117
QUESTION PAPER SERIES CODE
Α

Registration No. :			
Centre of Exam. : _	 		
Name of Candidate :	 	 	

COMBINED ENTRANCE EXAMINATION, 2016

M.Sc. AGRICULTURAL BIOTECHNOLOGY

[Field of Study Code : BAG]

Time Allowed: 3 hours

Maximum Marks: 240

Signature of Invigilator

INSTRUCTIONS FOR CANDIDATES

Candidates must read carefully the following instructions before attempting the Question Paper:

- (i) Write your Name and Registration Number in the space provided for the purpose on the top of this Question Paper and in the Answer Sheet.
- (ii) Please darken the appropriate Circle of Question Paper Series Code on the Answer Sheet.
- (iii) The Question Paper is divided into two Parts: Part—A and Part—B. Both Parts have multiple-choice questions. All answers are to be entered in the Answer Sheet provided with the Question Paper for the purpose.
- (iv) Part—A consists of 60 questions and all are compulsory. Answer all the questions in the Answer Sheet provided for the purpose by darkening the correct choice, i.e., (a) or (b) or (c) or (d) with BALLPOINT PEN only against each question in the corresponding circle. Each correct answer carries I mark. There will be negative marking and ½ mark will be deducted for each wrong answer.
- (v) Part—B consists of 100 questions. Answer any 60 questions in the Answer Sheet by darkening the correct choice, i.e., (a) or (b) or (c) or (d) with BALLPOINT PEN only against the corresponding circle. Each correct answer carries 3 marks. There will be negative marking and 1 mark will be deducted for each wrong answer.

In case any candidate answers more than the required 60 questions, the first 60 questions attempted will be evaluated.

- (vi) Answer written by the candidates inside the Question Paper will not be evaluated.
- (vii) Calculators and Log Tables may be used.
- (viii) Pages at the end have been provided for Rough Work.
- (ix) Return the Question Paper and Answer Sheet to the Invigilator at the end of the Entrance Examination.

 DO NOT FOLD THE ANSWER SHEET.

INSTRUCTIONS FOR MARKING ANSWERS

- 1. Use only Blue/Black Ballpoint Pen (do not use Pencil) to darken the appropriate Circle.
- 2. Please darken the whole Circle.
- 3. Darken ONLY ONE CIRCLE for each question as shown in example below :

Wrong	Wrong	Wrong Wrong		Correct	
● ⓑ ⓒ ●	\$ 000	Ø 0 0 Ø	⊙ © © ●	® © © ●	

- 4. Once marked, no change in the answer is allowed.
- 5. Please do not make any stray marks on the Answer Sheet.
- 6. Please do not do any rough work on the Answer Sheet.
- 7. Mark your answer only in the appropriate space against the number corresponding to the question.
- 8. Ensure that you have darkened the appropriate Circle of Question Paper Series Code on the Answer Sheet.

/117-A

PART-A

Answer all questions

- 1. One gene-one enzyme was proposed by
 - (a) Watson and Crick
 - (b) Beadle and Tatum
 - (c) Kendrew and Perutz
 - (d) Meselson and Stahl
- 2. In meiosis I, a bivalent is an association of
 - (a) four chromatids and four centromeres
 - (b) two chromatids and two centromeres
 - (c) four chromatids and two centromeres
 - (d) two chromatids and four centromeres
- 3. Adrenalin is secreted by
 - (a) pineal
 - (b) adrenal cortex
 - (c) adrenal medulla
 - (d) thymus
- 4. Agrobacterium tumefaciens produces crown gall disease in
 - (a) gymnosperms
 - (b) monocotyledonous plants
 - (c) dicotyledonous plants
 - (d) angiosperms
- 5. The enzymes required to obtain wall-free/naked protoplasts are
 - (a) cellulase and amylase
 - (b) cellulase and pectinase
 - (c) cellulase and proteinase
 - (d) amylase and pectinase

