NOTE: DO NOT BREAK THE SEAL UNTIL YOU GO THROUGH THE FOLLOWING INSTRUCTIONS

COMMON ENTRANCE TEST - 2011

Question Booklet CHEMISTRY

		•				Booklet No.
Roll No.		-		Series	$oxed{\mathbf{A}}$	210381

(Enter your Roll Number in the above space)

Time Allowed: 1.30 Hours

Max. Marks: 75

INSTRUCTIONS:

- 1. Use only BLACK or BLUE Ball Pen.
- 2. All questions are COMPULSORY.
- 3. Check the BOOKLET thoroughly.

IN CASE OF ANY DEFECT - MISPRINTS, MISSING QUESTION/S OR DUPLICATION OF QUESTION/S, <u>GET THE BOOKLET CHANGED WITH THE BOOKLET OF THE SAME SERIES.</u> NO COMPLAINT SHALL BE ENTERTAINED AFTER THE ENTRANCE TEST.

- 4. Before you mark the answer, fill in the particulars in the ANSWER SHEET carefully and correctly. Incomplete and incorrect particulars may result in the non-evaluation of your answer sheet by the technology.
- 5. Write the SERIES and BOOKLET NO. given at the TOP RIGHT HAND SIDE of the question booklet in the space provided in the answer sheet by darkening the corresponding circles.
- 6. Do not use any **eraser**, **fluid pens**, **blades** etc., otherwise your answer sheet is likely to be rejected whenever detected.
- 7. After completing the test, candidates are advised to hand over the OMR ANSWER SHEET to the Invigilator and take the candidate's copy with yourself.

1.	. When 6.3 g of sodium bicarbonate are added to 30.0 g of acetic acid solution, the residual solution is found to weigh 33.0 g. The mass of carbon dioxide released in the reaction is:									
	(1) 3.0 g (2) 0.91 g (3) 1.91 g (4) 3.3 g									
2.	The de Broglie wavelength of a ball of mass 10 g moving with a velocity of 10 ms ⁻¹ [h = $6.626 \times 10^{-34} Js$] :	is								
	(1) $6.626 \times 10^{-33} \text{ m}$ (2) $6.626 \times 10^{-29} \text{ m}$									
	(3) $6.626 \times 10^{-31} \mathrm{m}$ (4) $6.626 \times 10^{-36} \mathrm{m}$									
3.	Two oxides of a metal contain 36.4% and 53.4% of oxygen by mass respectively. If the formula of the first oxide is M_2O , then that of the second is:	ıe								
	(1) M_2O_3 (2) MO (3) MO_2 (4) M_2O_5									
4.	The electrons identified by quantum numbers n and l , (i) $n=4, l=1$ (ii) $n=4, l=1$ (iii) $n=3, l=2$ and (iv) $n=3, l=1$ can be placed in order of increasing energy as:	0								
	(1) $(i) < (ii) < (iii) < (iv)$ (2) $(iv) < (iii) < (i)$									
	(3) $(iv) < (ii) < (iii) < (ii)$ (4) $(iv) < (i) < (iii) < (iii)$									
5.	In a volumetric experiment, it was found that a solution of KMnO ₄ is reduced to MnSO ₄ . If the normality of the solution is 1.0 N, then the molarity of the solution wise:									
	(1) 0.5 M (2) 0.2 M (3) 1.0 M (4) 0.4 M									
6.	A radioactive element $^{238}M_{92}$ emits one alpha particle followed by two beta particle. Then the daughter element formed is:	s.								
	(1) an isotope (2) an isobar (3) an isotope (4) an isodiapher									

