	(3) $l = 2m$, $A = 1mm^{-1}$ $(l = 2 \pm 0)$. $A = 1 \pm 0 \pm 0$	5) (4)	$l=2 m, A=2 mm^2 (l=2 \ln. A=2 \ln \ln^2)$
			$l=1 m, A=2 mm^2 (l=1 \text{a.} A=2 \text{a.} \text{a.}^2)$
83	Among the following wires made of the same ఒకే పదార్ధముతో చేయబడిన క్రింది తీగలలో అత్యధిక విరోగ	රූ දෙර	a Da ?
	అయస్కాంత ఆభివాహ సాంద్రతకు ప్రమాణము (1) వెబర్ / మీటరు (2) వెబర్ / మీటరు ²	(3)	వెబరు - మీటరు (4) వెబరు - మీటరు 2
82	 (3) ఇనుము, కోబాల్డ్, నికెల్ The units of magnetic flux density (1) Weber/metre (2) Weber/metre² 	1071070	Weber-metre (4) Weber-metre ²
	(1) నీరు, ఇత్తడి, బంగారము (3) జనుము, కోవాన్ హెక్	17.00	ఆల్కహాల్, ఆక్సిజన్, ప్లాటినం గౌడలోనియం, ఆల్యూమినియం, క్రోమియం
	(3) Iron, Cobalt, Nickel క్రింది సమూహములలో ఫెట్రో ఆయస్కాంత సమూహము		Gadolinium, Aluminium, Chromium
81	Which one of the following groups belong to (1) Water, Brass, Gold	ferrom (2)	agnetics Alcohol, Oxygen, Platinum
	(1) නවතුඩවස් (3) වසංස්වස්	(2)	ఆయస్కాంత (పేరణ ప్రవేశ్య శీల్వత
	ఒక అయస్కాంత పదార్ధం తననుండి ఆయస్కాంతీకరణ అయస్కాంత తీవ్రతను మీగుల్పుకొనే స్వభావాన్ని ఏమందు		బాహ్య ఆయస్కాంత క్షేణాన్ని తీసిపేసేనా, తనలో కొంత
	(1) Susceptibility (3) Retentivity	(2) (4)	Magnetic Induction Permeability
80	Even after the removal of the applied magnetic intensity of magnetisation. This property is call		a magnetic material retains certain amount of
	(3) 160 dynes (160 වුදුා)	(4)	40 dynes (40 වුනු)
	దూరాన్ని 20 సం.మీ. నుండి 5 సం.మీ. లకు తగ్గించి (1) 80 dynes (80 డైను)	నదో వా	టి మధ్య గల వికర్ణణ బలం 320 dynes (320 డైన్లు)
4.	them is రెండు అయస్కాంత ధృవాల మధ్య దూరం 20 సెం.మీ.	ఉన్నప్ప	య వాని మధ్య గల వీకర్షణ బలం 20 డైన్లు. వాని మధ్య
79	The repulsive force between two magnetic p If the distance between them is decreased from		
	(3) తక్కువ లేక ఎక్కువ	(4)	దృగ్విషయం జనకాల మధ్య దూరం మీద ఆధారపడదు
	(1) పీలయినంత తక్కువగా ఉండవలెను.		ఎక్కువ ఉండవలెను
	(3) Less or more వ్యతికరణ ప్రక్రియ రావలెనన్న, కాంతి జనకాల మధ్య దూర	(4)	Phenomenon does not depend on the distance
78	To get interference phenomenon, the distance (1) Less to the extent possible		een the two sources must be More
	(3) కొన్నిసార్లు తరంగాలుగాను, మరికొన్ని సార్లు కణములుగాను	(4)	విద్యుదయస్కాంత తరంగాలుగా
	(1) econámen		same
	హైగెన్స్ సిద్ధాంతమును అనుసరించి కాంతి		
	(3) Some times waves and some times corpusch		
	(1) Waves	(2)	Corpuscler