6.	Two	Two microbes found to be very useful in genetic engineering are			
	(a)	Diplococcus sp. and Pseudomonas sp.			
	(b)	Vibrio cholerae and tailed bacteriophage			
	(c)	crown gall bacterium and Caenorhabditis elegans			
	(d)	Escherichia coli and Agrobacterium tumefaciens			
7.	Whi	ich of the following germ layers is best associated with development of heart?			
	(a)	Ectoderm			
	(b)	Endoderm			
	(c)	Mesoderm			
	(d)	All of the above			
8.	Whi	ch of the following has unevenly thickened walls?			
	(a)	Collenchyma			
	(b)	Sclerenchyma			
	(c)	Parenchyma			
	(d)	Chlorenchyma			
9.		An amphipathic phospholipid molecule is most likely to be found in which of the following locations in the cell?			
	(a)	Cytoplasm			
	(b)	ER membrane			
	(c)	Mitochondrial matrix			
	(d)	Peroxisome matrix			
10.	Тгур	osinogen is a typical example of			
	(a)	coenzyme			
	(b)	proenzyme			
	(c)	apoenzyme			
	(d)	holoenzyme			

11.	AC'	TH is secreted from
	(a)	adrenal cortex
	(b)	pituitary
	(c)	adrenal medulla
	(d)	thyroid
12.	Who	o wrote the famous book, Origin of Species?
	(a)	Lamarck
	(b)	Darwin
	(c)	De Vries
	(d)	Mendel
13.	Anti	bodies are produced by
	(a)	monocytes
	(b)	lymphocytes
	(c)	red blood cells
	(d)	phagocytes
14.	Plan	ts developed in vitro culture from pollen grains are
	(a)	androgenic plants
	(b)	pollen plants
	(c)	male plants
	(d)	sterile plants
15.	Chlo	rophylls contain
	(a)	magnesium
	(b)	manganese
	(c)	chlorine
	(d)	iron

16.	Whi	ch of the following has the highest electronegativity?
	(a)	Fluorine
	(b)	Hydrogen
	(c)	Chlorine
	(d)	Carbon
17.	Wha	at is the oxidation state of manganese in Mn ₂ O ₃ ?
	(a)	Mn(II)
	(b)	Mn(IV)
	(c)	Mn(III)
	(d)	Mn(VI)
18.	Whi	ch of the following bonds has the greatest degree of ionic character?
	(a)	Li-Cl
	(b)	F—F
	(c)	H—Cl
	(d)	C—CI
19.	Whi	ch of the following elements can form the greater number of covalent bond?
	(a)	Carbon
	(b)	Nitrogen
	(c)	Oxygen
	(d)	Sulphur
20.	Whi	ch of the following elements forms a tetrahedral structure?
	(a)	Boron
	(b)	Carbon
	(c)	Beryllium
	(d)	Fluorine

21.	Amo	ong the following, the paramagnetic compound is
	(a)	Na ₂ O ₂
	(b)	O ₃
	(c)	N_2O
	(d)	KO_2
22.		triple bond between the carbon atoms causes acetylene, C_2H_2 , to have which of following shapes?
	(a)	Trigonal planar
	(b)	Linear
	(c)	Tetrahedral
	(d)	Square planar
23.		adioactive element has a half-life of 20 minutes. How much time should elapse are the element is reduced to $\frac{1}{8}$ th of the original mass?
	(a)	40 minutes
	(b)	60 minutes
	(c)	80 minutes
	(d)	160 minutes
24.	In w	which compound, the C—H bond is more polar?
	(a)	Acetylene
•	(b)	Ethylene
	(c)	Ethane
	(d)	Methane
25.	Read	ction of water with P ₄ O ₁₀ gives
	(a)	H_3PO_3
	(b)	H_3PO_4
	(c)	H_2PO_4
	(d)	$H_2P_4O_{11}$

26.	But	ane-2-ol is
	(a)	primary alcohol
	(b)	secondary alcohol
	(c)	tertiary alcohol
	(d)	aldehyde
27.	Alde	chydes are isomeric with
	(a)	ketones
	(b)	ethers
	(c)	alcohols
	(d)	fatty acids
28.	The	structural formula of methyl aminomethane is
	(a)	(CH ₃) ₂ CHNH ₂
	(b)	(CH ₃) ₃ N
	(c)	(CH ₃) ₂ NH
	(d)	CH ₃ NH ₂
29.	The	rate at which a substance reacts depends on its
	(a)	atomic weight
	(b)	equivalent weight
	(c)	molecular weight
	(d)	active mass
30.	ln t	he chemical reaction, $MnO_2 + 4HCl \rightarrow MnCl_2 + 2H_2O + Cl_2$
	(a)	manganese ion is oxidized
	(b)	manganese ion is reduced
	(c)	chloride ion is oxidized
	(d)	chloride ion is reduced

