BLUE PRINT FOR MODEL QUESTION PAPER – 4

SUBJECT : PHYSICS (33)

CLASS : II PUC

Unit	Chapter	Торіс	Teaching Hours	Marks allotted	1 mark (VSA)	2 mark (SA1)	3 mark (SA2)	5 mark (LA)	5 mark (NP)	
1	1	Electric Charges and Fields	9	8	~	~		~		
2	2	Electrostatic Potential and Capacitance	9	8			~		V	
3	3	Current Electricity	15	13	~	\checkmark		V	~	
4	4	Moving Charges and Magnetism	10	8			>	~		
5	5	Magnetism and Matter	8	7	~	~	~			
5	6	Electromagnetic Induction	7	6	~	~	~			
	7	Alternating Current	8	8			\checkmark		✓	
6	8	Electromagnetic Waves	2	2		~				
7	9	Ray Optics and Optical Instruments	9	8	~	~			~	
8	10	Wave Optics	9	8			\checkmark	\checkmark		
9	11	Dual nature of Radiation And Matter	6	5	~		~			
	12	Atoms	5	5	~			\checkmark		
	13	Nuclei	7	6	✓				\checkmark	
10	14	Semiconductor Electronics	12	10	✓	✓	√	✓		
	15	Communication Systems	4	3	~	~				
		TOTAL	120	105	10	16	24	30	25	

MODEL QUESTION PAPER - 4 II P.U.C. PHYSICS (33)

PART A

Time: 3 hours 15 min.

General instructions:

a) All parts are compulsory.

b) Answers without relevant diagram/figure/circuit wherever necessary will not carry any marks. c) Direct answers to the Numerical problems without detailed solutions will not carry any marks.

I. Answer the following

- 1. What is the electric field strength inside a charged spherical conductor?
- 2. How does the resistivity of a conductor vary with temperature?
- 3. State Gauss's law in magnetism.
- 4. Name one application of eddy current.
- 5. What type of lens is used to correct the myopic eye?
- 6. What is the rest mass of photon?
- 7. Write one limitation of Bohr's atom model.
- 8. Define mean life of a radioactive element.
- 9. Write the logic symbol of NAND gate.
- 10. What is attenuation in communication system?

PART - B

Π Answer any FIVE of the following questions.

- 11. Write Coulomb's law in vector form and explain the terms.
- 12. Mention two limitations of ohm's law.
- 13. Write two differences between dia and paramagnetic substances.
- 14. Current in a coil falls from 5A to 0A in 0.1 s, calculate the induced emf in a coil if its self inductance is 4H.
- 15. Give two uses of UV rays.
- 16. Draw the ray diagram for the formation of image in case of a concave mirror when the object is placed at the centre of curvature of a mirror.
- 17. Distinguish between intrinsic and extrinsic semiconductors.
- 18. Draw the block diagram of AM transmitter.

PART - C

III Answer any FIVE of the following Questions.

- 19. Derive the relation between electric field and electric potential.
- 20. Arrive at the expression for velocity selector using Lorentz force.
- 21. Mention any three salient features of Hysteresis loop.
- 22. Derive an expression for motional emf.
- 23. Mention three power losses in a transformer.

5×2=10

 $10 \ge 1 = 10$

Max. Marks: 70

5×3=15

- 24. Using Huygen's wave theory of light, show that the angle of incidence is equal to angle of reflection in case of reflection of a plane wavefront by a plane surface.
- 25. Explain three facts of photoelectric effect using Einstein's photoelectric equation.
- 26. Explain the working of a Zener diode as a voltage regulator.

PART – D

IV Answer any TWO of the following Questions

- 27. Obtain an expression for electric field for an electric dipole along its axis.
- 28. Derive an expression for equivalent emf and equivalent internal resistance when two cells are connected in parallel.
- 29. Derive an expression for the magnetic field at a point along the axis of circular current loop.

V Answer any TWO of the following Questions

- 30. What is interference of light? Arrive at the conditions for constructive and destructive interference by assuming the expression for intensity.
- 31. Derive an expression for total energy of an electron in hydrogen like atom assuming radius of the orbit.
- 32. Explain the working of npn transistor as an amplifier in ce mode

VI Answer any THREE of the following.

- 33. Two point charges 5×10-8C and -3×10-8C are located 16cm apart. At what points on the line joining the two charges is the electric potential zero?
- 34. Determine the current through the galvanometer in the circuit given P=2 Ω , Q = 4 Ω , R = 8 Ω , S = 4 Ω , G =10 Ω E = 5V and r =0.
- 35. Calculate the resonant frequency in LCR circuit with inductance 2.0 H, capacitance 32 μ F and resistance 10 Ω. What is the Q value of this circuit?
- 36. An object of size 3 cm is placed 14 cm in front of a concave lens of focal length 21 cm. Calculate position and size of the image.
- 37. Consider the fission process of ₉₂U ²³⁸ by fast neutrons. In one fission event no neutrons emitted and final end products after beta decay of primary fragments are ₅₈Ce¹⁴⁰ and ₄₄Ru⁹⁹ Calculate Q for this process.

