GUJCET-E-2015

Test Booklet No. 06446

Test Booklet code B
This booklet contains 48 pages.
DO NOT open this Test Booklet until you are asked to do so.

Important Instructions :

1) This test consists 120 questions of Physics, Chemistry and Biology. Each question carries $\mathbf{1}$ mark. For each correct response the candidate will get 1 mark. For each incorrect response $1 / 4$ mark will be deducted. Maximum marks is $\mathbf{1 2 0}$.
2) This Test is of $\mathbf{3}$ hours duration.
3) Use Black Ball Point Pen only for writing particulars on OMR Answer Sheet and marking answers by darkening the circle ' 0 ?.
4) Rough work is to be done on the space provided for this purpose in the Test Booklet only.
5) On completion of the test, the candidate must handover the Answer Sheet to the Invigilator in the Room / Hall. The candidates are allowed to take away this Test Booklet with them.
6) The CODE for this Booklet is B. Make sure that the CODE printed on the Answer Sheet is the same as that on this booklet. In case of discrepancy, the candidate should immediately report the matter to the Invigilator for replacement of both the Test Booklet and the Answer Sheet.
7) The candidate should ensure that the Answer Sheet is not folded. Do not make any stráy marks on the Answer Sheet.
8) Do not write your Seat No. anywhere else, except in the specified space in the Test Booklet / Answer Sheet.
9) Use of White fluid for correction is not permissible on the Answer Sheet.
10) Each candidate must show on demand his / her Admission Card to the Invigilator.
11) No candidate, without special permission of the Superintendent or Invigilator, should leave his /her seat.
12) Use of Manual Calculator is permissible.
13) The candidate should not leave the Examination Hall without handing over their Answer Sheet to the Invigilator on duty and must sign the Attendance Sheet (Patrak - 01). Cases where a candidate has not signed the Attendance Sheet (Patrak - 01) be deemed not to have handed over the Answer Sheet and dealt with as an unfair means case.
14) The candidates are governed by all Rules and Regulations of the Board with regard to their conduct in the Examination Hall. All cases of unfair means will be deall with as per Rules and Regulations of the Board.
15) No part of the Test Booklet and Answer Sheet shall be detached under any circumstances.
16) The candidates will write the Correct Test Booklet Code as given in the Test Booklet / Answer Sheet in the Attendance Sheet. (Patrak - 01)

PHYSICS

1) A current of $25 / \pi \mathrm{Hz}$ frequency is passing through an A.C. circuit having
 series combination of $\mathrm{R}=100 \Omega$ and $\mathrm{L}=2 \mathrm{D}$, the phase difference between voltage and current is \qquad
(A) 45°
$\frac{\omega L}{R}$
2) In A.C. circuit having only caplacion, the current \qquad $z 2 \sqrt{R^{2}+} \operatorname{lol}$
(C) 30° $\delta=\omega L$
(B) 60°
(D) 90° $22 \pi f \times 2$.
(A) lags behind the voltage by π in phase
(B) leads the voltage by $\pi / 2$ in phase
(C) leads the voltage by π in phase

$$
\frac{2100}{\sqrt{(100)^{2}+(100)^{2}}}
$$

(D) lags behind the voltage by $\pi / 2$ in phase

$$
2=141.42
$$

3) An alternating voltage given as $\mathrm{V}=100 \sqrt{2} \sin 100 t$ volt is applied to a capacitor of $1 \mu \mathrm{~F}$. The current reading of the ammeter will be equal to
\qquad mA .
(A) 80

$$
\frac{I 2100}{1 / 100 \times 1 \times 3)^{-6} 20}
$$

$$
\begin{aligned}
& v=100 \sqrt{2} \\
& v m s=\frac{v m}{\sqrt{2}}=\frac{100 \sqrt{2}}{\sqrt{2}}
\end{aligned}
$$

4) The distance of the closest approach of an alpha particle fired at a nucleus with kinetic energy K is r_{0}. The distance of the closest approach when the α particle is fired at the same nucleus with kinetic energy 2 K will be
(A) $2 r_{0}$
(B) $4 r_{0}$
(C) $\frac{x_{0}}{4}$
(D) $\frac{\mathrm{r}_{0}}{2}$.

GUJCET-E-2015 BOOKLET B
[3]

5) Number of spectral line in hydrogen atom is
(A) α
(B) 8
$\begin{aligned} & y \\ & 8 u \\ & \text { pa } \\ & 80\end{aligned}$
(C) 15
(D) 6

$$
80
$$

ePSon.
6) A radioactive element X disintegrates successively as under

If atomic number) and atomic mass number of X are respectively 72 and 180, what are the corresponding values for X_{4} ?
(A) 70,172
(C) 71,176
(B) $69,172, ~ \vee \gamma$
E^{2}
200 MOV

$$
6 \times 40.02 \times 10^{6-196.4} 2 \times 10^{6}
$$

7) The energy released by the fission 2 Pone uranium atom is 200 Mox . The मिल 200
$200^{N e}$ number of iss 2×10^{10}
$200^{0} 0^{(C)} 10 \times 10^{10} 10$ 1

$$
0.02 \times 10^{311}
$$

0 \qquad 200 MC (B) 2×10^{11}
(D) 10^{11}
\qquad .
-6 .
(238), the final product obtained is ${ }_{82} \mathrm{~Pb}^{206}$, then how many number of α and β particles are emitted?
(A) (8) and 12
(B) 6 and 8
(C) 12 and 6
(D) 8 and 6
(Space for Rough Work)

$$
\Delta V_{B E}=0.04
$$

(A) $1 \mathrm{k} \Omega, 200$
(C) $2 \mathrm{k} \Omega, 200$

$$
\begin{aligned}
& B^{2} \frac{\Delta \delta C}{\Delta I B} \text { (B) } 1 \mathrm{k} \Omega, 100 \\
& 2 \frac{2 \times 10^{-3}}{20^{(D)} \times 10^{-6}} \frac{2 \mathrm{k} \Omega, 100}{10^{-3}} 10^{3}
\end{aligned}
$$

$$
\begin{align*}
& \Delta I_{B}=20 \times 10^{6} \\
& \Delta T_{2} 2 \times 10^{-3} \\
& D^{2}= \\
& B=?
\end{align*}
$$ vectors make an angle of 60° with the optic axis of the plate. Find the percentage difference between initial and final intensities.

