

DIPLOMA IN NAUTICAL SCIENCE

Term-End Examination December, 2006

BNA-012: APPLIED SCIENCE

Time: 2 hours Maximum Marks: 70

Note:

- (i) Non-programmable scientific calculator may be used.
- (ii) This question paper consists of Section A and Section B.
- (ii) Attempt three questions from each section. Questions No. 1 and 5 are compulsory.

SECTION A

(Nautical Physics)

Note: Question no. 1 is **compulsory**. Attempt **two** more questions from this section.

1. (a) State and explain Law of Conservation of Energy. 5

	(b)	The pitch of the whistle of an engine appears to	
		drop to $\frac{5}{6}$ th of the original frequency when it passes	
		a stationary observer. Calculate the speed of the engine. Take velocity of sound = 340 m/s.	5
	(c)	Differentiate between the following:	5
		(i) Damped and Undamped Oscillation	**
		(ii) Forced Oscillation and Resonance	
2.	(a)	Define the apparent coefficient and real coefficient of expansion of a liquid. Give relationship between them.	5
	(b)	How much amount of steam at 100° C will just melt 2500 gm of ice at -10° C ?	5
		Given:	
	•	Latent heat of vaporization of water = 540 cal/gm	
	· · · · · · · · · · · · · · · · · · ·	Latent heat of fusion of ice = 80 cal/gm	
		Specific heat of ice = 0.5 cal/gm- $^{\circ}$ C	
		Specific heat of water = 1 cal/gm-°C	
3.	(a)	Point out the error in Newton's formula for velocity of sound in a gaseous medium. How did Laplace correct it?	5
	(b)	If a body has a translational velocity of 20 m/s and starts climbing a plane inclined at an angle 30° to	
		the horizontal, how far along the plane would it climb?	5

- 4. (a) With the help of ray diagram give the details of image formed by a concave mirror when
 - (i) the object is located beyond the centre of curvature
 - (ii) the object is located at the centre of curvature (C)
 - (iii) the object is located between the focal point (F) and pole (P)
 - (b) Velocity of light in a liquid is 2.5×10^{10} cm/s, while in air it is 3×10^{10} cm/s. A ray of light passes from liquid to air. Calculate the critical angle. 5

SECTION B

(Nautical Chemistry)

Note: Question no. 5 is **compulsory**. Attempt **two** more questions from this section.

5. (a) An organic compound containing oxygen, carbon, hydrogen and nitrogen contains 20% carbon, 6.7% hydrogen and 46.67% nitrogen. Its vapour density was found to be 30. Find the molecular formula of the compound.

[Atomic weight — C = 12, H = 1, N = 14, O = 16]

- (b) State and explain Dalton's law of partial pressure. 5
- (c) Define metallurgy. Give various steps involved in the extraction of metal from its ore.
- 6. (a) Define flash point. How is it determined using close cup method? Support your answer giving a schematic diagram.
 - (b) Calculate
 - (i) The volume of 3.2 g of oxygen at N.T.P.
 - (ii) The number of moles of a gas occupying 560 ml at S.T.P.

Given R = 0.0821 *l*-atm/mol-K.

5

5

7.	(a)	Differentiate between the following. Also give examples.	5
		(i) Exothermic and Endothermic reaction	
		(ii) Calcination and Roasting	
	(b)	What are primary air pollutants? List any five of them along with their respective sources.	5
8.	(a)	What is petroleum refining? Draw a labelled diagram of fractionating tower:	5
	(b)	Write the structural formula of the following compounds:	5
		(i) 2-methyl propanol	
		(ii) Pentan-2-one	
		(iii) 2-Bromo-3-chlorobutane	
*		(iv) Butanoic acid	
		(v) Methyl ethanoate	