84	Ten identical resista the resultant resista		resistance of	Ω are joined in p	oarallel.	The combination has			
	ఒక్కొక్కటి 1Ω ఏలు	వ గల 10 నిరోధాలను స	సమాంతరంగా కట	ට්ඨාත්කුරෝ, දෙවල් විජිද්	5o				
	(1) 10 Ω	(2) 1Ω		0.01Ω		0.1Ω			
85	Gram/Coulomb is	a unit for			0.00				
	 Potential differ 	rence	(2)	Specific resistan	ice				
	(3) Electromagnet	32 S S S S S S S S S S S S S S S S S S S	(4)	Electrochemical	Equiva	lent (e.c.e)			
	గ్రామ్ / కూలుమ్ అను	నది దేనికి _{(పమాణం}							
	(1) పొటెన్షియల్ భేదం		(2)	విశిష్ట నిరోధం		*			
	(3) విద్యుచ్చాలక బల	0	(4)	విద్యుత్ రసాయన త	సీల్యాంకం)			
86	The work done in difference of 8 V i		4 A for 2 sec	onds through a co	onducte	or having a potential			
	ఒక వాహకంలో 8 ఓల్లు	ు పొటెన్షియల్ భేదమున్నక్ష	µ 4 ఆంఫియర్ల శ	విద్యుత్ ప్రవాహము 2	సెకన్ల పా	టు ప్రవహిస్తే జరిగే పని			
	(1) 4 Joules (4 &	ల్ప్)	(2)	16 Joules (16 සි	ల్ప్)				
	(3) 64 Joules (64	జౌల్స్)	(4)	1 Joule (1 ෂීන්)					
87						ence of 2400 Volts at			
	2 Ampere current.	If the primary has 1	00 turns, the	number of turns	in seco	ndary are			
	ఒక స్టెప్ - అప్ ట్రాన్స్ఫ్ఫా	ర్మర్ ను 120 వోల్డుల మెం	ుున్ తో సంధించిన	పుడు, 2 ఆంఫియర్ల	රියාදුම් ල	సవాహం వద్ద 2400 ఓల్బుల			
	పాలెన్షియల్ భేదం ఏర్పర్	కినది. ప్రధాన వేష్టనంలోని	చుట్ల సంఖ్య 100) అయినపుడు గౌణ వే	ప్టనం లో	ని చుట్ల సంఖ్య			
	(1) 2000	(2) 200	(3)	400	(4)	1000			
88		to measure Isotopi		1920 173 173 1					
	(1) Calori meter	aranh	2.00	Spectrometer Sphere meter					
	(3) Mass spectro	7 6		Sphero meter					
	- 0	ను కొలుచుటకు ఉపయో		2 ml h. c					
	 මජ්ර් ඛ්‍රාභ්‍ර 	de.		స్పెక్ట్స్ మీటరు					
00	(3) (దవ్యరాశి వర్ణపట (స్పెరో మీటర్		13			
89		on used in carbon d							
	THE RESERVE TO STATE OF THE PARTY OF THE PARTY.	జూల వయస్సును తెలుస (2) . C .12				C-15			
90	(1) C-14 Among the following	(2) C-12 ng, choose the incom		C-13	(4)	C-13			
90			_						
	A p-n junction diode conducts in forward bias A p-n junction diode offers less resistance under reverse bias								
	(3) A p-n junction diode does not conduct under reverse bias								
	(4) A p-n junction	diode is used as an	electric swite	ch					
	ළිංద නැට්වේ බර්පාට් ධ	వరణను ఎన్నుకొనుము							
	(1) వాలు బయాస్లో	p-n జంక్షను డయోడు ప	ద్యుత్తును ప్రవహి	ంప చేయును.					
	(0)	ఒక p-n జంక్షన్ తయో	රා ප ಲ್ಪ බ්ව්දා	్ని కలుగజేయును.					
	(2) ఎదురు బయాస్ల్								
		ఒక p-n జంక్షన్ డయో	డు విద్యుత్తును క్ర	సహింప చేయదు.					
	(3) ఎదురు బయాస్లో		-	సమాంప చేయదు.					

SECTION - III (CHEMISTRY)

91	The atom of the elem	ent which shows h	alf filled d-o	rbitals							
	(1) Vanadium	(2) Zinc	(3)	Chromium	(4)	Copper					
	ఖచ్చితంగా సగం విండిన (ర-ఆర్బిటాళ్లను చూపు మ	ూలక పరమాణు	න බස ?							
	(1) వనేడియం	(2) జింక్	(3)	(కోమీయం	(4)	ውስ					
92	The symbol of the el	ement with the out	er electronic	configuration of	of 4s ¹ , pla	aced in S-block is					
	4s1 ఎలక్ట్రాన్ విన్యాసంతో	అంతమగు S-బ్లాక్ మూ	లకము యొక్క	సంకేతము		EC					
	(1) Na	(2) Sc	(3)	K	(4)	Rb					
93	The element, which	hows three unpair	ed electrons	in its atom, in g	round sta	ate is					
	భూస్థాయిలో తన కర్పర.	ఉపకర్పరములలో మూర	ట ఒంటరి ఎల	క్ర్రాన్లను చూపు ము	ాలకము						
	(1) B	(2) Be	(3)	F	(4)	N					
94	Mention the total num	ber of electrons pre	sent in the p-	orbitals of the a	tom, havi	ng atomic number 15					
	పరమాణు సంఖ్య 15 గల శ	మూలకపు పరమాణువుల	್ ಗಲ ಮುಕ್ತಂ p	-ఆర్బిబాళ్లలో గల	ఎలక్ట్రాన్ల సం	ാജ ఎಂత ?					
	(1) 3	(2) 9	(3)	2	(4)	5					
95	The bonds present in	NH ₄ ion are									
	(1) One ionic bond, three covalent bonds										
	(2) One covalent bo	end, three coordina	te bonds								
	(3) One ionic bond.	three coordinate b	onds								
	(4) Three covalent	onds, one coordin	ate bond								
	NH ₄ అయావ్రో గల	బంధములు									
	(1) ఒక అయానిక బంధ	ం, మూడు సమయోజనీ	య బంధాలు								
	(2) ఒక సమయోజనీయ	బంధం, మూడు సమన్మ	్రయ సమయోజ	వీయ బంధాలు							
	(3) ఒక అయావిక బంధ	ం, మూడు సమన్వయ శ	సమయోజనీయ	ಬಂಧಾಲು							
	(4) మూడు సమయోజనీ	య బంధాలు, ఒక సమ	స్వయ సమయో	జనీయ బంధం							
96	One of the following	phenomenon takes	place in the	formation of N	aCl mole	ecule					
	(1) Na atom acts as		(2)	Cl atom acts a	s oxidisi	ng agent					
	(3) Cl atom acts as	reducing agent	(4)	They undergo	neither ox	cidation nor reduction					
	పోడియం క్లోరైడ్ అణువు ఏ	ට්රුයාපඒ සහරා යර	్య నందు								
	(1) సోడియం ఆక్సీకరణి	గా పనిచేయును	(2)	క్లోరిస్ ఆక్సీకరణిగ	ా పనిచేయ	ును					
	(3) క్లోరిస్ క్రయకారిణిగా	పనిచేయును	(4)	ఆక్సీకరణ గాని క్ర	ಯಕರಣ చ	ర్య గాని జరుగవు					
		100		11.000000000000000000000000000000000000							
CEL	EP-2012_A]		12			[Contd					

