medium A na	
	lig terractive index 1.5. 2225	- 02818A
A is	Sinc 2	1.5 ×228101
/ (15	() () ()	1 16
(A) $\sin^{-1} \left(\frac{13}{16} \right)$	(B)	$\sin \sqrt{15}$
(16	Sinca 2-1	$\sin^{-1}\sqrt{\frac{15}{15}}$ $\sin^{-1}\left(\frac{16}{15}\right)$ 266 Vork
. (1)	, OLA	1(16)
$\sin^{-1}\left(\frac{1}{2}\right)$	(D)	$\sin^{-1}\left \frac{1}{15}\right = 200$
(C) (2)) 2	(13)
	(.6.	
	(Space for Rough V	Vork)
<i>*</i>	ACCE	

(B)
$$\sin^{-1}\sqrt{\frac{16}{15}}$$

C)
$$\sin^{-1}\left(\frac{1}{2}\right)$$
 2

(D)
$$\sin^{-1}\left(\frac{16}{15}\right)$$

GUICET-E-2015 BOOKLET ${f B}$

CHEMISTRY

- 41) What is IUPAC name for isophthalic acid?
 - (A) Benzene 1, 5 dicarboxylic acid
 - Benzene 1, 2 dicarboxylic acid 🚈
 - (C) Benzene 1, 4 dicarboxylic acid
 - (D) Benzene 1, 3 dicarboxylic acid
- 42) What is the name for red azo dye
 - (A) p N, N dimethyl amino azo benzene
 - (B) β napthyl azo benzene
 - (C) p amino azo benzene
 - (D) p hydroxy azo benzene
- 43) Which of the following is not formed by Sandmayer reaction?
 - (A) C_6H_5CN

(B) C₆H₅I

(C) C_6H_5Br

(D) C_6H_5Cl

For which vitamin liver is not the source?)

(A) Vitamin - H

(B) Vitamin - B₂

(C) Vitamin B₁₂

(D) Vitamin - B₁

(A) Amylopectin	(B) Lactose
(C) Cellulose	(D) Maltose
Which of the following polymerisation reaction?	polymer is formed by cationic addition
(A) PVC	(B) Poly styrene
(C) Teflon	(D) Butyl rubber
Which of the following poly	mer is used in pigment?
(A) Orlon	Neoprene).
(C) Teflon	Buna - S
To prevent food from spoilage	e by microorganism, which substance is used?
	A strong that a strong

49)	Wh	nich of the following defec	et is seen in F	eO?)	
	(A)	Impurity defect			
	(B)	[®] Metal deficiency defect			No.
	(C)	Displacement defect	`		No.
	(D)	Metal excess defect	,		
50)	Wh	ich of the following subst	ance possess	antiferromag	netic property?
-	(AX)	MnO	(B)	CrO ₂	
	(C)	H_2O	(D)	Fe ₃ O ₄	•
	wha [Ure	stant temperature. If 3 gint is the weight of sucrose ea - 60 gm/mole, sucrose =	dissolved in i	its 1 litre solu le]	
		34.2 gram	(B)	17.1 gram	3 2 W2
	(C)	6.0 gram	(D)	3.0 gram ~	60 BY2
52)	Whi	ch option is inconsistant f	or Raoult's la	aw?	
7	(A)	Solute undergoes dissoci	ation in solu	tion	
	(B)	The change in heat of dil	ution for solu	ution $= 0$	
	(C)	Solute does not undergo	association in	n solution	ind.
	(D)	Volume of liquid solver solution.	nt + volume	of liquid so	lute = volume of
. •	**			•	