(A) 90%
(B) 50%

(D) 25%

$$
\begin{aligned}
& \frac{I O}{4}{ }^{2}{ }^{2} \theta \\
& I=\cos ^{\circ} \theta
\end{aligned}
$$

Light of wave length λ is incident on slit of width d. The resulting diffraction $\left.\frac{1}{-2}\right)^{\prime}$ pattern is observed on a screen placed at distance D. The linear width of central maximum is equal to width of the slit, then $\mathrm{D}=$ \qquad
(A) $\frac{2 \lambda}{d} \quad d=\bar{x}$.
(B) $\frac{2 \lambda^{2}}{d}$ $I=\frac{70}{4}$
(C) $\frac{d}{\lambda} \quad \bar{x} 2 \lambda D$
(b) $\frac{d^{2}}{2 \lambda}$

$$
\frac{2 d^{2}}{2}
$$

$$
\begin{aligned}
& a^{2} \frac{\lambda D}{a} \\
& \frac{d^{2}}{R \lambda}
\end{aligned}
$$

(Space for Rough Work)
12) In a $N-P-N$ transistor about 10^{10} electrons enter the emitter in $2 \mu \mathrm{~s}$, when it is connected to a battery. Then $\mathrm{I}_{\mathrm{E}}=$ $\mu \mathrm{A}$.
(A) 1600
(B) 400

$$
I_{C}=\frac{m e}{t^{1}}=\frac{10^{10} \times 1.6 \times 10^{19}}{2 \times 10^{-6}}
$$

(C) 800
(D) 200

$$
\begin{aligned}
& 16 \times 10^{-3} \\
& 1600 \times 10^{6}
\end{aligned}
$$

13) The effective length of a magnet is 31.4 cm and its pole strength is 0.8 Am . The magnetic moment, if it is bent in the form of a semicircle is \qquad Am^{2}.
(A) 0.12
(B) 1.2
(C) 0.16
(D) 1.6

14) Equal currents are passing through two very long and straight parallel wires in the same direction. They will \qquad
(A) neither attract nor repel each other

(C) lean towards each other
(D) repel each other
15) A voltmeter of a very high resistance is joined in the circuit as shown in figure. The voltage shown by this voltmeter will be

(A) 3 V
(C) 2.5 V
(B) 5 V

$$
\begin{aligned}
& V=R R \\
& I=10,1 A \\
& =10 \\
& V=1 \times 16 \\
& 206 .
\end{aligned}
$$

16) A galvanometer of resistance 50Ω is connected to a battery of 8 along with a resistance of 3950Ω in series. A full scale deflection of 30 div is obtained in the galvanometer. In order to reduce this deflection to 15 division, the resistance in series should be \qquad Ω
(B) 1950

$$
\text { (C) } 2000 \quad s=\frac{c i I q}{I-I q}
$$

(D) 7900
$\operatorname{Irr} \frac{28}{60}$ (C) 2000
$\sqrt{2}$ Letter

17) At a place on Earth, the vertical component of Earth's magnetic field $s \sqrt{3}$ times its horizontal component. The angle of dip at this place is \qquad .
(A) 0°
(B) 60°
(C) 45°
(D) $30^{\circ} \tan a^{B v} B h$.

$$
\begin{aligned}
& R=50 \Omega \\
& v=8 . \\
& R=3950 .
\end{aligned}
$$

18) Which gate can be obtained by shorting both the input terminals of a NOR gate.
(A) NARD
(p) NOT
(C) AND
(D) OR

19) An optical fiber can offer a band width of
(A) 250 MHz
(B) 100 GHz
(C) 750 MHz
(D) 100 MHz
20) To transmit a signal of 3 KHz frequency, the minimum length of antenna is
\qquad
(A) 75 km
(C) 50

21) 27 identical drops of mercury are charged simultaneously with the same potential of 10 Volt. Assuming the drop to be spherical, if all the charged drops are made to combine to form one large drop, then its potential will be
\qquad Volt.
(A) 10
(B) 40
(C) 160 .
(D) 90
22) When 10^{19} electrons are removed from a neutral metal plate through some process, the charge on it becomes \qquad
(A) $10^{-19} \mathrm{C}$
(C) $10^{19} \mathrm{C}$
(D) -1.6 C

23) One moving electron when comes closer to other stationary electron, then its kinetic energy and potential energy respectively \qquad and \qquad .
(A) decreases, decreases
(B) increases, increases
(C) decreases, increases
(D) increases, decreases

24) An inclined plane of length 5.60 m making an angle of 45° with the horizontal is placed in an uniform electric field $\mathrm{E}=100 \mathrm{Vm}^{-1}$. A particle of mass 1 kg and charge $10^{-2} \mathrm{C}$ is allowed to slide down from rest position from maximum height of slope. If the coefficient of friction is 0.1 , the time taken by the particle to reach the bottom is \qquad
(A) 1 s
$\begin{array}{ll}\text { (C) } 2 \mathrm{~s} & \mathrm{C} \\ \mathrm{BV} Q(X) & \text { (D) None of these }\end{array}$
25) Charges $1 \mu \mathrm{c}$ are placed at each of the four corners of a square of side 2_{2}.
$2 \sqrt{2} \mathrm{~m}$. The potential at the point of intersection of the diagonals is (K=9×10 SI unit)
(A) $18 \times 10^{3} \mathrm{~V}$
(C) $18 \sqrt[3]{2} \times 10^{3} \mathrm{~V}$