7.	One gram atom of a radioactive isowas placed in a sealed container. accumulate in the container is:	tope $(t_1$ The tin	$_{/2}$ = 10 hourne taken for	rs) that emits alpha parti 0.875 g atom of helium	cle to
	(1) 10 hours (2) 20 hours	(3)	30 hours	(4) 40 hours	
8.	The equilibrium constant value K_p changes with	for the	equilibrium	$H_2(g) + I_2(g) = 2HI$	(g)
	(1) total pressure	(2)	temperature	e	
	(3) catalyst	(4)	the amounts	s of $ m H_2$ and $ m I_2$ present	
9.	In which one of the following reaincreasing the pressure?	actions,	the yield of	the products decreases	by
	(1) $2 \operatorname{SO}_2(g) + \operatorname{O}_2(g) \Longrightarrow 2 \operatorname{SO}_3(g)$	(2)	$N_2(g) + 3H_2$	$_{2}\left(\mathrm{g}\right) \implies 2\mathrm{NH}_{3}\left(\mathrm{g}\right)$	
	(3) $\operatorname{PCl}_{5}(g) \Longrightarrow \operatorname{PCl}_{3}(g) + \operatorname{Cl}_{2}(g)$	(4)	$N_2(g) + O_2(g)$	$g) \longrightarrow 2NO(g)$	
10.	Among the following, the one wh Bronsted base is:	ich can	act as both	n Bronsted acid as well	as
	$(1) H_3PO_4 \qquad \qquad ^{\bullet}(2) AlCl_3$	(3)	CH ₃ COO	(4) H_2O	
11.	The pH of the solution formed by 0.45 M NaOH at 298 K is:	mixing	20 mL of 0.	$05~\mathrm{M}~\mathrm{H}_2\mathrm{SO}_4$ with $5.0~\mathrm{mL}$, of
	(1) 6 (2) 2	(3)	12	(4) 7	
12.	The reaction $A + B \rightarrow C + D + 40 \text{ kJ}$ activation energy for the reaction C			energy of 18 kJ. Then	the
	(1) 58 kJ (2) -40 kJ			(4) 22 kJ	

13.	The unit of rate constant for a zero order reaction is:											
	(1)	s^{-1}	(2)	$ m mol~Ls^{-1}$	(3)	$mol L^{-1} s^{-1}$	(4)	no unit				
14.	In a	reaction 2A	$A + B \rightarrow A$	${ m A_2B}$, the reacta	nt B	will disappear	rat:					
	(1)	half the ra	te as A	will decrease	(2)	the same ra	te as A v	vill decre	ease			
	(3)	twice the r	ate as A	A will decrease	(4)	half the rate	e as A ₂ B	will form	n			
15.	Who	en a solution	n contai	ning non-volati	le sol	ute is diluted	with wa	ter:				
	(1)	its osmotic	pressu	re increases	(2)	its boiling p	oint incr	eases				
	(3)	its freezing	g point	decreases	(4)	its vapour p	ressure i	ncreases	S			
16.	Whi		ne follov	ving liquid pair	s will	exhibit a pos	sitive dev	viation fr	om Raoult's			
	(1)	n-hexane a	and n-h	eptane	(2)	ethanol and	chlorofo	rm				
	(3)	phenol and	d anilin	е	(4)	chloroform a	and aceto	one				
17.	Wha	What happens when blood cells are placed in pure water?										
	(1)	the fluid in	n blood	cells rapidly mo	ves i	nto water						
	(2)	the water	molecul	es rapidly move	e into	blood cells						
	(3)	the blood	ells dis	solve in water								
	(4)	no change	takes p	lace								
18.	The	Van't Hoff	factor 'i	' for a dilute aq	ueous	solution of s	ucrose is	:				
	(1)	zero	(2)	1.0	(3)	1.5	(4)	2.0				
				C TD	D	ale Words	-					

	brof	ber by:						
	(1)	temperature	e and density	(2)	pressure a	and molar volur	ne	
	(3)	molar heat	capacity and de	ensity (4)	heat capa	city and enthal	ру	
20.	Pick	c out the wron	ng statement :					
	(1)	The standar	rd free energy o	f formation	of element	s is zero		
	(2)	A process th	at leads to incr	ease in fre	e energy wil	ll be spontaneou	1S	
	(3)	A process a normal cond		decrease i	n entropy	will be non-spo	ntaneous 1	under
	(4)	Enthalpy of	combustion is	always neg	ative			
21.						ively 30 kJ mol will become spo (4) 300	ontaneous	
22.	-28		1 0		•	g) and H ₂ O(l) a of heat evolve		
*	(1)	1412 kJ	(2) _. 9884 kJ	(3)	353 kJ	(4) 706	i kJ	
23.	CuS	O ₄ and molt		in three	different el	lten Al ₂ O _{3,} aque ectrolytic cells.		
	(1)	3:4:6	(2) 2:1:6	(3)	3:2:1	(4) 2:3	3:6	
			Spac	e For Rou	gh Work			
			~ F	,	9			
						< .	e.	