	Thich colligative property is more useful to determine the molecular weight fithe substances like proteins and polymers?
1 (2	Osmotic pressure
(B	B) Elevation in boiling point
, , , (C	
(L) Lowering of vapour pressure
•	
	ne resulting solution obtained at the end of electrolysis of concentrated ueous solution of NaCl
(A	
(B	
(C	remains colourless with phenolphthalein
(D) turns red litmus into blue
Vo	C>A>B (B) $A>B>C$ (B) $A>B>C$
9	B>C>A -10
	o electrolytic cells containing molten solutions of Nickel chloride & minium ehloride are connected in series. If same amount of electric current
1.6935353	assed through them, what will be the weight of Nickel obtained when
	gm of Aluminium is obtained? (Al - 27 gm/mole, Ni - 58.5 gm/mole ⁻¹)
(A)	5.85 gm (B) 117 gm
(C)	29.25 gm (D) 58.5 gm
	cle 25 5 (Space for Rough Work)
25 - 100	2F 20.66.
1,518	18900, 199
	0.66 moll
	SF-15000 WX E9 18x9,23
GUJCET-E-2 BOOKLET	

57) Which method is used to get very pure germanium used in semiconductor?

(X) zone - refining

- (B) vapour phase refining
- (C) liquation
- (D) electrolysis
- 58) Which product will be obtained in the following reaction?

Reaction: $P_{4(s)} + 3NaOH_{(aq)} + 3H_2O_{(l)} \rightarrow 2PH_3 + 3NaOH_{(aq)} + 002$

- (B) $PH_{3_{(g)}} + 3NaH_2PO_{2_{(\rho q)}}$
- (C) $2PH_{3_{(g)}} + 3Na_2HPO_{2_{(aq)}}$
- (D) $PH_{3_{(g)}} + 3Na_2HPO_{2_{(aq)}}$
- The molecular formulae for phosgene and tear gas are ____ and ____ respectively.
 - (A) SOCl₂ and CCl₃NO₂
- (B) COCl₂ and CCl₂NO₂
- (C) COCl₂ and CCl₃NO₂
- (D) SOCl₂ and CCl₂NO₂
- (60) Which of the following mixture is called Aquaregia?
 - (A) Three parts of conc. HCl and 1 part of conc. HNO₃
 - (B) Three parts of dil. HCl and 1 part of conc. HNO₃
 - (C) Three parts of conc. HCl and 1 part of dil. HNO₃
 - (D) Two parts of conc. HCl and two parts of conc. HNO,

	(B) (1 - bromo ethyl) benzene (C) 1 - bromo benzene
	(B) (1 - bromo ethyl) benzene
	(C) 1 - bromo benzene
	(D) Benzyl chloride
COSTO 2	62) 50% of the reagent is used for dehydrohalogenation of 6.45 gm CH ₂ CH ₂ Cl ₃ What will be the weight of the main product obtained? [At. mass of H, C and Cl are 1, 12 & 35.5 gm/mole ⁻¹ respectively] 50/- (A) 5.6 gm (B) 1.4 gm (2 Hz Classon Content of the main product obtained? (B) 1.4 gm (C) 2.8 gm Content of the main product obtained? (B) 1.4 gm (C) Hz Classon Content of the main product obtained? (B) 1.4 gm (C) Hz Classon Content of the main product obtained? (B) 1.4 gm (C) Hz Classon Content of the main product obtained? (C) 2.8 gm Content of the main product obtained? (D) 0.7 gm
Co Commo	3) Name the following reaction CH ₂ CH ₂ Cl ₂ +NaI acetone CH ₂ CH ₂ I + NaCl
6	(A) Hell-Volhard Zelinsky reaction (B) Frinkel-stein reaction (C) Wurtz reaction (D) Swartz reaction (D) Swartz reaction (D) Which reagent is used for bromination of methyl phenyl ether? (A) Hell-Volhard Zelinsky reaction (C) Hone 64.5 (C) USGro 281.75 (D) Swartz reaction (C) Wurtz reaction (C) Wurtz reaction (C) Wurtz reaction (D) Swartz reaction
	(A) $\frac{HBr}{\Lambda}$ (B) $\frac{Br_2}{CH_3COOH}$ (C) $\frac{Br_2}{FeBr_3}$ (D) $\frac{Br_2}{Red P}$ (D) $\frac{Br_2}{Red P}$

- CATOSTORY DEOFTON Which of the following acid does not have -COOH group?
 - (A) Salicylic acid)
- (B) Picric acid

(C) Benzoic acid

- (D) Ethanoic acid
- Which of the following statement is not correct?