(B) 1800 V

26) A point charge q is situated at a distance r on axis £ er? end of a thin conducting rod of length L having a charge $Q[$ Uniformly distributed along its length]. The magnitude of electric force between the two is \qquad _.
(A) $\frac{\mathrm{KQq}}{r(r+L)}$
(B) $\frac{\mathrm{KQq}}{r^{2}}$
(C) $\frac{\mathrm{KQq}}{r(r-\mathrm{L})}$
(D) $\frac{2 \mathrm{KQ}}{r(r+\mathrm{L})}$

(Space for Rough Work)

27) If alpha particle and deutron move with velocity v and $2 v$ respectively, the ratio or their de - Broglie wave length will be \qquad

(C) $1: 1$

(B) $2: 1$
(D) $1: \sqrt{2}$

28) de - Broglie wave length of atom at TK absolute temperature will be
(A) $\sqrt{2 m K T}$

(C) $\frac{\sqrt{2 m K T}}{h}$
(D) $\frac{h}{m K T}$

$\frac{\lambda 1}{\lambda 2}$

29) If the wave length of light is $4000 \mathrm{~A}^{\circ}$, then the number of waves in 1 mm length will be \qquad -
(5) 25000
(B) 2500
(D) 25

30) The frequencies of X rays, γ rays and Ultra violet rays are respectively p, q
and r then p
(A) $p>q, q<r$
(C) $p<q, q<r$
(B) $p>q, q>r$
(D) $p<q, q>r$

31) Photons having energy 1 eV and 2.5 eV successively incident on af metal, having work function is 0.5 eV . The ratio of maximum speed of emitted electrons is
(A) $1: 3$
(C) $3: 1$.
(B) $2: 1$
(D) $1: 2$

$$
\frac{1-0.5}{2.5-0 . \pi}
$$

(Space for Rough Work)
32) A and B are two points on a uniform ring of radius, The resistance of the ring is $R . \angle A O B=\theta$ as shown in the figure. The equivalent resistance between points $A \& B$ is \qquad .

(A) $\frac{P}{4 \pi^{2}}(2 \pi-\theta) \theta$
(B) $\frac{\mathrm{R}(2 \pi-\theta)}{4 \pi}$
(C) $R\left(1-\frac{\theta}{2 \pi}\right)$
(D) $\frac{R \theta}{2 \pi}$
33) Two wires of equal length and equal diameter and having resistivities ρ_{1} and ρ_{2} are connected in series. The equivalent resistivity of the combination is \qquad -.
(A) $\sqrt{\rho_{1} \rho_{2}}$

$$
S_{1}=\frac{p A}{e}
$$

(C) $\frac{\rho_{1} \rho_{2}}{\rho_{1}+\rho_{2}}$
(D) ${ }^{\circ}\left(\rho_{1}+\rho_{2}\right)$

$$
=S_{2}=\frac{R_{p} A}{e}
$$

2
34) Match the following two columns.

Column I		Column II	
a)	Electrical resistance	p)	$\mathrm{ML}^{3} \mathrm{~T}^{-3} \mathrm{~A}^{-2}$
b)	Electrical potential)	q)	$\mathrm{ML}^{2} \mathrm{~T}^{-3} \mathrm{~A}^{-2}$
c)	Speefficresistance	ry	$\mathrm{ML}^{2} \mathrm{~T}^{-3} \mathrm{~A}^{-1}$
d)	Specticconductance	s)	None of these

(A) $a-p, b-r, c-q, d-s$
(B) $a-q, b-r c-p, d-s$
(C) $a-p, b-q, c-s, d-r$
$M L^{2} T^{-3} A^{-2}$

$$
\begin{aligned}
& m L^{2} T^{-3}-3=-2 \\
& m^{3} T^{-3} A^{2}
\end{aligned}
$$

(D) $a-q, b-s, c-r, d-p$
35) Angle of minimum deviation for a prism of refractive index 1.5 y equal to the angle of prism of given prism. Then the angle of prism is \qquad $\left(\sin 48^{\circ} 36^{\prime}=0.75\right)$
(A) $82^{\circ} 48^{\prime}$
(B) 80°
(C) 60°

(D) $41^{\circ} 24^{\prime}$

m. 18
36) A ray of light passes from rhodium A having refractive index 1.6 to the medium B having refractive index 1.5 . The value of critical angle of medium. A is \qquad $\left(\frac{15}{16}\right)$ inc $\frac{21}{n}$
$\frac{1.5 \times 2 \frac{2882 A}{85)^{2}}}{}$ (A) $\sin ^{-1}\left(\frac{15}{16}\right)$
(B) $\sin ^{-1} \sqrt{\frac{16}{15}}$ $48 \times 2=2 n$
(D) $\sin ^{-1}\left(\frac{16}{15}\right) \quad 2$ (8)
(C) $\sin ^{-1}\left(\frac{1}{2}\right)$
$=\frac{1}{1.6}$.
(Space for Rough Work)

GUJCET-E-2015 BOOKLET B

$$
\begin{aligned}
& \frac{16}{1.5} \frac{16 \times 16}{10 \times 15} \quad 48^{\circ} 36^{\prime}=\sin \frac{10}{2} \\
& \sin ^{c} c^{2} \frac{1}{12]}=\sin ^{-1}\left(\frac{15}{16}\right)
\end{aligned}
$$

37) The power of plane mirror is

(A) 4 D
(B) 0
(C) 2 D
(D) ∞
38). Light waves travel from optically rarer medium to optically denser medium. Its velocity decreases because of change in
(A) phase
(B) wavelength
(C) amplitude
(D) frequency
38) The Network shown in Figure is a part of the circuit. (The battery has negligible resistance)

39) A rod of 10 cm length is moving perpendicular to uniform magnetic field of intensity $5 \times>0 \mathrm{~Wb} / \mathrm{m}^{2}$. If the acceleration of the rod is $5 \mathrm{~m} / \mathrm{s}$, then the rate of increase of induced emf is \qquad
(A) $20 \times 10^{-4} \mathrm{Vs}^{-1}$
(B) $25 \times 10^{-4} \mathrm{Vs}$
(C) $20 \times 10^{-4} \mathrm{Vs}$
(D) $2.5 \times 10^{-4} \mathrm{Vs}^{-1}$