- 31. A die is thrown twice. The probability that the sum of points obtained is 7 is
 - (a) $\frac{7}{36}$
 - (b) $\frac{4}{36}$
 - (c) $\frac{1}{6}$
 - (d) $\frac{11}{36}$
- 32. The equation of line having slope 2 and being tangent to the curve $y^2 + x = 0$ is
 - (a) y+2x+2=0
 - (b) 2x y + 2 = 0
 - (c) 16x 8y 1 = 0
 - (d) y+2x+2=0
- 33. The slope of the tangent to the curve $x = t^2 + 3t 8$, $y = 2t^2 2t 5$ at the point (2, -1) is
 - (a) $\frac{22}{7}$
 - (b) $\frac{5}{7}$
 - (c) $\frac{7}{6}$
 - (d) $\frac{6}{7}$
- 34. The normal at the point (1, 1) on the curve $2y + x^2 = 3$ is
 - (a) x-y=0
 - (b) x + y = 0
 - (c) x + y + 1 = 0
 - (d) xy = 1
- 35. For what value of x, the expression $\frac{1-x+x^2}{1+x+x^2}$ has minimum value?
 - (a) 0
 - (b) 1
 - (c) 3
 - (d) $\frac{1}{3}$

36. For what value of a, the function f defined by

$$f(x) = \begin{cases} 5 & \text{if } x \le 2\\ 5ax & \text{if } 2 < x < 10\\ 21x^4 & \text{if } x \ge 10 \end{cases}$$

is continuous function at x = 2?

- (a) 0
- (b) $\frac{1}{2}$
- (c) 3
- (d) $\frac{1}{3}$

37. The function f given by $f(x) = |x-1|, x \in \mathbb{R}$ is

- (a) differentiable at x = 1
- (b) not differentiable at x = 1
- (c) everywhere differentiable
- (d) nowhere differentiable

38. The greatest integer function defined by f(x) = [x], 0 < x < 2 is

- (a) not differentiable at x = 1
- (b) nowhere differentiable
- (c) differentiable at x = 1
- (d) everywhere differentiable

39. Let

$$A = \begin{bmatrix} 2 & 3 \\ 4 & 6 \end{bmatrix} \text{ and } B = \begin{bmatrix} -1 & -2 \\ 4 & 6 \end{bmatrix}$$

Then A + B is

(a)
$$\begin{bmatrix} 1 & 1 \\ 8 & 4 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 1 & 1 \\ 8 & 8 \end{bmatrix}$$

(c)
$$\begin{bmatrix} 1 & 9 \\ 8 & 4 \end{bmatrix}$$

(d)
$$\begin{bmatrix} 10 & 1 \\ 8 & 4 \end{bmatrix}$$

- **40.** The function $f(x) = \sin x$ is
 - (a) even
 - (b) odd
 - (c) even and odd
 - (d) neither odd nor even
- 41. Let x be a rational number and y be an irrational number. Then
 - (a) x + y is an irrational number
 - (b) x + y is a rational number
 - (c) xy is a rational number, if $x \neq 0$
 - (d) x-y is a rational number
- **42.** The interval for which the expression |x+3| < 5 is satisfied is
 - (a) (-8, 2)
 - (b) $\left(\frac{-17}{2}, \frac{3}{2}\right)$
 - (c) $\left(\frac{17}{2}, \frac{3}{2}\right)$
 - (d) $\left(\frac{-17}{2}, \frac{1}{2}\right)$
- 43. The cube roots of 'a', where a is a non-zero positive real number, are
 - (a) $a^{1/3}$, $a^{1/3}\omega$, $a^{1/3}\omega^2$
 - (b) $a^{1/3}$, $a^{1/3}\omega$, $a^{1/3}\omega^3$
 - (c) $a^{2/3}$, $a^{1/3}\omega$, $a^{2/3}\omega^3$
 - (d) $a^{3/2}$, $a^{2/3}\omega$, $a^{2/3}\omega^3$

where 1, ω , ω^2 are cube roots of unity.