Boiling point of o-nitrophenol is lower than that of p-nitrophenol

- (B) Phenol is neutralised by sodium carbonate
- Solubility of phenol in water is more than that of chlorobenzene
- (D) Phenol is used to prepare analgesic drugs
- Total order of reaction $X + Y \rightarrow XY$ is 3. The order of reaction with respect to X is 2. State the differential rate equation for the reaction.

(A)
$$-\frac{d[X]}{dt} = K[X][Y]^2$$

(B)
$$-\frac{d[X]}{dt} = K[X]^0 [Y]^3$$

$$(\mathcal{C}) - \frac{d[X]}{dt} = K[X]^{2}[Y] \qquad (D) - \frac{d[X]}{dt} = K[X]^{3}[Y]^{0}$$

$$(D) - \frac{d[X]}{dt} = K[X]^{3}[Y]^{0}$$

- $X \xrightarrow{Step-I} Y \xrightarrow{Step-II} Z$ is a complex reaction. Total order of reaction is 2 and Step - II is slow step. What is molecularity of Step-II?
 - (A) 4

(C) 3

(D) 1

Reaction $3ClO^- \rightarrow ClO_3^- + 2Cl^-$ occurs in following two steps.

- (i) $ClO^- + ClO^- \xrightarrow{K_1} ClO_2^- + Cl^-$ (Slow step)
- (ii) $ClO_2^- + ClO^- \xrightarrow{K_2} ClO_3^- + Cl^-$ (Fast step)

then the rate of given reaction = _____.

(A) $K_2[ClO^-]^3$

- (B) $K_1[ClO^-]$
- (C) $K_2[ClO_2^-][ClO^-]$
- (D) $K_1 [ClO^-]^2$
- 70) At given temperature and pressure adsorption of which gas of the following will take place the most?
 - (A) Di nitrogen 2
- (B) Di oxygen 2

(C) Ammonia

- (D) Di hydrogen H2
- 71) Which type of colloid is the dissolution of sulphur (S_8) ?
 - (A) Macromolecular colloid
- (B) Micelle
- (C) Multimolegular colloid
- (D) Associated colloid
- (72) For Adsorption phenomenon,
 - (A) $\Delta H = +ve$, $\Delta S = +ve$
- $\Delta H = -ve, \Delta S = +ve$
- (C) $\Delta H = -ve$, $\Delta S = -ve$
- (D) $\Delta H = +ve$, $\Delta S = -ve$

- 73) Which of the following statement is incorrect for KMnO₄?
 - (A) It is dark purple coloured amorphous substance.
 - (B) It is used as antiseptic.
 - (C) It is used as bleaching agent in textile industries.
 - (D) It is an oxidising agent.

Which of the following ion has the maximum theoretical magnetic moment?

Sun

(C) (Tree)

sa casus

75) Which of the following oxide has the maximum basicity?

(A) $\operatorname{Gd}_2\operatorname{O}_3$ (C) $\operatorname{Sm}_2\operatorname{O}_3$

- (B) Pr_2O_3
- (D) La_2O_3
- CQ
- 76) Which of the following spectrochemical series is true?
 - (A) $SCN^- < F^- < en < CO < NH_3$
 - $(B) \quad SCN^- < F^- < NH_3 < en < CO$
 - (C) $SCN^- < F^- < en < NH_3 < CO$
 - (D) $SCN^- < NH_3 < F^- < en < \underline{CO}$