(Space for Rough Work)

CHEMISTRY

41) What is IUPAC name for isophthalic acid?
(A) Benzene - 1,5 dicarboxylic acid

(C) Benzene - 1, 4 dicarboxylic acid
(D) Benzene-1, 3 dicarboxylic acid
42) What is the name for red azo dye)
(A) p-N,N dimethyl amino azo benzene
(B) β - napthyl azo benzene
(C) p-amino azo benzene
(D) p - hydroxy azo benzene
43) Which of the following is not formed by Sandmayer reaction?
(A) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CN}$
(B) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{I}$
(C) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Br}$
(D) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$

For which vitamin liyer is not the source?
(A) itamin - H
(B) Vitamin $-B_{2}$
(C) Vitamix $-\mathrm{B}_{12}$
(D) Vitamin $-B_{1}$
(Space for Rough Work)
45) In which of the following compound, all the monosaccharide units are not joined by $\mathrm{C}_{1}-\mathrm{O}-\mathrm{C}_{4}$ chain.
(A) Amylopectin
(B) Lactose
(C) Cellulose
(D) Maltose
46) Which of the following polymer is formed by cationic addition polymerisation reaction?
(A) PVC
(B) Poly styrene
(C) Teflon
(D) Butyl rubber
47) Which of the following polymer is used in pigment?
(A) Orlon x
(C) Teflon

48) To prevent food from spoilage by microorganism, which substance is used?
(A) Tetgazine
(C) Salt of sorbic acid
(B) Aneto
(D) Aspartame
$>$
(Space for Rough Work)
49) Which of the following defect is seen infeO?
(A) Impurity defect
(B) Metal deficiency defect
(C) Displacement defect
(D) Metal excess defect
50) Which of the following substance possess antiferromagnetic property?
(A) MnO
(B) CrO_{2}^{-}
(C) $\mathrm{H}_{2} \mathrm{O}$
(D) $\mathrm{Fe}_{3} \mathrm{O}_{4}$
51) The boiling points for aqueous solutions of sucrose and urea are same at constant temperature. If 3 gm of urea. is dissotved in its litre solution, what is the weight of sucrose dissolved in its 1 litre solution?
[Urea $-60 \mathrm{gm} /$ mole, sucrose $=342 \mathrm{gm} / \mathrm{mole}$]
(A) 34.2 gram
(C) 6.0 gram
(B) 17.1 gram
(D) 3.0 gram
52) Which option is inconsistant for Raoult's law?
(A) Solute undergoes dissociation in solution
(B) The change in heat of dilution for solution $=0$
(C) Solute does not undergo association in solution
(D) Volume of liquid solvent + volume of liquid solute $=$ volume of solution.
53) Which colligative property is more useful to determine the molecular wei git of the substances like proteins and polymers?
(A) Osmotic pressure
(B) Elevation in boiling point
(C) Depression of freezing point
(D) Lowering of vapour pressure
54) The resulting solution -obtained at the, end of electrolysis of concentrated aqueous solution of NaCl
(A) the colour of red or blue litmus does not change
(B) turns blue litmus into red
(C) remains colourless with phenolphthalein
(D) turns red litmus into blue
55) The value of $E_{\text {red }}^{o}$ for metal A, B and C are 0.34 Volt, -0.80 Volt and 0.46 Volt respectively. State the correct order for their ability to act as reducing agent.
(A) $\mathrm{C}>\mathrm{A}>\mathrm{B}$
(B) A $>$ B $>$ C

(A) \quad C $>\mathrm{A}>\mathrm{B}$
(c) $\mathrm{B}>\mathrm{C}>\mathrm{A}$

Cath Anode
of $\mathrm{C}>\mathrm{B}>\mathrm{A}$
0_{2}
-10.
56) To electrolytic cells containing molten solutions of Nickel chloride \& Aluminiumentride are connected in series. If same amount of electric current is passed through them, what will be the weight bf Nickel -obtained when 48 gm of Aluminium is obtained? ($\mathrm{Al}-27 \mathrm{gm} / \mathrm{mole}, \mathrm{Ni}-58.5 \mathrm{gm} / \mathrm{mole}^{-1}$)
(A) 5.85 gm
(B) 117 gm
(C) 29.25 gm
(D) 58.5 gm

57) Which method is used to get very pure germanium used in semiconductor?
(A) zone -refining
(B) vapour - phase refining
(C) liquation
(D) electrolysis
58) Which product will be obtained in the following reaction? Reaction: $\mathrm{P}_{4_{(s)}}+3 \mathrm{NaOH}_{(a q)}+3 \mathrm{H}_{2} \mathrm{O}_{(l)} \rightarrow 2 \mathrm{PH}_{3}+3 \mathrm{MaH}_{2} \mathrm{PO}_{2}$
(A) $2 \mathrm{PH}_{3_{(8)}}+3 \mathrm{NaH}_{2} \mathrm{PO}_{2_{(a q)}}$
(B) $\mathrm{PH}_{3_{(g)}}+3 \mathrm{NaH}_{2} \mathrm{PO}_{2_{(p q)}}$
(C) $2 \mathrm{PH}_{3_{(g)}}+3 \mathrm{Na}_{2} \mathrm{HPO}_{2_{(a q)}}$
(D) $\mathrm{PH}_{3_{(8)}}+3 \mathrm{Na}_{2} \mathrm{HPO}_{2_{(a q)}}$
59) The molecular formulae for phosgene and tear gas are \qquad and \qquad respectively.
(A) SOCl_{2} and $\mathrm{CCl}_{3} \mathrm{NO}_{2}$ COCl_{2} $\mathrm{Cel}_{3} \mathrm{NO}_{2}$
(B) COCl_{2} and $\mathrm{CCl}_{2} \mathrm{NO}_{2}$