- **44.** The maximum value of $3\sin x + 4\cos x$ is
 - (a) -5
 - (b) 5·5
 - (c) 3
 - (d) 5

If si	$\ln \theta + \csc \theta = 2$, then the value of $\sin^n \theta + \csc^n \theta$ is
(a)	3
(b)	4
(c)	2
(d)	5
	esistor of 6Ω with tolerance 10% and another resistor of 4Ω with tolerance 10% connected in series. The tolerance of the combination is
(a)	5%
(b)	10%
(c)	15%
(d)	20%
	arce (F), acceleration (A) and time (T) are taken as fundamental physical quantities the dimensions of energy are
(a)	FT
(b)	F^2AT
(c)	FAT
(d)	FAT ²
Ber	noulli's theorem is a consequence of
(a)	conservation of mass
(b)	conservation of energy
(c)	conservation of linear momentum
(d)	conservation of angular momentum
Den	sity of water is 1 gm/cc in CGS unit. The density in MKS unit is
(a)	$10^{-3} \text{ kg m}^{-3}$
(b)	10^{3} kg m^{-3}
(c)	1 kg m^{-3}
(d)	0.1 kg m^{-3}
	(a) (b) (c) (d) A reare (a) (b) (c) (d) If for there (a) (b) (c) (d) Berry (a) (b) (c) (d) Co

5 0 .	Hul	oble's law states that the speed of recession of galaxy is proportional to its distance
	r as	
	(a)	r^{-2}
	(b)	r^{-1}
	(c)	r^2
	(d)	r
51.	Whi	ich of the following is correct ascending order of frequency?
	(a)	X-ray, red, violet, ultraviolet
	(b)	Microwave, radiowave, X-ray, gamma ray
	(c)	Yellow, microwave, ultraviolet, X-ray
	(d)	Infrared, blue, ultraviolet, X-ray
52.	Uni	directional property of a p - n junction is used in
	(a)	rectifier
	(b)	amplifier
	(c)	transistor
	(d)	oscillator
53.		identical wires of equal length are first connected in series and then in parallel, ratio of heat produced in the two cases is
	(a)	1:4
	(b)	1:16
	(c)	1:1
	(d)	1:2
54.	The	use of heavy water in a nuclear reactor is
	(a)	to absorb neutrons
	(b)	to increase the energy of neutrons
	(c)	to decrease the energy of neutrons
	(d)	to produce protons
55.	In p	hotoelectric emission, the number of electrons emitted depends upon
	(a)	the energy of incident photon
	(b)	the work function of the metal
	(c)	the intensity of incident light
	(d)	the wavelength of incident light

56.	To r	nake an n-type semiconductor from pure silicon one has to
	(a)	inject electrons in silicon
	(p)	dope silicon with an element of group V
	(c)	dope silicon with an element of group III
	(d)	dope silicon with an element of group IV
57.	Whi	ch of the following measurements is not a unit of distance?
	(a)	Ammeter
	(b)	Cu bit
	(c)	Parsec
	(d)	Angstrom
5 8.	Whi	ch one of the following remains constant while throwing a ball upward?
	(a)	Displacement
	(b)	Potential energy
	(c)	Acceleration
	(d)	Velocity
59.	Why	is the color red used for danger signals?
	(a)	It is very bright
	(b)	It is scattered most
	(c)	It is scattered least
	(d)	Our eyes are most sensitive to red color
60 .	The	dimensional formulas for Planck's constant and angular momentum are
	(a)	$[ML^2T^2]$ and $[MLT^{-1}]$
	(b)	$[ML^2T^{-1}]$ and $[ML^2T^{-1}]$
	(c)	$[ML^3T^1]$ and $[ML^2T^{-2}]$
	(d)	$[MLT^{-1}]$ and $[MLT^{-2}]$

PART—B

Answer any sixty questions

	(a)	T. J. Burill
	(b)	Needham
	(c)	Anton De Bary
	(d)	E. J. Butler
62 .	Loos	se smut is a disease of wheat which is
	(a)	internally seed borne
	(b)	externally seed borne
	(c)	soilborne
	(d)	airborne
53.	Yello	ow leaf mosaic of Okra is spreaded by
	(a)	jassids
	(b)	borers
	(c)	jassids and borers
	(d)	whitefly
54.	Littl	e leaf in brinjal is caused by
	(a)	fungus
	(b)	bacteria
	(c)	virus
	(d)	mycoplasma
55.	The	rice inflorescence is known as
	(a)	panicle
	(b)	spikelets
	(c)	ear
	(d)	siliqua