			4
77)	Which of the following com	plex is paramagnetic?	-22th 220
	(A) [NiCl ₄] ²⁻	(B) (Co(NH ₃) ₆	13+) 21=+2
•	(C) [Ni (CN) ₄] ²⁻	(D) [Ni (CO) ₄]	-22x-4 -2+42x 13+) 21=+2 808,482
78)	Both [Ni (CO),] and [Ni(CN) of Ni in these complexes are		
	(A) dsp^2 , $d\underline{sp^2}$	$\sqrt{(B)}$ sp ³ , dsp ²	3atus1
	(C) dsp ² , sp ³	(D) sp ³ , sp ³	111111111111111111111111111111111111111
1 39	Which of the following order		()(()
OF THE	(A) CH ₃ COOH > CH ₃ ·CH ₂ ·	COOH > (CH ₃) ₂ ·CH·COO	OH C+13) CH41201
CH3CII	(B) CH ₃ ·CH ₂ ·CH.COOH>0 Cl (C) H·COOH> CH ₃ COOH	Cl Cl	I ₂ ·CH ₂ · CH ₂ ·COOH
		COOH > Cl·CH, COOH	
	*		10780780.
80)	What is the formula of Acrol		10. CC1
	(A) $CH_2 = CH - CONH_2$	CH2CICOC	H CHC12 CC13
	$CH_2 = CH - CN$		· • • • • • • • • • • • • • • • • • • •
	(C) $CH_2 = CH - COOH$		
•	(D) $CH_2 = CH - CHO$		
		<u>_ ·</u>	

BIOLOGY

81)	A -	person:	same for	every cell, tissue and organ of a			
	R =	DNA fingerprint is used f Huntigton's disease, Alzhei		nent of inherited disorders like ad Sickle cell anemia.			
	(A)	A is wrong and R is correct					
	(B)	A and R both are correct bu	t R is no	t explanation of A			
	(%)	A is correct and R is wrong					
•	(D)	A and R both are correct. R	is explai	nation of A			
-							
82)	Whic	Which part is not included in Coehlear duct?					
	(A)	Tectorial membrane	(B)	Macula of Utricle			
,	(C)	Scala Media	(D)	Reissner's membrane			
		• .					
83)	Whic	h is Gynandromorph type of	animal?				
. *	(A)	Drossophilla	(B)	Beetles			
	(C)	Silk worms	(D)	All of the above			
84)	DNA	polymerase enzyme is isolar	ed from	which bacteria?			
	(A) A	Agro bacterium	(BS)	Thermus aquaticus			
	(C) I	Bacillus thrunegenesis	(D)	E.Coli			
		(Space for R	ough V	Vork)			

GUJCET-E-2015 BOOKLET $\stackrel{\scriptstyle B}{B}$

85) Match the column I, II and III

Column I

Column II

Column III

P) (Trichomoniasis)

- i) Herpes Simplex
- x) Pain in lower abdom en

Q) Syphilis

- ii) Neisseria gonorrhoeae
- y) Inflammation and itching in and around vagina

- R) Gonorrhoea
- iii), Treponema
 Pallidium
- z) Patchy hair loss

- S) Genital herpes
- iv) <u>Trichomonas</u> Vaginalis
- w) Feeling of uneasiness
- (A) (P i z) (Q ii y) (R iv w) (S iii x)
- (B) (P iv y) (Q i z) (R ii x) (S iii w)
- (C) (P iv x) (Q i w) (R ii y) (S iii z)
- (D)'(P-iv-y)(Q-iii-z)(R-ii-x)(S-i-w)
- 86) What is the height and weight of twelve weeks old human embryo?
 - (A) 32 cm, 650 gram
- (B) 7.5 cm, 14 gram
- (C) 42 cm, 1800 gram
- (D) 7.5 cm, 650 gram

gram Rooms 300 month

87) Assertion A: Restriction endonuclease recognize short palindromic sequence and cut at specific sites.