(D) SOCl_{2} and $\mathrm{CCl}_{2} \mathrm{NO}_{2}$
60) Which of the following mixture is called Aquaregia?
(A) Three parts of conc. HCl and 1 part of conc. HNO_{3}
(B) Three parts of dil. HCl and 1 part of conc. HNO_{3}
(C) Three parts of conc. HCl and 1 part of dill. HNO_{3}
(D) Two parts of conc. HCl and two parts of conc. HNO_{3}
61) Which of the following is allylic halide?
(A) 3 -chloro cyclo hex-1-ene
(B) (1-bromo ethyl) benzene
(C) 1 - bromo benzene
(D) Benzyl chloride

62) 50% of the reagent is used for dehydrohalogenation of $6.45 \mathrm{gu}_{\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl}}$. What will be the weight of the main product obtained? $100-64.5$. [At. mass of H, C and Cl are $1,12 \& 35.5 \mathrm{gm} / \mathrm{mole}^{-1}$ respectively] 50% -
(A) 5.6 gm
(C) $2.8 \mathrm{gm} \mathrm{CnH} \mathrm{C}_{2}:=6.45$
(B) 1.4 gm
(D) 0.7 gm
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}_{2} \mathrm{O}_{2}{ }^{\circ}$
64.5 .32 .25
63) Name the following reaction $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl}+\mathrm{NaI}$

(A) Hell-Volhard Zelinsky reaction
(B) Frinkel-stein reaction

$$
C_{n+2}=64.5
$$

(C) Wurtz reaction
(D) Swartz reaction
$2 n 264.5$
$y, \quad \therefore \quad \vdots$

1. $\mathrm{CH}_{2} \mathrm{CO}_{2}$
64) Which reagent is used for bromination of methyl plenyl ether?
(A) HBr / \triangle
(B) $\mathrm{Br}_{2} / \mathrm{CH}_{3} \mathrm{COOH}$
(C) $\mathrm{Br}_{2} / \mathrm{FeBr}_{3}$
(D) $\mathrm{Br}_{2} / \operatorname{Red} \mathrm{P}$
31.75-(9) 8.8.
 $6.45-28$. $645-$?
(Space for Rough Work)
65) Which of the following acid does not have -COOH group?
(A) Salicylic acid
(B) Picric acid
(C) Benzoic acid
(D) Ethanoic acid
66) Whicher the following statement is not correct

Boiling point of o -nitrophenol is lower than that of p -nitrophenol
Phenol is neutralised by sodium carbonate
(C) Solubility of phenol in water is more than that of chlorobenzene
(D) Phenol is used to prepare analgesic drugs
67) Total order of reaction $X+Y \rightarrow X Y$ is 3 . The order of reaction with respect to X is 2. State the differential rate equation for the reaction.
(A) $-\frac{d[\mathrm{X}]}{d t}=\mathrm{K}[\mathrm{X}][\mathrm{Y}]^{2}$
(B) $-\frac{d[\mathrm{X}]}{d t}=\mathrm{K}[\mathrm{X}]^{0}[\mathrm{Y}]^{3}$
(C) $-\frac{d[\mathrm{X}]}{d t}=\mathrm{K}[\mathrm{X}]^{2}[\mathrm{Y}]$
(D) $-\frac{d[\mathrm{X}]}{d t}=\mathrm{K}[\mathrm{X}]^{3}[\mathrm{Y}]^{0}$ $\left.=K C x^{r}\right]^{d t}[x]^{1}$.
68) $\mathrm{X} \xrightarrow{\text { Step- } \mathrm{C}} \mathrm{Y} \xrightarrow{\text { Step }-\mathrm{II}} \mathrm{Z}$ is a complex reaction. Total order of reaction is 2 and Step - II is slow step. What is molecularity of Step-II?
(A) 4
(B) 2
(C) 3
(D) 1
(Space for Rough Work)

GUJCET-E-2015 BOOKLET B

Reaction $3 \mathrm{ClO}^{-} \rightarrow \mathrm{ClO}_{3}^{-}+2 \mathrm{Cl}^{-}$occurs in following two steps.
(i) $\mathrm{ClO}^{-}+\mathrm{ClO}^{-} \xrightarrow{\mathrm{K}_{1}} \mathrm{ClO}_{2}^{-}+\mathrm{Cl}^{-}$(Slow step)
(ii) $\mathrm{ClO}_{2}^{-}+\mathrm{ClO}^{-} \xrightarrow{\mathrm{K}_{2}} \mathrm{ClO}_{3}^{-}+\mathrm{Cl}^{-}$(Fast step)
then the rate of given reaction $=$ \qquad \therefore
(A) $\mathrm{K}_{2}\left[\mathrm{ClO}^{-}\right]^{3}$
(B) $\mathrm{K}_{1}\left[\mathrm{ClO}^{-}\right]$
(C) $\mathrm{K}_{2}\left[\mathrm{ClO}_{2}^{-}\right]\left[\mathrm{ClO}^{-}\right]$
(D) $\mathrm{K}_{1}\left[\mathrm{ClO}^{-}\right]^{2}$
70) At given temperature and pressure adsorption of which gas of the following will take place the most?
(A) Di nitrogen $\cup 2$
(B) Di oxygen 2
© (C) Ammonia
(D) Di hydrogen H_{2} NH_{3}
71) Which type of colloid is the dissolution of sulphur $\left(\mathrm{S}_{8}\right)$?
(A) Macromolecular colloid
(B) Micelle
Multimolecular colloid
(D) Associated colloid
72) For Adsorption phenomenon,
(A) $\Delta \mathrm{H}=+\mathrm{ve}, \Delta \mathrm{S}=+\mathrm{ve}$
(B) $\Delta \mathrm{H}=-\mathrm{ve}, \Delta \mathrm{S}=+\mathrm{vc}$
(C) $\Delta \mathrm{H}=-\mathrm{ve}, \Delta \mathrm{S}=-\mathrm{ve}$
(D) $\Delta \mathrm{H}=+\mathrm{ve}, \Delta \mathrm{S}=-\mathrm{ve}$
73) Which of the following statement is incorrect for KMnO_{4} ?
(A) It is dark purple coloured amorphous substance. X
(B) It is used as antiseptic.
(C) It is used as bleaching agent in textile industries.
(D) It is an oxidising agent.
74) Which of the following ion has the maximum theoretical magnetic moment