Mass of ${}_{92}U^{238} = 238.05079 \text{ u}$, Mass of ${}_{58}Ce^{140} = 139.90543 \text{ u}$

2×5=10

2×5=10

3×5=15

SCHEME OF EVALUATION FOR PHYSICS MODEL QUESTION PAPER - 4

Q.NO	ANSWEF	RS	MARKS
L	Answer the following PART-A	$10 \times 1 = 10$	
	What is the electric field strength inside a c	harged spherical conductor?	
1	Zero		1 mark
2	How does the resistivity of a conductor var	y with temperature?	
	Resistivity is directly proportional to tempe	erature	1 mark
3	State Gauss's law in magnetism.		1 mark
	The net magnetic flux through any closed s	urface is always zero.	4 1
4	Name one application of eddy current.		1 mark
	Speedometer/Induction furnace any one re	levant answer.	1
5	Concerve long of suitable focal longth	Spic eye?	1 mark
6	What is the rest mass of photon?		1 mark
U	Zero		1 mark
7	Write one limitation of Bohr's atom model.		1 mark
	It is applicable only for hydrogen and hydr	ogen like atoms or any other	
	relevant.	0	
8	Define mean life of a radioactive element.		1 mark
	The ratio of total life time of all the atoms o	f radioactive element and the	
	total number of atoms present initially.		
9	Write the logic symbol of NAND gate.		1 mark
	A Y		
10	What is attenuation in communication syste	em?	1 mark
	The loss of strength of a signal while propa	gating through a channel.	
II	PART-B	00	
11	Write Coulomb's law in vector form and ex	plain the terms.	
	$\vec{f} = k \frac{q_1 q_2}{r} \hat{r}$ Where q_1 and q_2 are two point of	harges r is separation between the	
	$J_{12} = \kappa \frac{r^2}{r^2} r_{21}$ where q_1 and q_2 are two point charges, it is separation between the		
	charges and \hat{r}_{21} is the unit vector directed from q_2 to $q_{1.}$		2 marks
12	Mention two limitations of ohm's law.		1 mark
	It is applicable only for the metallic co		
	conditions are constants.	1 . / 1 . 1 .	Imark
10	Not applicable for semiconductor / super co	onductor/ electrolytes.	
13	Write two differences between dia and j	paramagnetic substances.	
	1 These substances are feebly 1	These substances are facility	
	repelled by a powerful	attracted by a powerful	1 mark each
	magnet	magnet.	
	2. Relative permeability of these 3.	Relative permeability of these	
	substances is slightly less	substances is slightly more	
	than one.	than one.	

14	Current in a coil falls from 5A to 0A in 0.1 s, calculate the induced emf	
	in a coil if its self inductance is 4H.	
		1 mark
	$E = L \frac{dt}{dt}$	
	5 200 V	1 mark
	$E = 4 \times \frac{1}{0.1} = 200V$	
15	Give two uses of UV rays.	
	1. In the analysis of the structure of organic compounds.	1 mark each
	2. In high resolving power microscopes.	
	3. In the study of bacteria.	
16	Any two uses	
10	mirror when the object is placed at the centre of curvature of a mirror	
	minitor when the object is placed at the centre of curvature of a minitor.	
	Arrow mark must be shown	2 marks
	c	
	Ē	
18		
17	Distinguish between intrinsic and extrinsic semiconductors.	
	Intrinsic semiconductors Extrinsic semiconductors	
	semiconductors.	1 mark each
	Electron density is equal to the hole Electron density is not equal to the	
	density hole density.	
	Conductivity is low Conductivity is high	
	Any two differences	
18	Draw the block diagram of AM transmitter.	
	Transmitting antenna 🗸	
		2 marks
	Message signal Amplitude amplifier	
111	Inree marks/Answer any Five	
10	Derive the relation between electric field and electric potential	
19	Derive the relation between electric field and electric potential.	
	$+q$ B q_{o}^{A} E	1 mark
	$dV = \frac{dW}{dV}$	1 mark
	q_o	
	$E = -\frac{dV}{dV}$	1 mark
	- dx	