97	If the positive ion con	figuration is 1 s ² 2 s ²	2p ⁶ and t	he negative ion con	figur	ation is 1 s ² 2 s	² 2p ⁶					
	in an ionic compound, then what is the molecular formula of the compound											
	ఒక అయానిక పదార్థంలో ధ	నాత్మక ఆయన్ విన్యాసం 1 s	2 2 s ² 2p ⁶	్ మరియు రుణాత్మక అ	యాన్	విన్యాసం 1 s ² 2 s	² 2p ⁶					
	అయిన, ఆ పదార్ధపు అణు											
	(1) KF	(2) NaCl	(3)	NaF	(4)	KCl						
98	The period which co	ntains s, p, d block ele	ements									
	(1) 2 nd period	(2) 3rd period		4th period	(4)	1st period						
	s.p.d జ్లాక్ మూలకాలున్న	పీరియడ్										
	(1) 2వ పీరియడ్	(2) 3వ పీరియడ్	(3)	4వ పీరియర్	(4)	1వ పీరియడ్	*9					
99	Ionisation energy of	nitrogen is higher than	ionisatio	n energy of oxygen	. This	s is due to						
	(1) Decrease in the	atomic radius		Increase in the ato								
	(3) Stable electron of	onfiguration	(4)	Completely filled	orbita	1						
	వైట్ జన్ యొక్క అయనీక	రణ శక్తి విలువ ఆక్సిజన్ కం	టే ఎక్కువ. :	కారణం								
	(1) పరమాణు వ్యాసార్థం	తగ్గడం	(2)	పరమాణు వ్యాసార్థం క	ಶಿರುಗು	ట						
	(3) స్థిర ఎలక్ట్రాను విన్యా	సము	(4)	హర్తిగా నిండిన ఆర్బిట	ල් ය	රණ්ඩ						
100		ing pair of atomic nu	mbers in	dicate the elements	of th	e 'S' block?						
		మూలకాల పరమాణు సంఖ్యఁ										
	(1) 11, 13	(2) 10, 12		11, 12		8, 9						
101	Atoms with small siz	e have				10000						
	(1) High ionisation of	energy		Great tendency to								
	(3) More electropos	itive	(4)	Less electron affir	ity v	alues						
	పరమాణు పరిమాణము త	క్కువగా ఉన్న పరమాణువుల										
	(1) అయనీకరణ శక్తి ఎక	క్కువగా ఉంటుంధి	(2)	ఎలక్ట్రావ్ కోల్పోయే	స్వభా	వం చాలా ఎక్కువ						
	(3) ధన స్వభావం చాలా	ఎక్కువ	(4)	ఎలక్డ్రాన్ ఎఫినిటీ విలుగ	ර්වා එ	క్కువ						
102		s are highly reactive. B	Because th	ey are								
	(1) Electro negative	in nature		Electro positive in		ire						
	(3) Atomic radius is	ncreases	(4)	Non-metallic natu	re							
	క్లార మృక్తిక లోహాలు దాం	ా చురుకైన లోహాలు. దీనికి	కారణం									
	(1) మూలకాల రుణ స్వ	భావం	(2)	ధన స్వభావం								
	(3) మూలకాల పరమాణ	బ పరిమాణం పెరుగుట	(4)	అలోహ స్వభావం								
103	Magnesium oxide is											
	(1) Acidic	(2) Basic	(3)	Neutral	(4)	Amphoteric						
	మెగ్నీషియం ఆక్రైత్ ఈ (కింది స్వభావాన్ని కలిగి ఉంట	ා රධ්		4	7						
	(1) ఆమ్ల	(2) క్లార	(3)	తటస్థ	(4)	ద్వి స్వభావ						
OT:	ID 2012 13		12		1000		ontd					
CEL	EP-2012_A]		13				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					

		ో మండినపుడు మెర		zzling light w కాంతిని ఇచ్చు		ıaır		
	(1)			Ca		Sr	(4)	Mg
105	4	00 ml of 0.5 M l						olume of water to b
	500	మి.లీ. ఘన పరిమాణ	o රා 0.8	5 M Hol ద్రావణ	aముమ 0.1 m	థతకు మార్చవలెనన	్డ్ ఇంకా ఎ	oඡ බ් ස් බ් ඡවඛ්නවිතා.
	(1)	2500 ml	(2)	1000 ml	(3)	2000 ml	(4)	1500 mJ
106	Hov	v many number	of mole	es are presen	t in 3.2 gra	ms of NaOH?	(Mol. w	t. = 40)
	3.2	గ్రాముల సోడియం]	స్టాలాక్సైద్	(ෂಣා ආරං) ර	యందు ఉన్న క	పదార్థపు మోల్ల సంగ	ng 200 7	
		0.08		0.008		0.8		12.5
107	Fino	out the volume	of 0.05	M HCl requ	ired, in ml,	in order to neut	ralise 0.2	2 M NaOH of 40 ml
	40 3	b.D. 0.2 M NaOH	් ලාක්කක්	ును తటస్టీకరించ	మటకు, ఎన్ని వి	b.b. 0.05 M Hcl	అవసరము?	t.
		160	(2)		(3)			120
108	Mer theo		nd amor	g the followi	ng whose ac	eidic property car	not be e	xplained by Arheniu
	ෂල්බ	యస్ సిద్ధాంతము త	ස ලීරෙඩ් න	దార్థములలో దేశ	రి యొక్క ఆమ్ల	ధర్మమును వివరిం		
	(1)	CH ₃ COOH	(2)	CO ₂	(3)	HCl	(4)	HNO ₃
109	If th	e pH of a given	solution	is 9, find th	ne concentra	ation of $\left[H^{+}\right]$ io	ns in it.	
	ఒక (ුත්තර pH විචාර	9 అయిన	ದాನಿ ಯುಕ್ಕು [F	H ⁺] ఆయాన్ల	møø ఎంత?		
		10-5		10-9		10-1	(4)	10-14
110	7. 5.	e pH of a soluti						
	(1)	Acidic	(2)	Basic	(3)	Neutral	(4)	Amphoteric
	25	ావణపు pH = 0	ಅಯಿನ ಆ	ලානුණ ඛ රජ	్మాన్ని చూపును	?		
	(1)	ఆమ్ల ధర్మం	(2)	క్టార ధర్మం	(3)	తటస్ట ధర్మం	(4)	విద్విస్వభావ ధర్మం
11		ctional group in			37.00			
		హాల్ ప్రమీయ సము		4				
	ď			0		0		
				0 -C-OH		Н	771	
	(1)	- CHO	(2)	-C-OH	(3)	-C-OR	(4)	- OH
112	Alk	enes are more re	eactive t	han alkanes.	This is due	to		
	(1)	Double bond				Triple bond		
		Single bond				Valence of carl		tistied
	ఆర్మీ	న్లు, ఆల్కేన్ల్ కంటే	ీ ఎక్కువ గ	వర్యాశీలతను కక	ರಿಗಿ ಹಂಟ್ಯಾಯ.	దీనికి గల కారణవ	w -	
	(1)	ద్విబంధాన్ని కలిగి	අරුණ	*	(2)	ట్రిబంధాన్ని కలిగి క	රෙක්ස	
	6-1							
		ఏక బంధాన్ని కలిగి	ಎಂಡು ಬ		(4)	కార్చన్ పరమాణువ	్లు వెలస్స్ ల	93