Reason - R: When a restriction endonuclease acts on Palindrome, it cleaves both the strands of DNA molecule.

- (A) A is wrong and R is correct
- (B) A and R are both correct but R is not explanation of A
- (C) A is correct and R is wrong
- (D) A and R are both correct. R is explanation of A.
- 88) Write proper option by matching column I, II and III.

Column I Column II Column III (Name) (Enzyme) (Function) P) Chymo-Gastric Juice A) Dipeptide convert into amino acid trypsinogen / Intestinal Juice Q) Ptylin B) Proteoses convert into small polypeptides R) Renin C) Casein convert into iii) Saliva paracasein

D) Conversion of starch into maltose

(A) (i - Q - A)(ii - P - C)(iii - R - B)(iv - S - D)

S) Erepsin

Pancreatic juice

- (B) (i R C) (ii S A) (iii Q D) (iv P B)
- (C) (i S D)(ii R C)(iii P B)(iv Q A)
- (D) (i R C)(ii S A)(iii Q B)(iv P D)

89) Write the correct sequence of genetic diversity.

(A) Kingdom \rightarrow Species \rightarrow Chromosomes \rightarrow Genes \rightarrow Nucleotides

(B) Population \rightarrow Species \rightarrow Chromosomes \rightarrow Genes \rightarrow Nucleotides

(C) Species \rightarrow Genes \rightarrow Population \rightarrow Chromosomes \rightarrow Nucleotides

(D) Kingdom \rightarrow Population \rightarrow Species \rightarrow Genes \rightarrow Chromosome \rightarrow Nucleotides

90) Match the column I and II and select the correct option.

Column I

Column II (concentration of DDT in ppm)

A) Zooto Plankton

P) 0.003 ppm

B) Small fishes

Q) ² ppm

C) (Water

R) 25 ppm

D) Fish eating birds

S) 0.04 ppm

E) Big fishes

T) 0.5 ppm

 $\mathbf{A} \quad \mathbf{B}$

D E

 $(A) \cap Q \qquad P$

 \mathbf{r}

(B) S

Q R

(C) S

R

C

S

P

P

Q P

Q

(D) S

Ţ

T

<u>R</u>

91)		ich of the followingses severe back pa		hows the	blockage	of kidne	y tubules	and ,
	(A)	Nephritis					v	4.
•	(B)	Kidney failure			<i>,</i>	•		, «/b
	(C)	Uremia						
	(B)	Renal calculi						
92)		ing photorespiration		mpounds	are form	ned havin	g 2Cand	3C હન્દ્ર
	(A)	Phosphoglycerat	e, Glycolate	e'		•	ン	
	p (B)	Glycine, Glycera		•	·		÷	* *
	(C)	Serine, Glycine 2				•		•
	(D)	Glycolate, Glycin						
93)	Duri Why	ng rainy season w	ooden door	s and win	idows are	e not proj	perly clos	ed.
6	(A)	Imbibition						
	(B)	Diffusion						
	(C)	Osmosis						
	(D)	Plasmolysis				-		
		·.						
		(Sp	ace for Re	ough W	ork)			·

94) Match the column I, II and III

Column I

- A) Sickle Cell
- Column III
- i) Due to recessive Anaemia PP genes
- P) Arrangement of Valine in place of Glutamic acid

- B) Phenyl Ketonuria
- ii) Due to absence of homogentisic oxidase enzyme
- Q) Inborn error of metabolism

- C) Alkaptonuria
- iii) Follows Mendelian R) Urine turns black Principles

Column II

when exposed to air

- D) Thalassaemia
- iv) Characters caused S) The required by homozygous recessive genes
 - haemoglobin is not generated in the blood
- (A) (A iii R)(B i Q)(C iv P)(D ii S)
- (B) (A iv P) (B i Q) (C ii R) (D iii S)
 - (C) (A iv P) (B iii R) (C i S) (D ii R)
 - (D) (A ii S) (B iii R) (C i Q) (D iv P)
- 95) Which of the following is the symptom of Ulcerative colitis?
 - (A) Eyes turn yellow
 - Difficulty in swallowing
 - Loss of appetite (C)
 - Watery stools containing blood and mucus

- 96) Which one is not cranial bone?
 - (A) Sphenoid

(B) Zygometic

(C) Temporal

(D) Frontal

97)

In this process which of the following play important role?