61. Who is the Father of Plant Pathology?

66.	The first wheat variety having short plant height lodging resistance and higher grain yield was				
	(a)	Dee-gee-woo-gen			
	(b)	Norin 10			
	(c)	Larma Rojo 64A			
	(d)	Sonara 64			
67.	The	The highest production of mustard in India is recorded in which of the following States?			
	(a)	Gujarat			
	(b)	Uttar Pradesh			
	(c)	Punjab			
	(d)	Rajasthan			
68.	The	oil and protein contents of groundnut are			
	(a)	20% and 50%			
	(b)	26% and 45%			
	(c)	45% and 26%			
	(d)	50% and 26%			
69.	Pus	a Meghali is an improved variety of			
	(a)	carrot			
	(b)	raddish			
	(c)	beetroot			
	(d)	turnip			
70.	Pun	gency in chilli is due to presence of			
	(a)	capsaicin			
	(b)	allyl isothiocyanate			
	(c)	curcumin			
	(d)	olerin			

71.	Gla	diolus is propagated by
	(a)	true seed
	(b)	bulbs
	(c)	stem cutting
	(d)	roots
	(α)	10003
72.	CFI	'RI is located in
	(a)	Delhi
	(b)	Bangalore
	(c)	Hyderabad
	(d)	Mysore
73.	Fe i	s not an important component of which of the following enzymes?
	(a)	Nitrogenase
	(b)	Nitrate hydratase
	(c)	Nitrate reductase
	(d)	Glutamate dehydrogenase
74.	Whi	ch one of the following is an immobile element?
	(a)	Ca
	(b)	Mg
	(c)	N
	(d)	P .
75.	Hill	soils are generally
	(a)	acidic
	(b)	alkaline
	(c)	neutral
	(d)	saline

76.		ch one of the following polyols is commercially manufactured by the hydrogenation lucose?
	(a)	Sorbitol
	(b)	Mannitol
	(c)	Dulcitol
	(d)	Glycerol
77.	An e	example of non-reducing sugar is
	(a)	lactose
	(b)	maltose
	(c)	glucose
	(d)	sucrose
78.	An e	example of essential amino acid is
	(a)	serine
	(b)	glutamine
	(c)	asparagine
	(d)	tryptophan
79.	An e	example of saturated fatty acid is
	(a)	stearic acid
	(b)	linolenic acid
	(c)	oleic acid
	(d)	linoleic acid
80.	The	induced fit theory to explain the mechanism of enzyme action was given by
	(a)	Fischer
	(b)	Koshland
	(c)	Michaelis
	(d)	Menten

81.		additional non-protein component required by enzymes to carry out its catalytic tions is
	(a)	coenzyme
	(b)	isoenzyme
	(c)	cofactor
	(d)	apoenzyme
82.	The	false statement with respect to competitive inhibition of enzymes is
	(a)	Inhibitors bind to the active site
	(b)	Inhibitors are not acted upon by the enzyme
	(c)	Inhibition is not reversed by increasing the substrate concentration
	(d)	Inhibition is reversed by increasing the substrate concentration
83.		més that remove groups by a mechanism other than hydrolysis leaving uble-bond in which one of the following products?
	(a)	Isomerases
	(b)	Lyases
	(c)	Transferases
	(d)	Hydrolases
84.	The	water-soluble vitamin is
	(a)	vitamin A
	(b)	vitamin B
	(c)	vitamin D
	(d)	vitamin E
85.	Nucl	eic acids are polymers of
	(a)	nucleoside
	(b)	phosphorylated nucleoside
	(c)	glycoside
	(d)	peptides

	(a)	Brown and Baker
	(b)	Fleming and Brown
	(c)	Schell and Schultz
	(d)	Knoll and Ruska
37 .	A c	ell becomes turgid when placed in
	(a)	isotonic solution
	(p)	hypotonic solution
	(c)	hypertonic solution
	(d)	monotonic solution
88.	Lyse	osomes are often called as
	(a)	energy bags
	(b)	lipid bags
	(c)	suicide bags
	(d)	enzyme bags
39 .	A co	omplete cell cycle usually consists of
	(a)	G ₀ and G ₁ stages
	(b)	G ₀ , G ₁ and S stages
	(c)	G ₁ , S ₁ , G ₂ and M stages
	(d)	S and M stages
90.	Wha	at is the sequence of Pribnow box?
	(a)	TATATT
	(b)	TTGACA
	(c)	TTATAT
	(d)	TATAAT

Electron microscope was invented by

86.

