Section 4: Mathematics / Biology

Students will have to attempt either Mathematics/Biology as per the eligibility of the program applied.

Mathematics

66.	The solution of the e	equatio	on. $\log(\log_5(\sqrt{x+x}))$	$\log\left(\log_5\left(\sqrt{x+5} + \sqrt{x}\right)\right) = 0 \text{ is}$	
	(a) 2	(b) 4	4	(c)	3

- (a) 2

(d) 8

67. Let
$$\frac{1}{q+r}$$
, $\frac{1}{r+p}$ and $\frac{1}{p+q}$ are in A.P. where $p, q, r, \neq 0$, then

(a) *p*, *q*, *r* are in A.P.

(b) p^2 , q^2 , r^2 are in A.P.

(c) $\frac{1}{p} \cdot \frac{1}{q} \cdot \frac{1}{r}$ in A.P.

(d) none of these

68. If
$$b \in \mathbb{R}^+$$
 then the roots of the equation $(2+b)x^2 + (3+b)x + (4+b) = 0$ is

- (a) real and distinct
- (b) real and equal
- (c) imaginar
- (d) cannot predicted

Solve for integral solutions
$$x_1 + x_2 + x_3 + ... + x_6 \le 17$$
, where $1 \le x_i \le 6$, $i = 1, 2, ... 6$.
Number of solutions will be

- (a) ${}^{17}C_6 6^{11}C_5$ (b) ${}^{17}C_{11} 6^{11}C_5$ (c) ${}^{17}C_5 6^{11}C_5$ (d) ${}^{17}C_{11} 5^{11}C_6$

70. The probability that a certain beginner at golf gets a good shot if he uses the correct club is
$$\frac{1}{3}$$
, and the probability of a good shot with an incorrect club is $\frac{1}{4}$. In his bag there are 5 different clubs, only one of which is correct for the shot in question. If he chooses a club at random and take a stroke, the probability that he gets a good shot is

- (a) $\frac{1}{3}$
- (b) $\frac{1}{12}$ (c) $\frac{4}{15}$

71.	OPQR is a square and M, N are the middle points of the side PQ and QR respectively. Then the							
	ratio of the area of the square and the triangle OMN is							
	(a) 4 : 1	(b) 2:1	(c) 4:3	(d) 8:3				
72.	Two vertices of an e	Two vertices of an equilateral triangle are $(-1, 0)$ and $(1, 0)$ and its circumcircle is						
	(a) $x^2 + \left(y - \frac{1}{\sqrt{3}}\right)^2 = \frac{4}{3}$	$x^{2} + \left(y - \frac{1}{\sqrt{3}}\right)^{2} = \frac{4}{3}$ (b) $x^{2} - \left(y + \frac{1}{\sqrt{3}}\right)^{2} = \frac{4}{3}$						
	(c) $x^2 + \left(y - \frac{1}{\sqrt{3}}\right)^2 = -$	-43	(d) none of these					
73.	If in a $\triangle ABC$, $\sin^2 A + \sin^2 B + \sin^2 C = 2$, then the triangle is always							
	(a) isosceles triangle	e (b) right angled	(c) acute angled	(d) obtuse angled				
74.	If the vertex and the the directrix is	e focus of a parabola ar	e $(-1, 1)$ and $(2, 3)$ respect	ively, then the equation of				
			(c) $2x - 3y + 10 = 0$					
75.		ne radius of the circle passing through the foci of the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$ and having its centre						
	at (0, 3) is (a) 4	(b) 3	(c) $\sqrt{12}$	(d) 7/2				
76.		, $R(x_3, y_3)$ and $S(x_4, y_4)$ ordinates of the orthoce	are four concyclic points or ntre of Δ PQR are	n the rectangular hyperbola				
	(a) $(x_4, -y_4)$	(b) (x_4, y_4)	(c) $(-x_4, -y_4)$	(d) $(-x_4, y_4)$				
77.			$(1+x)(1+y)(x+y)]^n$ is					
	(a) $\sum_{r=0}^{n} C_r$	$(b) \sum_{r=0}^{n} C_r^2$	$(c) \sum_{r=0}^{n} C_r^3$	(d) none of these				