(B) CB 3 (5 4. $3 d^{3}$ Bun 4
(D) Fe^{3+}

3+ ${ }^{5} \mathrm{~s}^{2}$

(A) $\mathrm{Gd}_{2} \mathrm{O}_{3}$
(B) $\mathrm{Pr}_{2} \mathrm{O}_{3}$
(C) $\mathrm{Sm}_{2} \mathrm{O}_{3}$
(D) $\mathrm{La}_{2} \mathrm{O}_{3}$

CQ
76) Which of the following spectrochemical series is true?
(A) $\mathrm{SCN}^{-}<\mathrm{F}^{-}<\mathrm{en}<\mathrm{CO}<\mathrm{NH}_{3}$
(B) $\mathrm{SCN}^{-}<\mathrm{F}^{-}<\mathrm{NH}_{3}<\mathrm{en}<\mathrm{CO}$
(C) $\mathrm{SCN}^{-}<\mathrm{F}^{-}<\mathrm{en}<\mathrm{NH}_{3}<\mathrm{CO}$
(D) $\mathrm{SCN}^{-}<\mathrm{NH}_{3}<\mathrm{F}^{-}<$en $<\mathrm{CO}$
(Space for Rough Work)
77) Which of the following complex is paramagnetic? $-22 x-4$
(A) or the following complex is paramagnetic? $-2+42 x$
(A) $\left[\mathrm{NiCl}_{4}\right]^{2-}$
(B) $\mathrm{CO}_{\left(\mathrm{NH}_{3}\right)_{6} 6^{3+}}{ }^{(\mathrm{D})}\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$
(C) $\xrightarrow{\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}}$
(D) $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$

78) Both $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$ and $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]$ are diamagnetic. The types of hybridisation of Ni in thesecomplexes are \qquad $\& d_{s} p^{2}$ respectively.
(A) $\mathrm{dsp}^{2}, \mathrm{dsp}^{2}$
(C) $\mathrm{dsp}^{2}, \mathrm{sp}^{3}$
(B) $\mathrm{sp}^{3}, \mathrm{dsp}^{2}$
$3 a^{84} s^{1}$
(D) $\mathrm{sp}^{3}, \mathrm{sp}^{3}$

S73 Which of the following order of acidic strength is not correct?
80) What is the formula of Acrolein?
(A) $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CONH}_{2} \quad \mathrm{CH}_{2} \mathrm{ClCOOH} \mathrm{CHCl}_{2} \mathrm{CCl}_{3}$.
(f) $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CN}$
(C) $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{COOH}$
(1)) $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CHO}$
(Space for Rough Work)

BIOLOGY

81) A - The DNA fingerprint is the same for every cell, tissue and organ of a person? 7

R - DNA fingerprint is used for treatment of inherited disorders like Huntigton's disease, Alzheimer's and Sickle cell anemia.f
(A) A is wrong and R is correct
(B) A and R both are correct but R is not explanation of A
(C) A is correct and R is wrong
(D) A and R both are correct. R is explanation of A .
82) Which part is not included in Coehlear duct?
(A) Tectorial membrane
(B) Macula of Utricle
(C) Scala Media
(D) Reissner's membrane
83) Which is Gynandromorph type of animal?
(A) Drossophilla
(B) Beetles
(C) Silk worms
(D) All of the above
84) DNA polymerase enzyme is isolated from which bacteria?
(A) Agro bacterium
(8) Thermus aquaticus
(C) Bacillus thrunegenesis
(D) E.Coli
(Space for Rough Work)
85) Match the column I, II and III

Column I
P) Trichomoniasis
Q) Syphilis
R) Gonorrhoea

Column 11
i) Herpes Simplex
ii) Neisseria gonorrhoeal
iii), Treponema

- Pallidium
iv) Trichomonas Vaginalis
(A) $(\mathrm{P}-\mathrm{i}-\mathrm{z})(\mathrm{Q}-\mathrm{ii}-\mathrm{y})(\mathrm{R}-\mathrm{iv}-\mathrm{w})(\mathrm{S}-\mathrm{iii}-\mathrm{x})$
(B) $(P-i v-y)(Q-i-z)(R-i i-x)(S-i i i-w)$
(C) $(P-i v-x)(Q-i-w)(R-i i-y)(S-i i i-z)$
(D) $(\underset{ }{(P-i v-y)(Q-i i i-z)(R-i i-x)(S-i-w) ~}$

86) What is the height and weight of twelve weeks old human embryo?
(A) $32 \mathrm{~cm}, 650$ gram
(B) $7.5 \mathrm{~cm}, 14$ gram
(C) $42 \mathrm{~cm}, 1800$ gram
(D) $7.5 \mathrm{~cm}, 650$ gram

S) Genital herpes

Column III
x) Pain in lower abdomen
y) Inflammation and itching in and around
vagina
z). Patchy hair loss
w) Feeling of uneasiness
87) Assertion A : Restriction endonuclease recognize short palindromic sequence and cut at specific sites. T
Reason - R : When a restrictiqn endonuclease acts on Palindrome, it cleaves both the strands of DNA molecule. T
(A) A is wrong and R is correct
(B) A and R are both correct but R is not explanation of A
(C) A is correct and R is wrong
(D) A and R are both correct. R is explanation of A .
88) Write proper option by matching column I, II and III.