Which one among the following pairs does not represent example for intensive

 \mathbf{CHY}

19.

- 24. In which of the following compounds, carbon exhibits a valency of 4 but oxidation state -2?
 - (1) CH₃Cl
- (2) CHCl₃
- (3) CH₂Cl₂
- (4) HCHO
- 25. A cell is constituted by coupling the two electrode Sn/Sn^{2+} and Cu/Cu^{2+} : If E° (Sn^{2+} , Sn), E° (Cu^{2+} , Cu) and E° (cell) are -0.14 V, 0.34 V and 0.48 V respectively, the correct representation of the cell is:
 - $(1) \quad \left.Sn\left(s\right)\right|Sn^{2+}\left(0.1\,M\right)\right\|Cu^{2+}\left(1.0\,M\right)\right|Cu\left(s\right)$
 - $(2) \quad \left. Sn\left(s\right) \right| Sn^{^{2+}}\left(1.0\,M\right) \right\| Cu^{^{+}}\left(1.0\,M\right) \left| Cu\left(s\right) \right.$
 - (3) $\operatorname{Sn}(s) | \operatorname{Sn}^{2+}(1.0 \,\mathrm{M}) | \operatorname{Cu}^{2+}(1.0 \,\mathrm{M}) | \operatorname{Cu}(s)$
 - $(4) \quad \left. Cu\left(s\right) \right| cu^{^{2+}}\left(1.0\,M\right) \right\| Sn^{^{2+}}\left(1.0\,M\right) \left| Sn\left(s\right) \right.$
- **26.** Which one of the following is correct?
 - (1) Equivalent conductance decreases with dilution
 - (2) Specific conductance increases with dilution
 - (3) Specific conductance decreases with dilution
 - (4) Equivalent conductance increases with increasing concentration
- 27. Chemically unreactive three different gases A, B and C of molecular masses 16, 32 and 64 are enclosed in a vessel at constant temperature till equilibrium is reached. Which of the following statements is true?
 - (1) Gas A will be at the top of the vessel
 - (2) Gas C will be at the top of the vessel
 - (3) Gas C will be at the bottom of the vessel
 - (4) Gases will form homogeneous mixture

28.	Whi plug		wing	iffuse at the san	use at the same rate through a porous								
	(1)	CO, NO_2	(2)	NO, C_2H_6	(3)	NO_2 , CO_2	(4)	NH ₃ , PH ₃					
29.	In zi	inc blende stru	icture	e, the coordinat	ion n	umber of the cati	on is						
	(1)	4	(2)	6	(3)	8	(4)	12					
30.	Freundlich adsorption isotherm equation is:												
	(1)	$\log m/x = \log x$	K+1	$/n \log p$	(2)	$\log x/m = \log K + n \log p$							
	(3)	$\log m/x = \log x$	K + n	$\log p$	(4)	$\log x/m = \log K +$	$\log p$						
31.	The	best coagulan	t for t	he precipitation	n of F	e (OH)3 is :							
	(1)	Na ₂ HPO ₃	(2)	NaNO ₃	(3)	Na ₃ PO ₄	(4)	Na ₂ SO ₄					
32.	Which one of the following is a copolymer formed by condensation polymerization?												
	(1)	Terylene	(2)	BuNa-S	(3)	BuNa-N	(4)	Neoprene					
33.	The	second ionizat	ion e	nergies of Li, B	e, B a	nd C are in the o	rder	:					
	(1)	Li > C > B > I	Зе	•	(2)	Li > B > C > Be							
	(3)	B > C > Be >	Li		(4)	$\mathrm{Be} > \mathrm{C} > \mathrm{B} > \mathrm{Li}$							
34.	Whic	ch of the follow	ing i	s the largest in	size?								
	(1)	Cl-	(2)	S^{2-}	(3)	Na+	(4)	F-					