	(a) $ z_0 < \frac{1}{2}$	(b) $ z_0 > \frac{1}{2}$	$(c) z_0 = \frac{1}{2}$	(d) none of these				
79.	The second order d	The second order differential equation is						
	(a) $y'^2 + x + y^2$	(b) $y'y'' + y = \sin x$	(c) $y''' + y'' + y = 0$	(d) $y' = 0$				
80.	$\int e^{3x} \left(\frac{1 + 3\sin x}{1 + \cos x} \right) dx \mathbf{i}$	s equal to						
	(a) $e^{3x} \cot x + c$	(b) $e^{3x} \tan \frac{x}{2} + c$	(c) $e^{3x}\sin x + c$	(d) $e^{3x}\cos x + c$				
81.	If m and n are positive integers and $f(x) = \int_{1}^{x} (t-a)^{2n} (t-b)^{2m+1} dt$, $a \neq b$, then							
	(a) $x = b$ is a point	t of local minimum	(b) $x = b$ is a point of lo	cal maximum				
	(c) $x = a$ is a point	of local minimum	(d) $x = a$ is a point of lo	cal maximum				
82.	If in a triangle ABC	$\frac{2\cos A}{a} + \frac{\cos B}{b} + \frac{2\cos C}{c}$	$\frac{d}{dr} = \frac{a}{bc} + \frac{b}{ca}$, then the value of	of the angle A is				
	(a) 45°	(b) 90°	(c) 135°	(d) 60°				
83.	The general solutio (a) $n\pi$	n of the equation $2^{\cos 2x}$. (b) $\left(n + \frac{1}{2}\right)\pi$		(d) all of the above.				
84.		Total number of positive real values of x satisfying $2[x] = x + \{x\}$, where [.] and $\{.\}$ denote the greatest integer function and fractional part respectively is equal to						
	(a) 2	(b) 1	(c) 0	(d) 3				
85.	If $\lim_{x \to 0} \frac{((a-n)nx - t)}{x^2}$	$\frac{(\sin x)\sin nx}{(\sin x)} = 0$, where	n is nonzero real number, th	nen a is equal to				
	(a) 0	(b) $\frac{n+1}{n}$	(c) n	(d) $n + \frac{1}{n}$				
86.	$f(x) = \begin{cases} 4x - x^3 + \ln(x) \\ 4x - x^3 + \ln(x) \end{cases}$	$\left(a^2 - 3a + 3\right), \qquad 0 \le$	x < 3. Find the complete s	set of values of a such that				

(a) [-1, 2] (b) $(-\infty, 1) \cup (2, \infty)$ (c) [1, 2] (d) $(-\infty, -1) \cup (2, \infty)$

f(x) has a local minima at x = 3 is

 z_0 is one of the roots of the equation $z^n \cos \theta_0 + z^{n-1} \cos \theta_1 + ... + \cos \theta_n = 2$, where $\theta_i \in \mathbb{R}$, then

78.

87. The number of values of k for the system of equations (k + 1)x + 8y = 4k and kx + (k + 3)y = 3k - 1has infinitely many solutions

(a) 0

(c) 2

(d) infinite

The matrix $\begin{bmatrix} \frac{1+i}{2} & \frac{-1+i}{2} \\ \frac{1+i}{2} & \frac{1-i}{2} \end{bmatrix}$ is 88.

(a) unitary

(b) null matrix

(c) symmetric

(d) none of these

The area between the curves $y = xe^x$ and $y = xe^{-x}$ and the line x = 1 is **89.**

(b) *e*

(c) 2/e

(d) 1/e

If the unit vectors \vec{a} and \vec{b} are inclined at an angle 20 and $|\vec{a} - \vec{b}| < 1$ then 0 lies in the interval 90.

(a) $\left[0, \frac{\pi}{6}\right]$ (b) $\left(\frac{5\pi}{6}, 2\pi\right]$ (c) $\left[\frac{\pi}{6}, \frac{\pi}{2}\right]$ (d) $\left[\frac{\pi}{2}, \frac{5\pi}{6}\right]$