113	Uns	aturated hydrocarbo	n am	ong the following				
		Propane		Butane		Ethene	(4)	Ethane
	64 B	ంది వానిలో ఆసంతృస్త్ర 🕽	දැල්*	కార్చన్				
	(1)	ప్రోపేస్	(2)	బ్యూటేన్	(3)	ఈధీన్	(4)	ఈథేన్
114	Carl	bon compounds wh	ich r	eact with Tollen's	reagen	t		
	(1)	Alcohol	(2)	Aldehyde	(3)	Alkane	(4)	Alkene
	ත් ව	స్ప్ కారకంతో చర్యనొంద	ప్ర కార	్రవ్ సమ్మే ళ నము				
	(1)	ఆల్కహాల్	(2)	ఆల్డర్ హైద్	(3)	ఆల్కేవ్	(4)	ఆర్కీన్ '
115	The	type of coal which	give	s large amounts of	f heat			
	(1)	Lignite	(2)	Bituminous coal	(3)	Anthracite coal	(4)	Coke
	అధిక	, ఉష్ణాన్ని ఏ రకము బొగ్గ	ర్లు ఇస్తు	oo ?				
	(1)	විවුකි	(2)	బిట్యుమినస్ బొగ్గు	(3)	ఆంత్ర సైట్ బొగ్గు	(4)	వంట బొగ్గు
116	Pol	ysaccharide among	the fo	llowing				
	(1)	Fructose	(2)	Glucose	(3)	Sucrose	(4)	Starch
	64 (కింది వానిలో పాలిశాకరైర్	5					
	(1)	థక్తోజ్	(2)	గ్లాకోజ్	(3)	సూక్రోజ్	(4)	పిండి పదార్థము
117	The	process of obtaini	ng ale	cohol from molas	ses is c	alled as		72
		Dehydration		Defecation		Carbonation	(4)	Fermentation
	ಮುಂ	ూసిస్ నుండి ఆల్కహాల్న	ා పొට	దే విధానాన్ని ఏమంటా	రు ?			
	(1)	డీ హైద్రేషన్	(2)	` డెఫకేషన్	(3)	కార్పొనేషన్	(4)	ဒီက္ခေ စုံဖြံလာ
118	The	e compounds which	cont	ain Zwitter ion st	ructure			
	(1)	Amino compound	ls (2)	Acids	(3)	Amino acids	(4)	Ethers
	ಪ್ರೇಕ	్టర్ అయాన్ నిర్మాణం క	ଅଷ୍ଟ	ນລ່ງບນ				
	(1)	ఎమైనో పదార్థములు	(2)	ఆమ్లాలు	(3)	ఎమినో ఆమ్లాలు	(4)	ఈథర్లలు
119		e following catalyst			nation	of oils		
		నెలను హైడ్రోజనీకరణమ						
		Mn		Fe		Ni	(4)	Co
120	GI	ass is a mixture of						
	సా	రూన్య గాజులో గల ముక	စ္ပ ခံထ	్ధములు ఏవి ?				
		Na ₂ CO ₃ , CaSi	Silver	•	(2)	CaCO ₃ , Al ₂ (S	$O_4)_3$	
	(3)	Na ₂ SiO ₃ , CaSi	03		(4)	BaSO ₃ , CaCC)3	
CEI	EP-2	012_A]		9	15			[Contd
-								

391537

CEEP-2012

Hall Ticket Number:

Signature of the Candidate

Time: 2 Hours

Total Marks: 120

Note: Before answering the questions, read carefully the instructions given on the OMR sheet. సూచన : ప్రశ్నలకు జనాబులు వ్రాయుటకు ముందు OMR జవాబు ప్రతములో ఇవ్వబడిన సూచనలు జాగ్రత్తగా చదవండి.

SECTION - I (MATHEMATICS)

1
$$p \Leftrightarrow q =$$

(1)
$$(p \Rightarrow q) \lor (q \Rightarrow p)$$

(2)
$$(q \Rightarrow p) \land (p \Rightarrow q)$$
.