91.		NA strand with the sequence AACGTAACG is transcribed. What is the sequence of mRNA molecule synthesized?			
	(a)	AACGTAACG			
	(b)	UUGCAUUGC			
	(c)	AACGUAACG			
	(d)	TTGCATTGC			
92.		effort to decipher the genetic code was led by which of the following scientists was awarded a Nobel Prize for his work?			
	(a)	Nirenberg			
	(b)	Lederberg			
	(c)	Watson			
	(d)	Crick			
93.	Whi	Which one of the following is the site of protein synthesis?			
	(a)	Ribosomes			
	(b)	tRNA			
	(c)	mRNA			
	`(d)	rRNA			
94.	The	longevity of mRNA is related to			
	(a)	the length of the poly(A) tail			
	(b)	the 5' capping of the mRNA			
	(c)	transfer of mRNA from nucleus to cytosol			
	(d)	formation of hnRNA to mRNA			
95.	Puls	es are deficient in			
	(a)	lysine			
	(b)	threonine			
	(c)	methionine			
	(d)	tryptophan			

		•
96.	Wh	ich of the following is not a biological function of protein?
	(a)	Biological catalysis
	(b)	Regulation of cellular process
	(c)	Carrying genetic information
	(d)	Transport of molecules or ions
97.	Wh	ich type of bonds links the individual nucleotides together in DNA?
	(a)	Glycosidic
	(b)	Peptide
	(c)	Phosphodiester
	(d)	Electrostatic
98.	Star	r activity refers to
	(a)	nonspecific recognition of restriction sites by RE I
	(b)	high specificity recognition by RE
	(c)	nonspecific ligation by ligase
	(d)	nonspecific recognition of restriction sites by RE II
99.	BLA	STn refers to searching for the
	(a)	nucleotide query sequence against protein sequence
	(b)	nucleotide query sequence against nucleotide sequence
	(c)	protein query sequence against nucleotide sequence
	(d)	protein query sequence against protein sequence
100.	Rem	oval of 5T is performed by
	(a)	alkaline phosphatase
	(b)	ligase

lambda exonuclease

polynucleotide kinase

101.	The	first discovered molecular marker is
	(a)	RFLP
	(b)	AFLP
	(c)	RAPD
	(d)	SSR
102.	Majo	or cause of evolution of gene and protein is
	(a)	point mutation
	(b)	chromosomal aberration
	(c)	sexual reproduction
	(d)	gene duplication and divergence
103.	Cry inse	1 A(c) encoding endotoxin is effective against which of the following classes of cts?
	(a)	Diptera
	(b)	Lepidoptera
	(c)	Coleoptera
	(d)	Hemiptera
104.	Mon	locot plants can be effectively transformed by Agrobacterium tumefaciens by using
	(a)	PEG
	(b)	leaf mesophyll cells
	(c)	mature embryos
	(d)	acetosyringone
105.	The	situation where an egg cell develops into an embryo without fertilization is called
	(a)	parthenogenesis
	(b)	parthenocarpy
	(c)	diplospory
	(d)	apogamy

106.	Tra	insfer of DNA from one bacterial cell to another by a virus is called
	(a)	transformation
	(b)	transduction
	(c)	transfection
	(d)	conjugation
107.	Cyt	oplasmic male sterility is generally associated with
	(a)	chloroplast
	(b)	transposon
	(c)	nucleus
	(d)	mitochondria
108.	Cat	abolic repression of <i>lac</i> operon is mediated through
	(a)	ATP
	(b)	GTP
	(c)	ADP
	(d)	cyclic AMP
109.	The	herbicide glyphosate inhibits
	(a)	RNA polymerase
	(b)	DNA polymerase
	(c)	EPSP synthase
	(d)	aspartate aminotransferase
10.	Rab	ies is transmitted to humans by
	(a)	water
	(b)	food
	(c)	air
	(d)	dog bite

111.	Site	of fiber digestion in horse is
	(a)	rumen
	(b)	small intestine
	(c)	stomach
	(d)	large intestine
112.	Bird	flu is caused by
	(a)	avian adenovirus
	(b)	avian influenza virus .
	(c)	avian pox virus
	(d)	Rous sarcoma virus
113.	Neur	otransmitter substance present at neuromuscular junction is
	(a)	dopamine
	(b)	epinephrine
	(c)	norepinephrine
	(d)	acetylcholine
114.	Site	of fertilization in cow is
	(a)	uterus
	(b)	cervix
	(c)	vagina
	(d)	oviduct
115.	Whic	th of the following two elements are not found in proper amount in normal milk?
	(a)	Fe and Cu
	(b)	Ca and Mg
	(c)	K and Ca
	(d)	Ca and Na