(A) Chlorophyll

(B) Light energy

(C) Ca++, Mn++, Cl-

- (D) All of the above
- 98) Which of the following is correct trend of succession in Hydroseric succession?
 - (A) Rooted submerged → Phytoplankton → Reed swamp → Sedge medow
 - (B) Phytoplankton → Reed swamp → Rooted submerged → Sedge metow
- * (
- (C) Phytoplankton → Sedge medow → Reed swamp → Root submerged
 - (D) Phytoplankton → Rooted submerged → Reed swamp → Sedge

On which surface of cell Donnan equilibrium occur?

- (A) Nuclear membrane
- (B) Tonoplast
- (C) Plasma membrane
- (D) Cell wall

100) Which type of gene regulate sex-determination in Spinach plant?

(A) Multiple genes

(B) Heterozygous genes

(C) Single gene

(D) Homozygous genes

101) When the respiratory substances are more than one then which respiratory substrates are not used?

(B) Lipid

(C) Carbohydrate

(D) (A) and (B) both

102) State the condition of muscle contraction in following diagram.

- (A) Resting potential
- (B) Contraction
- (C) Maximally contracted
- (D) None

103) How many years are considered in one minute in Geological clock?

(A) 1,90,000 years

(B) 1,87,500,000 years

(E) 3,25,000 years

(D) 52000 years

104) Which structure is formed at the time of exchange of gamete nuclei in given animal during sexual reproduction.

- (A) Cytoplasmic bridge
- (B) Cytoplasmic filaments

(C) Internal tubule

(D) Plasmodesmata

105) Name the plant shows adventive embryonic cells.

- (A) Lemon and Palms
- (B) Citrus and Mango
- (C) Lemon and Maize
- (D) Sunflower and Mango

106		ing respiration PGAL is not produced during respiratory events
	(A)	1 GAL is not produced during respiratory events
	(B)	2 PGAL during glycolysis and 4 Pyruvic acid are produced in Kreb's cycle
	(C)	2 PGAL during glycolysis and 2 Pyruvic acid are produced in Kreb's cycle
	(B)	2 PGAL during glycolysis and none of the PGAL produced in Kreb's cycle
107)	Whic	ch of the following function is performed by collecting tubule of kidney?
	(A)	In the maintenance of pH and ionic balance of blood by the secretion of H ⁺ and K ⁺ ions
	(B)	Maintenance of pH of blood and removal of Na ⁺ and K ⁺ ions
	(C)	Absorption of glucose and ammonia from the blood
	(D)	None of above
08)		Nerve fibre can become excited through touch, smell, pressure and ical changes and there is a change in polarity.
i i i i i i i i i i i i i i i i i i i	R - It	is called active potential.
	(1)	A is wrong and P is correct

- - A and R both are correct but A is not correct explanation of R.
 - A is correct and R is wrong
 - A and R both are correct and A is correct explanation of R.

109) Select proper option, by matching column I, II and III.

Column I

Column II

Column III

(Common Name)

(Roman Numerical Designation)

(Activation product)

P) (Prothrombin)

Convertin

Q) Proconvertin

ij) Fibrin

R) Fibrinogen

z) II

iii) Thrombin

S) Proaccelerin

w) VII

iv) Accelerin

(A) (P-z-iii) (Q-w-i) (R-x-ii) (S-y-iv)

(B) (P - w - ii) (Q - z - iii) (R - y - iv) (S - x - i)

(C) (P - z - iii) (Q - w - ii) (R - x - iv) (S - y - i)

(D) (P-z-iii) (Q-w-i) (R-y-ii) (S-x-iv)

110) What is "A" and "B" in given diagram?