2
$$\{x/x \in A \Delta B\} =$$

(1)
$$\{x/x \in A - B\}$$

(2)
$$\{x/x \in B - A\}$$

(3)
$$\{x/x \in A \cup B, x \notin A \cap B\}$$

3 If
$$f(x) = x\sqrt{2} - \frac{1}{x\sqrt{2}}$$
 then $\sqrt{2} =$

$$f(x) = x\sqrt{2} - \frac{1}{x\sqrt{2}}$$
 හෙන $\sqrt{2} =$

(1)
$$f(\sqrt{3}+1)$$

(2),
$$f(\frac{\sqrt{3}+1}{2})$$

(3)
$$f(\sqrt{3}-1)$$

(1)
$$f(\sqrt{3}+1)$$
 (2), $f(\frac{\sqrt{3}+1}{2})$ (3) $f(\sqrt{3}-1)$ (4) $f(\frac{\sqrt{3}-1}{2})$

4 If
$$n(A) = 5$$
, $n(B) = 2$ then the number of mappings from A to B is

$$n(A) = 5$$
, $n(B) = 2$ అయిన A మండి B కి గల ప్రమేయాల సంఖ్య

5 A root of the polynomial
$$x^{2011} + (-1)^{2012}$$
 is

$$x^{2011} + (-1)^{2012}$$
 అను బహుపదికి ఒక మూలము

$$(3) -1$$

CEEP-2012 A]

1

[Contd...

6 If
$$\alpha, \beta$$
 are the roots of $x^2 - 3x - 1 = 0$ then $\frac{1}{\alpha} + \frac{1}{\beta} = \alpha, \beta \in \mathbb{R}$ $x^2 - 3x - 1 = 0$ కు మూలములైనదో $\frac{1}{\alpha} + \frac{1}{\beta} = 0$

- 7 A non-convex region among the following is ఈ కింది వానీలో కుంభాకార క్రేతము కానీది ఏది ?
 - (1) (2) (3)

- $(1) \quad 2012 \big(2011\big)^{2011} \quad \ (2) \quad -2011 \big(2011\big)^{2012} \quad (3), \quad -2012 \big(2011\big)^{2011} \quad (4) \quad 2012 \big(2011\big)^{2012}$
- $9 \quad \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} =$

 - (1) $\frac{1}{3\sqrt{2}-2\sqrt{3}}$ (2) $\frac{1}{3\sqrt{3}-2\sqrt{2}}$ (3) $\frac{1}{3\sqrt{2}+2\sqrt{3}}$ (4) $\frac{1}{3\sqrt{3}+2\sqrt{2}}$

(4) A G.P. with common ratio 2β

- $\alpha 3\beta$, $\alpha \beta$, $\alpha + \beta$, $\alpha + 3\beta$ are four numbers forming (2) A G.P. with common difference 2β An A.P. with common ratio 2β
 - (3) An A.P. with common difference 2β $\alpha-3\beta$, $\alpha-\beta$, $\alpha+\beta$, $\alpha+3\beta$ అను నాలుగు సంఖ్యలు దేవివి సూచిస్తాయి ?
 - 2β పాధారణ నిష్పత్తిగా గల అంకజ్ఞేథి (3) 2β పదాంతరము గల అంకణీథి
- (2) 2β పదాంతరము గల గుణశీβ (4) 2β න ϕ රහ විනු මු ϕ රහ රහ ල් ශී

The series
$$\frac{1}{\sqrt{3}+\sqrt{2}}$$
, $\frac{-15}{\sqrt{3}+3\sqrt{2}}$, $\frac{-47}{\sqrt{3}+5\sqrt{2}}$ forms an A.P. The common difference is

ఒక అంకజ్ఞిథిలోని పదములు $\frac{1}{\sqrt{3}+\sqrt{2}}$, $\frac{-15}{\sqrt{3}+3\sqrt{2}}$, $\frac{-47}{\sqrt{3}+5\sqrt{2}}$, \cdots అయిన, పదాంతరము ఎంత ?

- (3) $-2\sqrt{2}$
- $f(x) = \frac{\sin x}{\sin x + \cos x} \Rightarrow f(x) + f\left(\frac{\pi}{2} x\right) =$
- (3) $\frac{\sqrt{3}}{2}$

(4) None (ඛර් පත්)

- $\sin \theta = K \Rightarrow \frac{1}{\sin \theta \left[1 \frac{1}{1 \cos^2 \theta}\right]} =$

- (2) $\frac{K}{K-1}$ (3) $\frac{K}{(K+1)(K-1)}$ (4) None (ධර් පත්ය)