20	Arrive at the expression for velocity selector using Lorentz force.	
	$\vec{F} = q(\vec{E} + \vec{v} \times \vec{B})$	1 mark
	If $\theta = 90^{\circ}$ and Eq = qvB	1 mark
	v = E/B	1 mark
21	Define the terms (a) Hysteresis (b) Retentivity and (c) coersivity. Hysteresis: It is the phenomenon of lagging of magnetic induction behind the magnetic intensity, when a ferromagnetic material is subjected to cycle of magnetization. Retentivity: It is the amount of magnetic induction left in the specimen of ferromagnetic material when magnetic intensity is reduced to zero.	1 mark each
	<i>Coercivity:</i> It is the amount of reverse magnetic intensity required to remove the residual magnetism.	
22	Derive an expression for motional emf. Figure $\phi = B \times l \times x$ e = B l v	1 mark 1 mark 1 mark
23	Mention three power losses in a transformer.1)Loss due to heating.2)Loss due to flux leakage.3)Loss due to eddy currents.4)Loss due to hysteresis .Any three	1 mark each
24	Using Huygen's wave theory of light, show that the angle of incidence is equal to	
	angle of reflection in case of reflection of a plane wavefront by a plane surface.	1 mark
	AE = BC = vt	1 mark
	The triangles EAC and BAC are congruent and therefore, the angles i and r (as shown in Fig) would be equal. This is the <i>law of reflection</i> .	1 mark
25	Explain three facts of photoelectric effect using Einstein's photoelectric equation.	
	 The photoelectric emission is an instantaneous process without any apparent time lag (~10⁻⁹s or less), even when the incident radiation is made exceedingly dim. For every photo emissive surface there is a certain minimum frequency of the incident radiation below which there is no photoelectric effect, called threshold frequency and the corresponding wavelength is called threshold wavelength no matter how intense the incident light is. Threshold frequency is different for different materials. 	1 mark each
	3) For a frequency greater than the threshold frequency, the strength of the photoelectric current is directly proportional to the intensity of the incident radiation.	

	4) For a given photosensitive material and frequency of incident radiation, saturation current is found to be directly proportional to the intensity of incident radiation whereas the stopping potential is independent of its	
26	Explain the working of a Zener diode as a voltage regulator	
20	Any increase/decrease in the input voltage R_s	Circuit diagram 1mark
	results in, increase/decrease of the voltage	
	drop across R_s without any change in voltage across the Zener diode.	2 marks
IV	Five marks/Answer any Two	PART-D
07	Obtain an averagaion fan alastris field far an alastris dinela elena ita avia	
27	Obtain an expression for electric field for an electric dipole along its axis.	
	$A \xleftarrow{-q} & \underbrace{+q} & P \\ A \xleftarrow{a} & \underbrace{a} & r \xrightarrow{-B} \\ \hline & a & c & c \\ \hline & a & c & $	1mark
	electric field at P due to dipole is given by $\vec{E} = \frac{1}{4\pi\varepsilon_0}q\left[\frac{1}{(r-a)^2} - \frac{1}{(r+a)^2}\right]\hat{P}$	1mark
	Where \hat{p} is the unit vector along the dipole axis (from $-a$ to a)	
		1 mork
	$\vec{E} = \frac{q}{4ar} \frac{4ar}{\hat{p}}$	Thatk
	$4\pi\varepsilon_0\left(r^2-a^2\right)^{2^{-1}}$	
	For a short dipole, a << r $\vec{E} = \frac{1}{4\pi\varepsilon_0} \frac{4qa}{r^3} \hat{p}$	1mark
	$\vec{E} = \frac{1}{4\pi\varepsilon_0} \frac{2\vec{p}}{r^3} \hat{p} r >> a$	1mark
28	Derive an expression for equivalent emf and equivalent internal resistance when	
	two cells are connected in parallel.	
	$I_{1} \qquad I_{1} \qquad = \qquad \xi_{i_{1}} \qquad = \qquad \xi_{i_{1}$	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1mark
	$I = I_1 + I_2$	1mark
	$V = \frac{\varepsilon_1 r_2 + \varepsilon_2 r_1}{r_1 + r_2} - I \frac{r_1 r_2}{r_1 + r_2}$	1mark
	$V = \varepsilon_{eq} - I r_{eq}$	1mark
	$\varepsilon_{eq} = \frac{\varepsilon_1 r_2 + \varepsilon_2 r_1}{r_1 + r_2}$	