(A) A = Lagging strand

B = Movement of Helicase

(B) A = RNA Primer

B = DNA Helicase

(C) A = Single strand Binding Protein

B = DNA Helicase

(D) A = RNA Primer

B = RNA Helicase

(A) Dia madiaina	biotechnology occurs?	
(A) Bio-medicine		
(B) Agriculture		
(C) Environmental field		
(D) All of the above		
112) shows anti-allergic ar	nd anti-inflammatory effect.	
(A) Noradrenaline		
(B) Glucocorticoids		
(C) Sexcorticoids		
(D) Mineralocorticoids		
	osition in which stage complex organic matter	
convert into inorganic ions and	d salts by fungi?	
(A) Mineralization	d salts by fungi? Catabolism	
(A) Mineralization	(B) Catabolism	
(A) Mineralization	(B) Catabolism (D) All of the above	
(A) Mineralization (C) Fragmentation	(B) Catabolism (D) All of the above	
(A) Mineralization (C) Fragmentation 114) How much amount of volume	(D) All of the above of air is in lungs FRC?	
 (A) Mineralization (C) Fragmentation 114) How much amount of volume (A) 1600 ml to 2100 ml 	(B) Catabolism (D) All of the above of air is in lungs FRC? (B) 2100 ml to 2500 ml	
(A) Mineralization (C) Fragmentation 114) How much amount of volume (A) 1600 ml to 2100 ml (C) 2500 ml to 3000 ml	(B) Catabolism (D) All of the above of air is in lungs FRC? (B) 2100 ml to 2500 ml (D) 1500 ml to 1600 ml	
(A) Mineralization (C) Fragmentation 114) How much amount of volume (A) 1600 ml to 2100 ml (C) 2500 ml to 3000 ml	(B) Catabolism (D) All of the above of air is in lungs FRC? (B) 2100 ml to 2500 ml (D) 1500 ml to 1600 ml	

GUJCET-E-2015 BOOKLET $\overset{\circ}{B}$

115) What indicated "A" in given figure?

- (A) Hydrophobic bond
- Glycocidic bond (B)

Disulfide bond

(D) Peptide bond

116) What is total diastolic time of ventricle in cardiac cycle?

0.1 - 0.3 - 0.4 0.4 205

(A) 0.10 second

(B) 0.40 second

(C) 0.50 second

- (D) 0.30 second

117) Which amino acid determines by four genetic codes?

- (A) Tyrosine (Tyr)
- Proline (Pro)

(C) Serine (Ser)

(D) Leucine (Leu) G.

118) Which is the inhibitory hormone of GH?

- (A) Testosterone
- (B) Parathormone
- (C) Somatostatin
- (D) Insulin

119) Complete and balanced the following reaction.

 $Na_2HPO_4 + X \rightarrow Y + NaH_2PO_4$

(A)
$$X = H_2CO_3$$
, $Y = NaHCO_3$

- (B) $X = H_2CO_3^-$, $Y = NaH_2CO_3$
- (C) $X = NaHCO_3$, $Y = H_2CO_3$
- (D) $X = NaHCO_3$, Y = NaCl

120) How many molecules of ATP and NADPH are require in formation of two molecules of glucose) How many Calvin cycles are required?

- (A) 24 ATP, 36 NADPH, 12 Calvin cycles
- (B) 18 ATP, 12 NADPH, 6 Calvin cycles
- 1 2 18ATP 12 NAD
- (C) 36 ATP, 24 NADPH, 6 Calvin cycles
- 1 2 101. - 00 1102AT
- (D) 36 ATP, 24 NADPH, 12 Calvin cycles
- 2-86