CEEP-2012_A]

```
\sin^2 32^\circ + \sin^2 58^\circ =
14
        (1) \sin^2 58^\circ + \cos^2 42^\circ
                                                                     (2) \cos^2 58^\circ + \sin^2 32^\circ
        (3) \cos^2 58^\circ + \cos^2 32^\circ
                                                                     (4) None (ඛ්‍රී පත්‍ර)
        \sec^2 27^\circ - \cot^2 63^\circ =
15
                                       (2) 0
                                                                     (3) 1
                                                                                                (4) None (ඛ්‍රී පත්‍ර)
        \csc^2 42^\circ - \tan^2 48^\circ =
16
                                                                     (3) 1
                                                                                                (4) None (ධර් පත්)
        \sin^2 33^\circ - \sec^2 47^\circ =
17
        (1) cos257°-cosec243°
                                                                    (2) cosec<sup>2</sup>43°-sin<sup>2</sup>57°
        (3) sin<sup>2</sup>57°-sec<sup>2</sup>43°
                                                                    (4) None (බිසි පත්)
        \tan^2 52^\circ + \sin^2 9^\circ =
18
       (1) \sec^2 52^\circ + \cos^2 9^\circ - 2
                                                                    (2) \sec^2 52^\circ - \cos^2 9^\circ + 1
       (3) sec<sup>2</sup> 52° - cos<sup>2</sup> 9°
                                                                    (4) None (බිසි පත්‍ර)
       \csc^2 10^{\circ} - \sin^2 40^{\circ} =
       (1) \tan^2 10^\circ + \sec^2 40^\circ
                                                                    (2) \cot^2 10^\circ + \cos^2 40^\circ
       (3) tan210°-sec240°
                                                                    (4) None (ඛ්‍රී පත්‍ර)
      \sin \frac{\pi}{2} =
20
       (1) \cos^2 50^\circ + \cos^2 40^\circ
                                                                    (2) cos2 40° - sin2 50°
       (3) \sin^2 40^\circ + \tan^2 50^\circ
                                                                    (4) None (බිසි පැරා)
     \cos \frac{\pi}{2} =
21
       (1) \cos^2 40^\circ + \sin^2 40^\circ
                                                                    (2) cos<sup>2</sup> 40° - cos<sup>2</sup> 50°
       (3) \cos^2 40^\circ - \sin^2 50^\circ
                                                                    (4) None (ఏదీ కాదు)
       (x+1)^2 + (y+2)^2 = 25 \implies
22
                                                                     (2) x = 5\cos\theta + 1, y = 5\sin\theta + 2
        (1) x = 25\cos\theta - 1, y = 25\sin\theta - 2
                                                                     (4) None (ඛ්ඨ පත්‍ර)
        (3) x = 5\cos\theta - 1, y = 5\sin\theta - 2
       (x-3)(y-4)=49 \Rightarrow
23
                                                                     (2) x = 7\cos\theta + 3, y = 7\sec\theta + 4
        (1) x = 3\cos\theta + 7, y = 4\sec\theta + 7
                                                                     (4) x = 7\cos\theta - 3, y = 7\sec\theta - 4
        (3) x = 3\cos\theta - 7, y = 4\sec\theta - 7
       (x+1)(y+3)=25 \Rightarrow
24
                                                                     (2) x = 5\sin\theta - 1, y = 5\csc\theta - 3
        (1) x = \sin \theta + 5, y = \csc \theta + 5
                                                                     (4) x = 5\sin\theta + 1, y = 5\csc\theta + 3
        (3) x = \sin \theta - 5, y = \csc \theta - 5
                                                                                [Contd...
                                                               3
CEEP-2012 A]
```

nformation provided here is only for reference. This may vary th

CEEP-2012_A]

34 General form of the line y = 2x + 3 is

		V = (X + 1, 800) Off	1 (53)160	Perenting American				
		y = 2x + 3 అను రేఖ (1) $y = 2x - 3$		y = 3x - 2	(3)	2x - y + 3 = 0	(4)	None (DA section
	35	Intercepts made by		기가 50명이 그렇게 되었습니다.		[[선생 [인경] [[선생] [인경] [(4)	Trone (sou star)
		నిరూపాక్షాలపై $y = 5$						
								1.1
		(1) $\frac{1}{5}$, 1	(2)	$-\frac{1}{5}$, 1	(3)	$\frac{1}{5}$, -1	(4)	$-\frac{1}{5}, \frac{1}{5}$
	25900				car co			, ,
	36	Area of the triangle	formed	by the line $\frac{-}{4}$	$\frac{2}{7} = 1$ wi	th the coordinate	axes i	s .
		నిరూపాక్రాలతో $\frac{x}{4} + \frac{y}{7}$	=1 అమ	రేఖ ఏర్పరచు త్రిభ	ර්ෂකා රැහ	క్క వైశాల్యము		
		(1) 28 sq. units (2	8 చ.యా	افِي) (مان	(2)	14 sq. units (14 c	5. our 5	ω)
		(3) 56 sq. units (5	6 చ. యా:	de)	(4)	None (ఏదీ కాదు)		
	37	Among the followi	ng, two	parallel lines ar	re			
	100	ළිංසි නවත් බස විරය	సమాంత	ర రేఖల్ని మాచిస్తుంగ	5 ?			
		(1) $2x+2y+13=$	= 0, x +	2y+11=0	(2)	3x + 3y + 11 = 0	, x+	y+11=0
		(3) $3x-2y+1=$	0, 4x -	3y + 2 = 0	(4)	None (ఏదీ కాదు)		
	38	Equation of the alti	tude thro	ough (8, 2) of th	e triangle	formed by the po	ints (8	3, 2), (4, 6), (-1, 5) is
		(8, 2), (4, 6), (-1,						
		(1) $x-5y-42 =$						
	39	The points $A(3,4)$	B(2), C(-4, 3) for	m a trian	ele. If D and E are	the n	nid-points of AB and
		AC respectively, the				Sici ii Di ana Di an		
		A(3,4), B(2,-1), C				Sussi AR Subasti	AC	ఆడు నును బించునులు
		- 1911 (i) Li Waling Balangan an Aria			A CONTRACTOR	mos AD moun	ne	ca mil armen
		వరుసగా D మరియు		_				
		(1) $\frac{2}{3}$	(2)	$-\frac{2}{3}$	(3)	3	(4)	$-\frac{3}{2}$
		3	(2)	3	(5)	2	()	2
	40	Median of the num	hers -	1 1 1 1 is				
	40	wiedian of the nam	5'	2 '6 '4' 3 13				
		$\frac{1}{5}, \frac{1}{2}, \frac{1}{6}, \frac{1}{4}, \frac{1}{3}$ is	ානලා කර	ieries ము				
		5 2 6 4 3	480 m4	8.000		02		
		(1) $\frac{1}{6}$	(2)	1/4	(3)	1	(4)	None (ఏదీ కాదు)
	41	0		•), [] [] [] [] [] [] [] [] [] [] [] [] []
	41	The reciprocal of th					18 3 ai	IU 3 IS
		3, 5 అను సంఖ్యలకు ప	ത. ഈ ഒ	ഴാട ഖറ്റുഖബ റ		2007		
		(1) 4	(2)	1	(3)	15	(4)	4
			23	4		4	(.)	15
	42	The sum of 30 obse			heir mea	n is		
		30 అంశముల మొత్తము	1020		(2)	10	(4)	Name obs so
		(1) 54	(2)		(3)		(4)	None (ඛර් පතා)
	43	In a data, an observ		Median	200		(4)	None
		(1) Mean				Mode	(9)	THORE
		ఒక దత్తాంశములో, ఒక గ (1) అంక గణితపు సగక				బహుళకము	(4)	(ఏదీ కాదు)
		(1) WOS HEREN AND	w (2)	ചധ്യനലേക	(3)	DEVAPOR	(4)	(ac say
•	CEE	P-2012_A]			5			[Contd