35.	The hybridization involved in PCl ₅ is :											
	(1)	$\mathrm{sp}^3\mathrm{d}$	(2)	$ m sp^3d^2$	(3)	$ m d^2sp^2$	(4)	sp^3				
36.	Amo	ong the followi	ng w]	hich one is a lin	ear m	olecule having z	ero di	ipole moment?				
	(1)	$\mathrm{H}_2\mathrm{O}$	(2)	HCl	(3)	CO_2	(4)	$_{\mathrm{H_2S}}$				
37.	In w	which of the fol	lowin	ng molecules, the	e cent	tral atom has two	o lone	e pairs of electrons?				
	(1)	SF_4	(2)	${ m BrF}_5$	(3)	SO_2	(4)	XeF_4				
38.	The	bond order of	C_2 m	olecule is :								
	(1)	1 .	(2)	2	(3)	0	(4)	3				
39.	The	correct order	of red	lucing character	of al	kali metals is :						
	(1)	Rb < K < Na	< Li		(2)	Li < Na < K < R	b	*				
	(3)	Na < K < Rb	< Li		(4)	Rb < Na < K < I	Ĺi					
40.	Amo	ong the followi	ng, tl	he compound th	at is	readily soluble in	wate	er is:				
	(1)	BeSO_4	(2)	CaSO ₄	(3)	SrSO ₄	(4)	BaSO ₄				
41.	The	paramagnetic	oxid	es of nitrogen a	re:							
	(1)	dinitrogen m	onoxi	ide and nitroger	n mon	oxide						
	(2)	nitrogen mor	noxide	e and nitrogen o	lioxid	e						
	(3)	nitrogen diox	cide a	nd dinitrogen t	rioxid	e						
	(4)	dinitrogen tr	ioxid	e and dinitroger	ı tetr	oxide						
42.	The	oxyacid of sul	phur	that contains a	lone	pair of electrons	on su	llphur is :				
	(1)	Sulphurous a	acid		(2)	Sulphuric acid						
	(3)	Peroxodisulp	hurio	e acid	(4)	Pyrosulphuric a	ıcid					

43.	The	alloy of copper	r tha	t contains zir	nc is:			•					
	(1)	Monel metal	(2)	Bronze	(3)	Bell metal	(4)	Brass					
44.	$\operatorname{Th}\epsilon$	e lanthanide ele	emen	t that has th	e electro	nic configura	ition, [Xe	e] $4 { m f}^7 5 { m d}^1 6 { m s}^2 { m is}$:					
	(1)	Lutetium	(2)	Terbium	(3)	Ytterbium	(4)	Gadolinium					
45.	All	Cu (II) halides	are l	known except	t the iodi	ide. The reas	on for is	that:					
	(1)	iodide is a bu	lky i	on									
	(2)	Cu ²⁺ oxidizes	iodic	le to iodine									
	(3)	Cu ²⁺ (aq) has	muc	h more negat	tive hydi	ation enthal	ру						
	(4)	Cu ²⁺ ion has	smal	er size									
46.	$\operatorname{Th}\epsilon$	transition met	tal io	n that has 's _]	pin-only'	magnetic mo	oment va	lue of 5.96 is :					
	(1)	Mn^{2+}	(2)	$\mathrm{Fe^{2+}}$	(3)	V^{2+}	(4)	Cu ²⁺					
47.	Am	ong the followi	ng th	e ambidenta	te ligano	d is:							
	(1)	H ₂ NCH ₂ CH ₂ I	NH_2		(2)	$\mathrm{CO_3}^{2-}$							
	(3)	$\mathrm{NO_2}^-$			(4)	$C_2O_4^{2-}$	•						
48.		quare planar complexes of the type MABXL (where A, B, X and L are unidentates)											
	(1)	two cis and o	ne tra	ans isomer	(2)	two trans ar	nd one cis	sisomer					
	(3)	two cis and tv	vo tr	ans isomer	(4)	one cis and	one trans	sisomer					
49.	Am	ong the followi	ng, w	hich one is p	aramagı	netic and has	tetrahed	dral geometry?					
	(1)	$[{ m Ni}\;({ m CN})_4]^{2-}$	(2)	[NiCl ₄] ²⁻	(3)	$[Ni(CO)_4]$	(4)	$[\operatorname{CoCl}_2(\operatorname{en})_2]^+$					