Column I (Name)	Column II (Enzyme)	Column III

i)

P) , Chymotrypsinogen
ii) Intestinal Juice) Q Q P Ptylin
A) Dipeptide convert into amino acid
B) Proteoses convert into small polypeptides

C) Casein convert into paracasein.
D) Conversion of starch into maltose
(A) (i $-\mathrm{Q}-\mathrm{A}$) (ii $-\mathrm{P}-\mathrm{C})($ iii $-\mathrm{R}-\mathrm{B})($ iv $-\mathrm{S}-\mathrm{D})$
(B) $(\mathrm{i}-\mathrm{R}-\mathrm{C})(\mathrm{ii}-\mathrm{S}-\mathrm{A})$ (iii $-\mathrm{Q}-\mathrm{D})$ (iv $-\mathrm{P}-\mathrm{B}$)
(C) $(\mathrm{i}-\mathrm{S}-\mathrm{D})(\mathrm{ii}-\mathrm{R}-\mathrm{C})(\mathrm{iii}-\mathrm{P}-\mathrm{B})(\mathrm{iv}-\mathrm{Q}-\mathrm{A})$
(D) $(\mathrm{i}-\mathrm{R}-\mathrm{C})(\mathrm{ii}-\mathrm{S}-\mathrm{A})(\mathrm{iii}-\mathrm{Q}-\mathrm{B})(\mathrm{iv}-\mathrm{P}-\mathrm{D})$

(Space for Rough Work)

89) Write the correct sequence ofgenetic diversity).
(A) Kingdom \rightarrow Species \rightarrow Chromosomes \rightarrow Genes \rightarrow Nucleotides
(B) Population \rightarrow Species \rightarrow Chromosomes \rightarrow Genes \rightarrow Nucleotides
(C) Species \rightarrow Genes \rightarrow Population \rightarrow Chromosomes \rightarrow Nucleotides
(D) Kingdom \rightarrow Population \rightarrow Species \rightarrow Genes \rightarrow Chromosome \rightarrow Nucleotides
90) Match the column I and II and select the correct option.

Column I
A) Zooto Plankton
B) Small fishes
P) 0.003 ppm
C) Water
D) Fish eating birds
E) Big fishes

Column II (concentration of DDT in ppm)

	A	B	C	D	E
(A)	Q	P	S	T	R
(B)	S	T	P	Q	R
(C)	S	T	R	Q	P
(D)	S	T	P	R	Q

91) Which of the following disease shows the blockage of kidney tubules and causes severe back pain?
(A) Nephritis
(B) Kidney failure
(C) Uremia
(D) Renal calculi
92) During photorespiration which compounds are formed having 2C and 3C respectively in Peroxisome?
(A) Phosphoglycerate, Glycolate
(B) Glycine, Glycerate
(C) Serine, Glycine $2 C$
(D) Glycolate, Glycine
93) During rainy season wooden doors and windows are not properly closed. Why?
(A) Imbibition
(B) Diffusion
(C) Osmosis
(D) Plasmolysis
(Space for Rough Work)

GUJCET-E-2015 BOOKLET \mathbf{B}
94) Match the column I, II and III

Column I

Column II
A) Sickle Cell
Anaemia
Bł Phenyl Ketonuria
C) Alkaptonuria
D) Thalassaemia
i) $\frac{\text { Due to recessive }}{\text { PP genes }}$
P) Arrangement of Valine in place of Glutamic acid
ii) Due to absence of homogentisic oxidase enzyme
Q) Inborn error of metabolism
iii) Follows Mendelian P Principles

Urine turns black when exposed to air
iv) Characters caused bỹ homozygous recessive genes
(A) $(\mathrm{A}-\mathrm{iii}-\mathrm{R})(\mathrm{B}-\mathrm{i}-\mathrm{Q})(\mathrm{C}-\mathrm{iv}-\mathrm{P})(\mathrm{D}-\mathrm{ii}-\mathrm{S})$
(B) $(A-i v-P)(B-i-Q)(C-i i-R)(D-i i i-S)$
(C) $(A-i v-P)(B-i i i-R)(C-i-S)(D-i i-R)$
(D) $(\mathrm{A}-\mathrm{ii}-\mathrm{S})(\mathrm{B}-\mathrm{iii}-\mathrm{R})(\mathrm{C}-\mathrm{i}-\mathrm{Q})(\mathrm{D}-\mathrm{iv}-\mathrm{P})$
95) Which of thefollowing is the symptom of Ulcerative colitis?
(A) Eyes turn yellow
(B) Difficulty in swallowing
(C) Loss of appetite
(D) Watery stools containing blood and mucus
96) Which one is not cranial bone?
(A) Sphenoid
(B) Zygometic
(C) Temporal
(D) Frontal
97)

In this process which of the following play important role?
(A) Chlorophyll
(B) Light energy
(C) $\mathrm{Ca}^{++}, \mathrm{Mn}^{++}, \mathrm{Cl}^{-}$
(D) All of the above
98) Which of the following is correct trend of succession in Hydroseric) succession?
(A) Rooted submerged \rightarrow Phytoplankton \rightarrow Reed swamp \rightarrow Sedge medow
(B) Phytoplankton \rightarrow Reed swamp \rightarrow Rooted submerged \rightarrow Sedge mesw
(C) Phytoplankton \rightarrow Sedge medow \rightarrow Reed swamp \rightarrow Root submerged
(D) $\underset{\substack{\text { Phytaplankton } \\ \text { mag }}}{\text { Satw }} \rightarrow$ Rooted submerged \rightarrow Reed swamp \rightarrow Sedge
99) On which surface of cell Donnan equilibrium occur?
(A) Nuclear membrane
(B) Tonoplast
(C) Plasma membrane
100) Which type of gene regulate sex-determination in Spinach plant?
(A) Multiple genes
(B) Heterozygous genes
(C) Single gene
(D) Homozygous genes
101) When the respiratory substances are more than one then which respiratory substrates are not used?
Pure Protein
(C) Carbohydrate
(B) Lipid
(D) (A) and (B) both
102) State the condition of muscle contraction in following diagram.

(A) Resting potential
(B) Contraction
(C) Maximally contracted
(D) None
(Space for Rough Work)
103) How many years are considered in one minute in Geological clock?
(A) 1,90,000 years
(B) $1,87,500,000$ years
$3,25,000$ years
(D) 52000 years
104) Which structure is formed at the time of exchange of gamete nuclei in given animal during sexual reproduction.