Empirical relationship between mean, median and mode is

- (4) None ఆంక గణిత మధ్యమము, మధ్యగతము మరియు బహుళకముల ఆసుభావిక సంబంధం
- బహుళకము + మధ్యగతము = 4 మధ్యగతము 3 అంక గణితపు సగటు
 - (2) బహుళకము మధ్యగతము = 2 (మధ్యగతము అంక గణితపు సగటు)
- (3) బహుళకము మధ్యగతము = 2 (మధ్యగతము + అంక గణితపు సగటు)
- (4) (ఏదీ కాదు)

$$45 \qquad A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \Rightarrow A^2 =$$

 $(2) \begin{bmatrix} 4 & 1 \\ 1 & 4 \end{bmatrix}$ Which of the following products is commutative?

(4) None (බර් පත්)

(4) None (බිසි පත්)

(4) None (බිසි පත්‍ර)

[Contd

46

(1)
$$\begin{bmatrix} -3 & 4 \\ 11 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 0 & 9 \end{bmatrix}$$
 (2) $\begin{bmatrix} 4 & -7 \\ 3 & 5 \end{bmatrix} \begin{bmatrix} 7 & 2 \\ 9 & 8 \end{bmatrix}$ (3) $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
If $A = \begin{bmatrix} x & 1 \\ 1 & x \end{bmatrix}$ and $\det(A) = 8$ then $x =$

$$A = \begin{bmatrix} x & 1 \\ 1 & x \end{bmatrix}$$
 మరియు దాని $\det(A) = 8$ ఆయిన $x = 1$

(1)
$$\pm 3$$
 (2) ± 4 (3) ± 2

The product of the matrices A, B and C is associative means

$$A,\ B$$
 మరియు $\ C$ మాత్రికల లబ్దము సహచర్య న్యాయము అనినచో

$$(1) \quad AB = AC$$

(2)
$$A(BC) = (AB)C$$

ఈ కింది దతాంశమునకు సగటు కనుగొనండి

Class Interval తరగతి ఆంతరము	0-50	50-100	100-150	150-200	200 - 250	250-300
Frequency పోనుప్రస్వము	8	15	32	26	12	7

(1) 145 (2) 245 (3) 143 (4) 144 For the data 99, 100, 101, 102, 103, 104, 105, 106, 107, the value of the mode is 99, 100, 101, 102, 103, 104, 105, 106, 107 దత్తాంశమునకు బాహుళకము వీలువ

51 The formula to find arithmetic mean \bar{x} using the deviation method is సంక్షిప్త వివలన పద్ధతి (deviation method) ద్వారా సగటు కనుగొనుటకు సూత్రము \overline{x} =

(1)
$$A + \frac{1}{N} \left[\sum_{i=1}^{k} f_i u_i \right]$$

(2)
$$\frac{1}{N} \left[\sum_{i=1}^{k} f_i u_i \right] \times C$$

(3)
$$A + \frac{1}{N} \left[\sum_{i=1}^{k} f_i u_i \right] \times C$$

CEEP-2012_A]

SECTION - II (PHYSICS)

61	In a screw gauge, if the zeroth division of t (1) Negative (3) May be positive or negative	(2)	Positive		, then the correction i	S
	[188] [2011년 1월 1일 전 1일		No need of c	orrection		
	స్క్రూగేజిలో తలస్యేలు శూన్య విభాగము సూచీ రేఖ	484				
	(1) ဃာဏ- ဓ ုနဝ	2000	ಧನಾಕ್ಶ್ರಕರ	200		
63	(3) ధనాత్మకం లేక ఋడాత్మకం		సవరణ అవసరం	ව්රා		
62	Heliocentric theory was first proposed by (1) Galileo (2) Kepler	Contract of the contract of th	T-1	(4)		
			Tolemey	(4)	Copernicus	
	సూర్య కేంద్రక సిద్ధాంతమును మొదటిపారిగా ప్రతిపాది				22	
62	(1) గెలిలియో (2) కెప్టర్	(3)	టాల్మి		కోపర్నికస్ .	
63	A body moves from one corner of an equ the distance moved and displacement are	materal tri	angle of side 10	cm to th	ie same corner. Thei	ì
		Contraction of the contraction o	*	500d	her. v. day	
	ఒక వస్తువు 10 సెం.మీ. భుజము గల సమబాహు త్రిభ	ಬಜ ಒಽ ಇಲ್ಲಂ	കാര മധ്പലാകാ	eon eo	ഭറ്റ് ഈ വാഗ ഒ സ്കെ	ž.
	ట్రయాణం చేసిన దూరం, స్థాన్యభంశములు వరుసగా					
	(1) 30 cm, 20 cm (30 %o.b., 20 %o.b.)		30 cm, 0 cm			
	(3) 0 cm, 30 cm (0 750.55, 30 750.55.)		30 cm, 30 cm			
64	Two balls are falling freely from the he ratio of their velocities on reaching sur రెండు బంతులు 9:64 సిప్పక్తి గల ఎత్తుల నుండి స్వేచ్ఛ గా	face of the	e earth.			200
65	సరికి వాటి వేగాల విర్మత్తి (1) 3:4 (2) 4:3 On a planet a stone projected vertically upw	(3) ards with a	8:3 velocity of 10	(4) m/sec rea	3:8 ches the highest point	
	after 2 seconds. If it is thrown with a velocit	-				
	ఒక గ్రహం పై 10 మీ./సి. వేగంతో నిట్టనిలువుగా విసిరిన		ട്ടെ മഹാഖ വാള്	ാളാമാ ഒരാ	ತು ಂದ. ದೌನನ 20 ಮ./ ನ	ji.
	వేగంతో విసిరినటో ఆది గరిష్ట ఎత్తుకు చేరుటకు పట్టుక				G	
66	(1) 1 sec (1 ভারম) (2) 2 sec (2 ভার্ A car moves from A to B with a constant speed of 30 kmph, then the average spee	speed of 2			6 sec (6 సెకన్లు) to A with a constant	
	ఒక కారు A నుండి 8 కు 20 కి.మీ. / గం. సమవడితో కారు సరాసరి వడి			కి.మీ./గం. శ	సమవడితో తిరిగి వచ్చిన ఆ	0.00
	(1) 24 kmph (24 8.ಮ. / バロ.)	(2)	25 kmph (25 §	.b. / 60.)	
	(3) 10 kmph (10 8.5b. / No.)	100.00	Zero (శూన్యం)	9		
67	The ratio of angular speeds of minutes ha			tch is		
	ఒక గడియారం లోని నిముషముల ముల్లు మరియు					
	(1) 1:12 (2) 6:1	the second secon	12:1		1:6	
68	If a body of mass 5 kg revolves in a l 7 revolutions/second, the centripetal force	horizontal	circle of radiu			
	5 కిలోల ద్రవ్యరాశి గల ఒక వస్తువు 1 మీటరు వ్యాస్వా తిరుగుచున్నచో. ఆ వస్తువుపై పనిచేసే అభికేంద్ర బలం	ర్గం గల సమత		రలో సెకను	కు 7 భ్రమణములు చేస్తూ	
	(1) 440 N (440 మ్యాటమ)	02230	484 N (484 a	్యాటమ)		
	(3) 968 N (968 మ్యాటన్లు)	2.2	9680 N (9680	0 "		
CEF	P-2012_A]	8			[Contd	