	$r_{eq} = \frac{r_1 r_2}{r_1 + r_2}$	1mark
29	Derive an expression for the magnetic field at a point along the axis of circular	
	current loop.	
	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\$	1mark
	$dB = \frac{\mu_0}{4\pi} \frac{I dl \sin \theta}{r^2}$	1mark
	2 dB sin ϕ = 2 $\frac{\mu_0}{4\pi} \frac{I dl \sin \theta}{r^2}$ sin ϕ along PX.	1mark
	\therefore Magnetic field at P due to one complete turn of the coil B ₁ = $\sum \frac{\mu_0}{4\pi} \frac{2I dl R}{r^3}$	1mark
	$B_{1} = \frac{\mu_{0}}{4\pi} \frac{2\pi I R^{2}}{(R^{2} + X^{2})^{3/2}} \text{ along PX}$	1mark
V	Five marks/Answer any Two	
30	What is interference of light? Arrive at the conditions for constructive and destructive interference by assuming the expression for intensity. <i>Modification in the intensity of light due to the superposition of two or more light waves from coherent source in the region of crossover is called interference of light.</i>	1mark
	$p.d = n\lambda$ and <i>phase difference</i> $= 2n\pi$ where n = 0, 1, 2, 3, etc Arriving at the conditions for destructive interference	2marks
	$p.d = (2n+1)\frac{\lambda}{2}$ phase difference = $(2n+1)\pi$ where n = 0, 1, 2, 3, etc.,	2marks
31	Derive an expression for total energy of an electron in hydrogen like atom assuming radius of the orbit. $r_n = \frac{\varepsilon_0 n^2 h^2}{\pi m Z e^2}$	1mark
	$P.E = -\frac{1}{4\pi\varepsilon_0} \frac{Ze^2}{r_n}$	1mark
	$K.E = \frac{1}{2} \frac{1}{4\pi\varepsilon_0} \frac{Ze^2}{r_n}$	2mark
	$E_n = -\frac{mZ^2e^4}{8\varepsilon^2 n^2h^2}$	1mark

32	Explain the working of npn transistor as an amplifier in ce mode.	
	R_{B} C R_{C}	
	$\downarrow \bigcirc \downarrow I_E$ $\downarrow I_E$ $\downarrow V_{cc}$	2 marks
	V = I P + V	
	$v_{BB} - I_B R + v_{BE}$ and	
	$V_{CE} = V_{CC} - I_C R_L$ with explanation	2 mark
	$A = \beta \frac{R_L}{R_L}$	
		1 mark
VI	Five marks/Answer any Three	
33	on the line joining the two charges is the electric potential zero?	
		1 mark
	$V = \frac{1}{4\pi\varepsilon_0} \frac{q}{r}$	
	Between the two charges	
	$1 q_1 1 q_2$	
	$\frac{1}{4\pi\varepsilon_0} \frac{1}{x} = \frac{1}{4\pi\varepsilon_0} \frac{1}{(16-x)}$	
	10 cm from +ve charge	2 marks
	Outside the two charges	
	$\frac{1}{1} \frac{q_1}{q_1} = \frac{1}{1} \frac{q_2}{q_2}$	
	$4\pi\varepsilon_0 x 4\pi\varepsilon_0 (16+x)$	
	40 cm from +ve charge	2 marks
34	Determine the current through the galvanometer in the circuit given P=2 Ω , Q = 4 Ω , R = 8 Ω , S = 4 Ω , G =10 Ω E = 5V and r =0.	
	$2I_1 + 10I_g - 8I_2 = 0$	
	$4I_{1} - 18I_{g} - 4I_{2} = 0$	1 mark each
	$12I_1 + 10I_g - 8I_2 = 0$	
	By solving the above equations $1 \qquad $	2 marks
	I _g = 0.12A	2 IIIdi KS
	E=5V	

	Coloridate the reconcert frequency in LCD circuit with inductors 2.0. If	
35	Calculate the resonant frequency in LCR circuit with inductance 2.0 H,	
	capacitance 32 μ F and resistance 10 Ω . What is the Q value of this circuit?	
	$\omega = \frac{1}{2}$	1 mark
	\sqrt{LC}	THATK
	Substitution	1 mark
	Calculation of ω = 125 Hz	1 mark
	$O = \frac{1}{L} \int \frac{L}{L} = \frac{\omega L}{L} = \frac{1}{L}$	
	\mathcal{L} $R \bigvee C R \omega RC$	
	Substitution	1 mark
	Calculation of Q = 25	1 mark
36	An object of size 3 cm is placed 14 cm in front of a concave lens of focal length	
	21 cm. Calculate position and size of the image.	
	Colution: 1 1 1	
	Solution. ${v} = \frac{-}{f}$	1 mark
	Substitution	1 mark
	Calculation of $v = 8.4$ cm	1 mark
	$m = \frac{\text{height of the image}}{-v}$	
	$m = \frac{1}{height}$ of the object u	1 mark
	Height of the image = 1.8 cm	
37	The half life of x_{1} Sr ⁹⁰ isotope is 28 years. What is the rate of disintegration of 15	1 mark
	ma of this isotope? (Given Avogadro No -6.023×10^{23})	
	P = 2N	
	K = 20	1 mark
	N=1.004×10-4	1 moule
	$\lambda = \frac{0.693}{\pi}$	I IIIdi K
		1 mark
	$\lambda = 7.848 \times 10^{-10} s^{-1}$	1 mark
	$R = 7.879 \times 10^{10} Bq$	
		1 mark