(C) Internal tubule
(B) Cytoplasmic filaments
(D) Plasmodesmata
105) Name the plant shows adventive embryonic cells.
(A) Lemon and Palms
(B) Citrus and Mango
(D) Sunflower and Mango
(Space for Rough Work)
106) During respiration \qquad .
(A) PGAL is not produced during respiratory events
(B) 2 PGAL during glycolysis and 4 Pyruvic acid are produced in Kreb's cycle
(C) 2 PGAL during glycolysis and 2 Pyruvic acid are produced in Kreb's cycle
(D) 2 PGAL during glycolysis and none of thePGAL produced in Kreb's cycle
107) Which of the following function is performed by collecting tubule of kidney? In the maintenance of pH and ionic balance of blood by the secretion of H^{+}and K^{+}ions
(B) Maintenance of pH of blood and removal of Na^{+}and K^{+}ions
(C) Absorption of glucose and ammonia from the blood
(D) None of above
108) A - Nerve fibre can become excited through touch, smell, pressure and chemical changes and there is a change in polarity.
R - It is called active potential. T
(A) A is wrong and R is correct
(B) A and R both are correct but A is not correct explanation of R.
(C) A is correct and R is wrong
(D) A and R both are correct and A is correct explanation of R .

(Space for Rough Work)

109) Select proper option, by matching column I, II and III.
Column I
(Common Name)
Column II
(Roman Numerical
Designation)

Column III
(Activation product)
P) Prothrombin)
$x), I$
i) Convertin
Q) Proconvertio
y) V
ii) Fibrin
iii) Thrombin
R) Fibrinogen
S) Proaccelerin
z) II
w) VII
iv) Accelerin
(A) $(P-z-i i i)$ (Q-w-i) (R-x-ii) $(S-y-i v)$
(B) $(\mathrm{P}-\mathrm{w}-\mathrm{ii})(\mathrm{Q}-\mathrm{z}-\mathrm{iii})(\mathrm{R}-\mathrm{y}-\mathrm{iv})(\mathrm{S}-\mathrm{x}-\mathrm{i})$
(C) $(\mathrm{P}-\mathrm{z}-\mathrm{iii})(\mathrm{Q}-\mathrm{w}-\mathrm{ii})(\mathrm{R}-\mathrm{x}-\mathrm{iv})(\mathrm{S}-\mathrm{y}-\mathrm{i})$
(D) $\overline{(P-z-i i i)}(Q-w-i)(R-y-i i)(S-x-i v)$
110) What is " A " and " B " in given diagram?
(A) $A=$ Lagging strand
$B=$ Movement of Helicase
(B) $\mathrm{A}=$ RNA Primer
$B=$ DNA Helicase
(C) $A=$ Single strand Binding Protein
$B=$ DNA Helicase ${ }^{-}$
(D) $A=$ RNA Primer
$\mathrm{B}=\mathrm{RNA}$ Helicase

(Space for Rough Work)

GUJCET-E-2015
111) In which field application of biotechnology occurs?
(A) Bio-medicine
(B) Agriculture
(C) Environmental field
(1)) All of the above
112) \qquad shows anti-allergic and anti-inflammatory effect.
(A) Noradrenaline
(B) Glucocorticoids
(C) Sexcorticoids
(D) Mineralocorticoids
113) During the process of decomposition in which stage complex organic matter convert into inorganic ions and salts by fungi?
(A) Mineralization
(B) Catabolism
(C) Fragmentation
(D) All of the above
114) How much amount of volume of air is in lungs FRC?
(A) 1600 ml to 2100 ml
(B) 2100 ml to 2500 ml
(C) 2500 ml to 3000 ml
(D) 1500 ml to 1600 ml
(Space for Rough Work)

$=1100 t$
115) What indicated " A " in given figure?

(A) Hydrophobic bond
(B) Glycocidic bond
(C) Disulfide bond
(D) Peptide bond
116) What is totaldiastolic time of ventricle in cardiac cycle?
(A) 0.10 second
(B) 0.40 second
(C) 0.50 second
(D) 0.30 second
$0.1-0.1$
$0.3-$
$0.4 \quad 0.4$
205
117) Which amino acid determines by four genetic codes?
(A) Tyrosine (Tyr)
(B) Proline (Pro)
(C) Serine (Ser)
(D) Leucine (Leu) 6 .

(Space for Rough Work)

GUJCET-E-2015
118) Which is the inhibitory hormone of GH?
(A) Testosterone
(B) Parathormone
(C) ${ }^{\text {S }}$ Somatostatin
(D) Insulin
119) Complete and balanced the following reaction.
$\mathrm{Na}_{2} \mathrm{HPO}_{4}+\mathrm{X} \rightarrow \mathrm{Y}+\mathrm{NaH}_{2} \mathrm{PO}_{4}$
(A) $\mathrm{X}=\underline{\mathrm{H}_{2} \mathrm{CO}_{3}}, \quad \mathrm{Y}=\underline{\mathrm{NaHCO}_{3}}$
(B) $\mathrm{X}=\mathrm{H}_{2} \mathrm{CO}_{3}^{-}, \quad \mathrm{Y}=\mathrm{NaH}_{2} \mathrm{CO}_{3}$
(C) $\mathrm{X}=\mathrm{NaHCO}_{3}, \quad \mathrm{Y}=\mathrm{H}_{2} \mathrm{CO}_{3}$
(D) $\mathrm{X}=\mathrm{NaHCO}_{3}, \quad \mathrm{Y}=\mathrm{NaCl}$
120) How many molecules of ATP and NADPH are require in formation of two molecules ofglueose How many Calvin cycles are required?
(A) $24 \mathrm{ATP}, 36 \mathrm{NADPH}, 12$ Calvin cycles
(B) 18 ATP, $12 \mathrm{NADPH}, 6$ Calvin cycles
(C) 36 ATP, $24 \mathrm{NADPH}, 6$ Calvin cycles $1-218 \mathrm{ATP} 12 \mathrm{RAD}$.
(D) 36 ATP, 24 NADPH, 12 Calvin cycles

2 -36. 24 NAD

$\therefore 12$ cycles

(Space for Rough Work)