	(1) Its length is do (2) The mass of th (3) Its length is ma (4) The mass of th	ne bob is doubled ade four times ne bob and the length of	f the pen	dulum are doubled		
		క్క డోలనావర్తన కాలమును రెక్ట కారా చేందుకలైన	్రింపు చేయ	వలెనన్న		
	 దాని పొడవును రెట్టి గోళపు ద్రవ్యరాశిని 					
	(3) ローカ かはあれ かっ	· ·				
		మరియు లోలకపు పొడవును	Rules de	KARA.		5.7
70	A curved road of 50	m radius is banked at cer inking angle, the radius of	tain angl	e for a given speed.		
	50 మీటర్ల వ్యాసార్థం గల	ఒక వృత్తాకార మార్గం ఒక శ	ರ್ಮನಿಕಿ ಪ್	හ <mark>ජట్టబడినది. ఆదే వా</mark> ల	ಬ8್ಟ್	న్ని ఉంచి, వేగాన్ని రెట్టింపు
	చేయవలెనన్న ఆ వృత్తాకా	ర మార్గ వ్యాసార్థాన్ని	ైగా మార్చ	వలెను.		
	(1) 25 m (25 మీ.)	(2) 100 m (100 5			(4)	200 m (200 మ.)
7		an example for electron				4
	(1) X-rays	(2) γ -rays		Radio waves	(4)	Sound waves
		అయస్కాంత తరంగములకు				0.200000
7	(I) X - కిరణములు	(2) γ - కీరణములు				
72	two velocities V_h/V	measured in hydrogen o will be	and oxyg	gen gases at a giver	temp	perature. The ratio of
	ఇవ్వబడిన ఉష్ణోగ్రత వద్ద	ఉదజనిలోని ధ్వని వేగమునకు	, ఆక్సిజన్	లో ధ్వని పేగమునకు 🎉	h/Vo	గల నిప్పత్తి
	(1) 1:4	(2) 4:1	(3)	1:1	(4)	32:1
73		the distance between a				
	ఒక స్థిర తరంగములో ఒక	క ప్రస్పందన స్థానం, దానీ తరు	వాతది కాక	మరియొక బ్రస్పందన శ్ర	్గానము	ల మధ్య దూరం
	(1)	(2) $\frac{\lambda}{2}$	(3)	λ	(4)	$\frac{3\lambda}{4}$
	(1) λ	4				
74	sound in air is 2 cm	nd in air is 360 m/sec w that in water is మీ. / సె. నీటిలో ధ్వని వేగం 14				
		w. / w, wwo 450 min 1	w., n	, 11-00 Boot 2000	2 100	au. Good too coor
	దైర్హ్యం (1) 0.5 cm (0.5 కాం	.మీ.)(2) 2 cm (2 సెం.మీ	y (2)	8 cm (8 % 5)	(4)	16 cm (16 3 to 5)
75			.) (3)	6 CIII (6 NO.M.)	(4)	To citi (To No.so.)
	మైక్రో తరంగాల పౌనుషన					
	(1) 109 Hz to 1011	Hz	(2)	106 Hz to 108 Hz		
	(3) 10 ³ Hz to 10 ⁵			10 ¹² Hz to 10 ¹⁴ F		
76		plass is 2 × 108 m/sec. T		tive index of glass	IS	
	നയാല് ടാർ മീറാ 2	$ imes 10^8$ మీ./ సె. గాజు వక్రీభవ	ನ ಗುಣಕಂ			
	(1) $\frac{2}{3}$	(2) $\frac{3}{2}$	(3)	4	(4)	9
	(1) 3	(2) 2	(3)	9	(4)	4
CI	EEP-2012_A]		9		MIN.	[Contd
a a						
_						
				afaa	пь <u>-</u>	