116.	Vir	us infested plants are diagnosed using which one of the following?
	(a)	Nanodrop
	(b)	Spectrophotometer
	(c)	Electrophoresis
	(d)	ELISA ·
117.	Aux	rin and cytokinin in equal ratio favour the development of
	(a)	shoot
	(b)	root
	(c)	callus
	(d)	shoot and root
118.	Whi	ich one of the following is not a form of outbreeding?
	(a)	Crossbreeding
	(b)	Line breeding
	(c)	Grading-up
	(d)	Species hybridization
119.	The	most useful species cross is
٠	(a)	mule
	(b)	churu
	(c)	cattalo
	(d)	zebroid
20.	Whi	ch microbial process produces a form of nitrogen that can be leachable?
	(a)	Nitrification
	(b)	Symbiosis
	(c)	Immobilization
	(d)	Autotrophism

121.		endary metabolic products are produced during which of the following growth ses of bacteria?					
	(a)	Log phase					
	(b)	Trophophase					
	(c)	Idiophase					
	(d)	Lag phase					
122.	Chronobiology is the study of						
	(a)	cold-blooded animals					
	(b)	temperate environment					
	(c)	biological clocks					
	(d)	photoperiod					
123.	Which ingredient killed hundreds of people in Bhopal Gas Tragedy?						
	(a)	Nitrous acid					
	(b)	Mustard gas					
	(c)	Hydrogen cyanide					
	(d)	Methyl isocyanate					
124.	Large number of clonal plants are produced through						
	(a)	anther culture					
	(b)	single-cell culture					
	(c)	micropropagation					
	(d)	callus culture					
125.	Emb	ryo rescue is the technique employed, when					
	(a)	embryo endosperm incompatibility occurs					
	(b)	pollens are sterile					
	(c)	ovules are sterile					
	(đ)	seeds are very small					

126.	Мо	st effective preservative used for preservation of canned foods is
	(a)	nystatin
	(b)	nisin
	(c)	thermolysin
	(d)	tylosin
127.	The	name of the enzyme used for cheese production is
	(a)	amylase .
	(b)	cellulase
	(c)	raffinase
	(d)	rennin
128.	Which one of the following is fermented milk product obtained through the controlle lactic acid fermentation of milk by S. thermophilus and L. bulgaricus?	
	(a)	Kefir
	(b)	Yoghurt
	(c)	Kumiss
	(d)	Probiotic milk
l 29 .	The	rich source of enzyme ficin is
	(a)	meat
	(b)	fig
	(c)	orange
	(d)	flower
30.	Whi	ch of the following chemicals is used to induce polyploidy?
	(a)	Ethyl methane sulfonate
	(b)	Methyl methane sulfonate
	(c)	Colchicine
	(d)	Nitrous acid

131.	The	effect of the genotype of the pollen grain on the phenotype of seed is termed as		
	(a)	apospory		
	(b)	pollinia		
	(c)	endoploidy		
	(d)	xenia		
132.	The	vector used for the construction of cDNA libraries is		
	(a)	plasmid		
	(b)	BAC		
	(c)	fosmid		
	(d)	phagemid		
133.	Which of the following methods of crossing is used for the transfer of oligogenic character in plant?			
	(a)	Testcross		
	(b)	Backcross		
	(c)	Crisscross		
	(d)	Z-cross		
134.	Omi	Omics technology that is used to analyze the functions of the genes is		
	(a)	genomics		
	(p)	transcriptomics		
	(c)	proteomics		
	(d)	ionomics		
135.	Sick	Sickle-cell anemia in human is due to the reason that		
	(a)	valine is replaced by glutamic acid		
	(b)	glutamic acid is replaced by valine		
	(c)	glutamic acid is replaced by lysine		
	(d)	valine is replaced by lysine		