50.	Zeis	se's salt is:					•					
	(1)	[Fe $(C_5H_5)_2$]	(2)	[Pb(C ₂	2H ₅) ₄]	(3)	K [PtCl ₃ (C ₂ H ₄)]	(4)	[Ni(CO) ₄]			
51.	The	formula of sid	lerite	is:								
	(1)	Fe ₂ O ₃	(2)	Fe ₃ O ₄		(3)	FeS_2	(4)	FeCO_3			
52.	The	metal used to	reco	ver copp	er from	a sol	ution of copper s	ılpha	ate is :			
	(1)	Na	(2)	Fe		(3)	Hg	(4)	Ag			
53.	Who	en 'blue vitriol	'is h	eated at	373 K,	the p	roduct formed is	:				
	(1)	CuSO ₄ .3H ₂ O	(2)	CuO +	- SO ₃	(3)	CuSO ₄ .H ₂ O	(4)	CuSO ₄			
54.	Which of the following is a correct name according to IUPAC rules?											
	(1)	2, 3-Diethylh	nexan	.e		(2)	3-Ethyl-2-meth	ylpen	ntane			
	(3)	3, 4-Dimethy	lpen	tane		(4)	2-Ethyl-2-meth	ylpen	tane			
55.	ligh	t and heat t	o giv	e two	constitu	itiona		nochl	e in the presence of orides of molecular			
	(1)	n-Hexane				(2)	2,2-Dimethylbu	tane				
	(3)	2,3-Dimethy	lbuta	ne	e .	(4)	3-Methylpentar	ie				

56.		ich of the following statements luoromethyl group (-CF ₃), on an elec		correct with respect to the effect of bhilic aromatic substitution?
	(a)	The CF_3 group will deactivate the	ring	
	(b)	The CF ₃ group will activate the rin	ng	
	(c)	The CF3 group will be an ortho, pa	ra d	irector
	(d)	The CF3 group will be a meta direc	ctor	
	(1)	(a) and (d) (2) (a) and (b)	(3)	(b) and (c) (4) (a) and (c)
57.	Wh	ich one of the following is not aroma	tic?	
	(1)	Cyclopentadienyl anion	(2)	Cycloheptatrienyl cation
	(3)	Cyclooctatetraene	(4)	Thiophene
58.	Whi	ich of the following compound is chi	ral?	
	(1)	3-pentanol	(2)	1-pentanol
	(3)	3-methyl-1-butanol	(4)	3-methyl-2-butanol
59.	The	e separation of racemic mixture into	the j	pure enantiomers is termed as :
	(1)	Racemisation	(2)	Resolution
	(3)	Equilibration	(4)	İsomerisation
60.		ich one among the following is mo	st re	eactive towards electrophilic substitution
	(1)	Aniline (2) Nitrobenzene	(3)	Benzoic acid (4) Acetanilide

61. Which of the following is most acidic?

- (1) Methane
- (2) Ethane
- (3) Ethyne
- (4) Ethene

62. Chloroform on heating with silver powder gives:

- (1) Ethene
- (2) Ethyne
- (3) Methane
- (4) Ethane

63. 1-chlorobutane on reaction with alcoholic potash gives:

- (1) 1-butanol
- (2) 2-butene
- (3) 1-butene
- (4) 2-butanol

64. The decreasing order of acidity among the compounds, ethanol (I) 2, 2, 2-trifluoroethanol (II), trifluroacetic acid (III) and acetic acid (IV) is:

 $(1) \quad III > II > IV > I$

(2) IV > III > II > I

 $(3) \quad I > II > III > \dot{I}\dot{V}$

 $(4) \quad III > IV > II > I$

65. Phenol on heating with alcoholic KOH and chloroform undergoes:

- (1) Reimer Tiemann reaction
- (2) Kolbe reaction
- (3) Gattermann reaction
- (4) Cannizzaro reaction

66.				•			H ₄ and a	queous workup, wi
	yıel	.d two molecu	les of	only a single a	lcohol?			
	(1)	C_6H_5COOC	$_6\mathrm{H}_5$		(2)	CH ₃ CH ₂ CO	OCH ₂ CF	$ m H_3$
	(3)	$\mathrm{C_6H_5COOC}$	$ m H_2C_6H$	$ m I_{5}$	(4)	CH ₃ COOCI	H_3	
67.	Wh	at are the pro	oducts	of the followin	ig reac	tion?		
	C_6H	$ m H_5OCH_2CH_2O$	H	Heat	?			
	(1)	$C_6H_5OH + 1$	BrCH ₂	$_{ m cH_2Br}$	(2)	$C_6H_5OH + 1$	HOCH₂C	$ m H_2OH$
	(3)	$C_6H_5Br + H$	${ m IOCH}_2$	$\mathrm{CH_{2}OH}$	(4)	$C_6H_5OH + 1$	BrCH₂CF	$ m H_2OH$
68.	Eth	yl methyl k	etone	on treatment	with	a solution o	of sodiun	n hypochlorite give
	chlo	oroform and :		·		-		
	(1)	Sodium eth	anoate	e	(2)	Sodium pro	panoate	
	(3)	Sodium met	thanoa	ate	(4)	Sodium eth	oxide	
					•			
69.	The	compound th	nat giv	es both iodofor	rm and	Fehling's te	sts is :	
	(1)	Ethanol	(2)	Propanone	(3)	2-Butanol	(4)	Ethanal

 (1) a primary amine (2) an aldehyde (3) a ketone (4) an oxime 71. Which one of the following is a secondary amine? (1) 2-Butanamine (2) N-Methylpiperidine (3) N-Methyl-2-pentanamine (4) p-Anisidine 72. Which one of the following amines cannot be prepared by Gabriel's sy (1) Butylamine (2) Isobutylamine (3) 2-Phenylethylamine (4) N-Methylbenzylamine 73. The weakest base among the following is: 	Mendius reaction converts an alkyl cyanide to:										
 71. Which one of the following is a secondary amine? (1) 2-Butanamine (2) N-Methylpiperidine (3) N-Methyl-2-pentanamine (4) p-Anisidine 72. Which one of the following amines cannot be prepared by Gabriel's sy (1) Butylamine (2) Isobutylamine (3) 2-Phenylethylamine (4) N-Methylbenzylamine 											
 (1) 2-Butanamine (2) N-Methylpiperidine (3) N-Methyl-2-pentanamine (4) p-Anisidine 72. Which one of the following amines cannot be prepared by Gabriel's sy (1) Butylamine (2) Isobutylamine (3) 2-Phenylethylamine (4) N-Methylbenzylamine 											
(3) N-Methyl-2-pentanamine (4) p-Anisidine 72. Which one of the following amines cannot be prepared by Gabriel's sy (1) Butylamine (2) Isobutylamine (3) 2-Phenylethylamine (4) N-Methylbenzylamine											
72. Which one of the following amines cannot be prepared by Gabriel's sy (1) Butylamine (2) Isobutylamine (3) 2-Phenylethylamine (4) N-Methylbenzylamine											
(1) Butylamine (2) Isobutylamine (3) 2-Phenylethylamine (4) N-Methylbenzylamine											
(3) 2-Phenylethylamine (4) N-Methylbenzylamine	ynthesis?										
73. The weakest base among the following is:											
	,										
(1) Dimethylamine (2) Aniline	Aniline										
(3) Methylamine (4) Ethylamine											
74. Which one of the following is not an aldose?											
(1) Glucose (2) Ribose (3) Fructose (4) Ma	I annose										
75. Which one of the following is not a greenhouse gas?											
\cdot	litrogen										

Series-A