136.	Seg	egregation of gene occurs in		
	(a)	F ₁ generation		
	(b)	F ₂ generation		
	(c)	gametic formation of F ₁		
	(d)	F ₃ generation		
137.	The cereal variety developed by mutation breeding in India is			
	(a)	Sonalika		
•	(p)	Jagannath		
	(c)	Varun		
	(d)	CSH-1		
138.	3. Transfer of resistance gene to high-yielding self-pollinated varieties is achieve			
	(a)	hybridization and pedigree selection		
	(p)	recurrent backcrossing and selection		
	(c)	hybridization and bulk selection		
	(d)	hybridization and mass selection		
139.	39. Genes which suppress or enhance the expression of other gene are called			
	(a)	dominant genes		
	(b)	recessive genes		
	(c)	modifier genes		
	(d)	duplicate genes		
140.	Pred	dominant pest in brinjal is		
	(a)	leucinodes		
	(b)	helicoverpa		
	(c)	spodoptera		
	(d)	pectinophora		

141.	Dou	ouble haploid lines can be generated by	
	(a)	protoplast fusion	
	(b)	transformation	
	(c)	anther culture	
	(d)	RNAi technology	
142.	The process of integration and excision of transposable elements is called as		
	(a)	transposon	
	(p)	translation	
	(c)	transposition	
	(d)	transversion	
143.	Hard	ardy and Weinberg law is related to	
	(a)	molecular genetics	
	(b)	population genetics	
	(c)	functional genomics	
	(d)	microbial genetics	
144.		enerally, the specificity and nature of gene action of vertical resistance (VR) in crop	
	(a)	specific and polygenic	
	(b)	specific and oligogenic	
	(c)	nonspecific and polygenic	
	(d)	nonspecific and oligogenic	
145.	A u	unit to measure a distance between genes is called	
	(a)	dalton	
	(b)	kilobase	
	(c)	megabase	
	(d)	centimorgan	

146.	. Symptoms of sulphur deficiency initially appear on	
	(a)	lower leaves
	(b)	middle leaves
	(c)	upper leaves
	(d)	All of the above
147.	7. The primary photoreceptor involved in the control of flowering is	
	(a)	cryptochrome
	(b)	phytochrome
	(c)	xanthophyll
	(d)	chlorophyll
148.	For most plant species, the effective temperature range for vernalization	
	(a)	-10 °C to −5 °C
	(b)	-1 °C to 9 °C
	(c)	10 °C to 12 °C
	(d)	13 °C to 15 °C
149.	Translocation of carbohydrates takes place through	
	(a)	phloem
	(b)	xylem
	(c)	pith
	(d)	endodermis
150.	Numbers are stored and transmitted inside a computer in	
	(a)	binary form
	(b)	ASCII code form
	(c)	decimal form
	(d)	alphanumeric form

151.	The	square root of variance of sample mean felers to
	(a)	standard deviation
	(b)	mean deviation
	(c)	standard error
	(d)	median
152.	The	Student t-test was given by
		R. A. Fisher
	• ,	J. B. S. Haldane
	• •	W. S. Gosset
	• •	K. Mather
	(/	
153.	Fusi	on of two polar nuclei with egg is known as
	(a)	double fertilization
	(b)	parthenocarpy
	(c)	synthetic seed
	(d)	artificial seed
154.	Notif	ication of varieties is necessary for
	(a)	certification
	(b)	labelling
	(c)	truthfull labelling
	(d)	carryover of seed
155.	GA3	is sprayed in hybrid rice to enhance
	(a)	panicle exertion
	(b)	seed set
	(c)	fertility
	(d)	seed maturity

130.	111 L	me three-domain system of classification, the traditional pacteria is placed in			
	(a)	Eukarya			
	(b)	Monera			
	(c)	Archaea			
	(d)	Eubacteria			
157.	The	70S prokaryotic ribosomes consist of			
	(a)	two 40S subunits			
	(b)	40S and 30S subunits			
	(c)	50S and 60S subunits			
	(d)	50S and 30S subunits			
158.	Whi	Which of the following statements is not true?			
	(a)	Symbiosis refers to different organisms living together			
	(b)	Members of symbiotic relationship cannot live without each other			
	(c)	Symbiosis refers to different organisms living together and benefitting from each other			
	(d)	A parasite is not a symbiosis with its host			
159.	Mici	robes involved in lactic acid fermentation are			
	(a)	aerobes			
	(b)	microaerophiles			
	(c)	facultative anaerobes			
	(d)	obligate anaerobes			
160.	Bull	Bulky ball consists of			
	(a)	58 carbon atoms			
	(b)	60 carbon atoms			
	(c)	63 carbon atoms			
	(d)	66 carbon atoms			

SPACE FOR ROUGH WORK

SPACE FOR ROUGH WORK

* * *